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KINETICALLY CONSTRAINED SPIN MODELS

N. CANCRINI, F. MARTINELLI, C. ROBERTO, AND C. TONINELLI

ABSTRACT. We analyze the density and size dependence of the relaxation

time for kinetically constrained spin models (KCSM) intensively studied

in the physical literature as simple models sharing some of the features

of a glass transition. KCSM are interacting particle systems on Zd with

Glauber-like dynamics, reversible w.r.t. a simple product i.i.d Bernoulli(p)

measure. The essential feature of a KCSM is that the creation/destruction

of a particle at a given site can occur only if the current configuration of

empty sites around it satisfies certain constraints which completely define

each specific model. No other interaction is present in the model. From

the mathematical point of view, the basic issues concerning positivity of

the spectral gap inside the ergodicity region and its scaling with the parti-

cle density p remained open for most KCSM (with the notably exception of

the East model in d = 1 [3]). Here for the first time we: i) identify the er-

godicity region by establishing a connection with an associated bootstrap

percolation model; ii) develop a novel multi-scale approach which proves

positivity of the spectral gap in the whole ergodic region; iii) establish,

sometimes optimal, bounds on the behavior of the spectral gap near the

boundary of the ergodicity region and iv) establish pure exponential de-

cay for the persistence function (see below). Our techniques are flexible

enough to allow a variety of constraints and our findings disprove cer-

tain conjectures which appeared in the physical literature on the basis of

numerical simulations.

Key words: Glauber dynamics, spectral gap, constrained models, dy-

namical phase transition, glass transition.

1. INTRODUCTION

Kinetically constrained spin models (KCSM) are interacting particle sys-
tems on the integer lattice Zd. A configuration is defined by assigning to
each site x its occupation variable ηx ∈ {0, 1}. The evolution is given by
a simple Markovian stochastic dynamics of Glauber type with generator L.
Each site waits an independent, mean one, exponential time and then, pro-
vided that the current configuration around it satisfies an apriori specified
constraint which does not involve ηx, it refreshes its state by declaring it to
be occupied with probability p and empty with probability q = 1 − p. De-
tailed balance w.r.t. Bernoulli(p) product measure µ is easily verified and µ
is therefore an invariant reversible measure for the process.

These models have been introduced in physical literature [17, 18] to
model liquid/glass transition and more generally the slow “glassy” dynamics
which occurs in different systems (see [31, 10] for recent review). In par-
ticular, they were devised to mimic the fact that the motion of a molecule

We would like to thank A. Gandolfi and J. van den Berg for a useful discussion on high

dimensional percolation and H. C. Andersen for some enlightening correspondence.
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in a dense liquid can be inhibited by the presence of too many surround-
ing molecules. That explains why, in all physical models, the constraints
specify the maximal number of particles on certain sites around a given one
in order to allow creation/destruction on the latter. As a consequence, the
dynamics of KCSM becomes increasingly slow as p is increased. Moreover
there usually exist configurations with all creation/destruction rates identi-
cally equal to zero (blocked configurations), a fact that implies the existence
of several invariant measures (see [26] for a somewhat detailed discussion
of this issue in the context of the North-East model) and produce unusually
long mixing times compared to standard high-temperature stochastic Ising
models (see section 7.1 below). Finally we observe that a KCSM model is
in general not attractive so that the usual coupling arguments valid for e.g.
ferromagnetic stochastic Ising models cannot be applied.

The above little discussion explains why the basic issues concerning the
large time behavior of the process, even if started from the equilibrium re-
versible measure µ, are non trivial and justifies why they remained open for
most of the interesting models, with the only exception of the East model
[3]. This is a one-dimensional model for which creation/destruction at a
given site can occur only if the nearest neighbor to its right is empty. In
[3] it has been proved that the generator L of the East model has a positive
spectral gap for all q > 0, which, for q ↓ 0, shrinks faster than any polyno-
mial in q (see section 6 for more details). However, the method in [3] uses
quite heavily the specifics of the model and its extension to higher dimen-
sions or to other models introduced in physical literature seems to be non
trivial. Among the latter we just recall the North-East model (N-E) [25] in
Z2 and the Fredrickson Andersen j ≤ d spin facilitated (FA-jf) [17] models
in Zd. For the first, destruction/creation at a given site can occur only if its
North and East neighbors are empty, while for the FA-jf model the constraint
requires that at least j among the nearest neighbors are empty.

The main achievements of this paper can be described as follows. In sec-
tion 2.3, given a generic KCSM with constraints satisfying few rather mild
conditions, we first identify the critical value of the density of vacancies
qc = inf{q : 0 is a simple eigenvalue of L} with the critical value of a nat-
urally related bootstrap percolation model. Notice that a general result on
Markov semigroups (see Theorem 2.2 below) implies that for any q > qc

the reversible measure µ is mixing for the process generated by L. Next, in
section 3, we identify a natural general condition on the associated boot-
strap percolation model which implies the positivity of the spectral gap of
L. In its simplest form the condition requires that the probability that a
large cube is internally spanned (i.e. the block does not contain blocked
configurations, see definition 3.5 below) is close to one. For all the models
discussed in section 6 our condition is satisfied for all q strictly larger than
qc. Our findings disprove some conjectures appeared in the physical litera-
ture [19, 21], based on numerical simulations and approximated analytical
treatments, on the existence of a second critical point q′c > qc at which the
spectral gap vanishes. The main ingredients in the proof are multi-scale ar-
guments, the bisection technique of [28] combined with the novel idea of
considering auxiliary constrained models on large length scales with scale
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dependent constraints (see sections 4 and 5) . At the end of the section
we also analyze the so called persistence function F (t) which represents the
probability for the equilibrium process that the occupation variable at the
origin does not change before time t. We prove that, whenever the spectral
gap is strictly positive, F (t) must decay exponentially. This, together with
the above results, disproves previous conjectures of a stretched exponential
decay of the form F (t) ≃ exp(−t/τ)β with β < 1 for FA1f in d = 1 [5, 6]

and for FA2f in d = 2 [21] 1. For the North-East model at the critical point

we show instead (see corollary 6.18) that
∫ ∞
0 dt F (

√
t) = ∞, a signature of

a slow polynomial decay.
After establishing the positivity of the spectral gap, in section 6 we ana-

lyze its behavior as q ↓ qc for some of the models discussed in section 2.3.
For the East model (qc = 0) we significantly improve the lower bound on
the spectral gap proved in [3] and claimed to provide the leading behavior
in [16]. Our lower bound, in leading order, coincides with the upper bound

of [3], yielding that the gap shrinks as qlog2(q)/2 for small values of q.
For the FA-1f model (qc = 0) we show that for q ≈ 0, the spectral gap is

O(q3) in d = 1, O(q2) in d = 2 apart from logarithmic corrections and be-

tween O(q1+2/d) and O(q2) in d ≥ 3. Again these findings disprove previous
claims in d = 2, 3 [6] .

For the FA-2f model (qc = 0) in e.g. d = 2 we get instead

exp(−c/q5) ≤ gap(L) ≤ exp
(

− π2

18q

(

1 + o(1)
)

)

(1.1)

as q ↓ 0. Notice that the r.h.s. of (1.1) represents the inverse of the critical
length for bootstrap percolation [22], i.e. the smallest length scale above
which a region of the lattice becomes mobile or unjammed under the FA-
2f dynamics, and it has been conjectured [30, 35] to provide the leading
behavior of the spectral gap for small values of q.

As explained above, the techniques developed in this paper are flexible
enough to deal with a variety of KCSM even on more general graphs [11]
and, possibly, with some non trivial interaction between the occupation vari-
ables. Furthermore it seems that they could also be applied to kinetically
constrained models with Kawasaki (i.e. conservative) rather than Glauber
dynamics.

2. THE GENERAL MODELS

2.1. Setting and notation. The models considered here are defined on
the integer lattice Zd with sites x = (x1, . . . , xd) and basis vectors ~e1 =
(1, . . . , 0), ~e2 = (0, 1, . . . , 0), . . . , ~ed = (0, . . . , 1). On Zd we will consider the
Euclidean norm ‖x‖, the ℓ1 (or graph theoretic) norm ‖x‖1 and the sup-
norm ‖x‖∞. The associated distances will be denoted by d(·, ·), d1(·, ·) and

1For a different Ising-type constrained model in which the kinetic constraint prevents

spin-flip which do not conserve the energy, Spohn [34] has proved long ago that the time

autocorrelation of the spin at the origin decays as a stretched exponential



4 N. CANCRINI, F. MARTINELLI, C. ROBERTO, AND C. TONINELLI

d∞(·, ·) respectively. For any vertex x we let

Nx = {y ∈ Zd : d1(x, y) = 1},
Kx = {y ∈ Nx : y = x +

∑d
i=1 αi~ei, αi ≥ 0}

N ∗
x = {y ∈ Zd : y = x +

∑d
i=1 αi~ei, αi = ±1, 0 and

∑

i α2
i 6= 0}

K∗
x = {y ∈ N ∗

x : y = x +
∑d

i=1 αi~ei, αi = 1, 0}
and write x ∼ y if y ∈ N ∗

x . The neighborhood, the *-neighborhood, the

x xxx

Nx Kx N ∗
x K∗

x

FIGURE 1. The various neighborhoods of a vertex x in two dimensions

oriented and *-oriented neighborhoods ∂Λ, ∂∗Λ, ∂+Λ, ∂∗
+Λ of a finite subset

Λ ⊂ Zd are defined accordingly as ∂Λ := {∪x∈ΛNx}\Λ, ∂∗Λ := {∪x∈ΛN ∗
x}\

Λ, ∂+Λ := {∪x∈ΛKx} \Λ, ∂∗
+Λ := {∪x∈ΛK∗

x} \Λ. A rectangle R will be a set
of sites of the form

R := [a1, b1] × · · · × [ad, bd]

while the collection of finite subsets of Zd will be denoted by F.

The pair (S, ν) will denote a finite probability space with ν(s) > 0 for any
s ∈ S. G ⊂ S will denote a distinguished event in S, often referred to as the
set of “good states”, and q ≡ ν(G) its probability.

Given (S, ν) we will consider the configuration space Ω = SZ
d

equipped
with the product measure µ :=

∏

x∈Zd νx, νx ≡ ν. Similarly we define ΩΛ

and µΛ for any subset Λ ⊂ Zd. Elements of Ω (ΩΛ) will be denoted by Greek
letters ω, η (ωΛ, ηΛ) etc while the variance w.r.t µ by Var (VarΛ). Finally we
will use the shorthand notation µ(f) to denote the expected value of any
f ∈ L1(µ).

2.2. The Markov process. The interacting particle models that will be stud-
ied here are Glauber type Markov processes in Ω, reversible w.r.t. the mea-
sure µ (or µΛ if considered in ΩΛ) and characterized by a collection of influ-
ence classes {Cx}x∈Zd and by a choice of the good event G ⊂ S. For any x,

Cx is a collection of subsets of Zd (see below for some of the most relevant
examples). The collection of influence classes will satisfy the following basic
hypothesis:

a) independence of x: for all x ∈ Zd and all A ∈ Cx x /∈ A ;
b) translation invariance: Cx = C0 + x for all x;
c) finite range interaction: there exists r < ∞ such that any element of Cx is

contained in ∪r
j=1{y : d1(x, y) = j}

Definition 2.1. Given a vertex x ∈ Zd we will say that the constraint at x is
satisfied by the configuration ω if the indicator

cx(ω) =

{

1 if there exists a set A ∈ Cx such that ωy ∈ G for all y ∈ A

0 otherwise
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is equal to one.

The process that will be studied in the sequel can be informally described
as follows. Each vertex x waits an independent mean one exponential time
and then, provided that the current configuration ω satisfies the constraint
at x, the value ωx is refreshed with a new value in S sampled from ν and
the all procedure starts again.

The generator L of the process can be constructed in a standard way (see
e.g. [27, 26]) and it is a non negative self-adjoint operator on L2(Ω, µ) with
domain Dom(L) and Dirichlet form given by

D(f) =
∑

x∈Zd

µ (cx Varx(f)) , f ∈ Dom(L)

Here Varx(f) ≡
∫

dν(ωx)f
2(ω)−

(∫

dν(ωx)f(ω)
)2

denotes the local variance
with respect to the variable ωx computed while the other variables are held
fixed. To the generator L we can associate the Markov semigroup Pt := etL

with reversible invariant measure µ.
Notice that the constraints cx(ω) are increasing functions w.r.t the partial

order in Ω for which ω ≤ ω′ iff ω′
x ∈ G whenever ωx ∈ G. However that

does not imply in general that the process generated by L is attractive in the
sense of Liggett [27].

Due to the fact that the jump rates are not bounded away from zero, the
reversible measure µ is certainly not the only invariant measure (there ex-
ists initial configurations that are blocked forever) and an interesting ques-
tion is therefore whether µ is ergodic or mixing for the Markov process and
whether there exist other translation invariant, ergodic stationary measures.
To this purpose it is useful to recall the following well known result (see e.g.
Theorem 4.13 in [27]).

Theorem 2.2. The following are equivalent,

(a) limt→∞ Ptf = µ(f) in L2(µ) for all f ∈ L2(µ).
(b) 0 is a simple eigenvalue for L.

Clearly (a) above implies that limt→∞ µ (fPtg) = µ(f)µ(g) for any f, g ∈
L2(µ), i.e. µ is mixing and therefore ergodic.

Remark 2.3. Even if µ is mixing there will exist in general infinitely many
stationary measures, i.e. probability measures µ̃ satisfying µ̃Pt = µ̃ for all
t ≥ 0. As an example take an arbitrary probability measure µ̃ such that

µ̃
(

{S \ G}Z
d)

= 1. We refer the interested reader to [26] for a discussion of
this point in the context of the North-East model (see below).

In a finite region Λ ⊂ Zd the process, a continuous time Markov chain in
this case, can be defined analogously but some care has to be put in order to
correctly define the constraints cx for those x ∈ Λ such that their influence
class Cx is not entirely contained inside Λ.

One possibility is to modify in a Λ-dependent way the definition of the
influence classes e.g. by defining

Cx,Λ := {A ∩ Λ; A ∈ Cx}
Although such an approach is feasible and natural, at least for some of the
models discussed below, an important drawback is a loss of ergodicity of
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the chain. One is then forced to consider the chain restricted to an ergodic
component making the whole analysis more cumbersome (see section 7).

Another alternative is to imagine that the configuration ω outside Λ is
frozen and equal to some reference configuration τ that will be referred to
as the boundary condition and to define the finite volume constraints with
boundary condition τ as

cτ
x,Λ(ωΛ) := cx(ωΛ · τ),

where ωΛ ·τ simply denotes the configuration equal to ωΛ inside Λ and equal
to τ outside. Since we want the Markov chain to be ergodic τ will need to
be in the good set G for some of the vertices outside Λ. Instead of discussing
this issue in a very general context we will now describe the basic models
and solve the problem of boundary conditions for each one of them.

2.3. 0-1 Kinetically constrained spin models. In most models considered
in the physical literature the finite probability space (S, ν) is simply the two
state-space {0, 1} and the good set G is conventionally chosen as the empty
state {0}. Any model with these features will be called a “0-1 KCSM” (kinet-
ically constrained spin model).

Given a 0-1 KCSM, the parameter q = µ(η0 = 0) can be varied in [0, 1]
while keeping fixed the basic structure of the model (i.e. the notion of the
good set and the functions cx’s expressing the constraints) and it is natural
to define a critical value qc as

qc = inf{q ∈ [0, 1] : 0 is a simple eigenvalue of L}
As we will prove below qc coincides with the bootstrap percolation threshold

qbp of the model defined as follows [33] 2. For any η ∈ Ω define the bootstrap
map T : Ω 7→ Ω as

T (η)x = 0 if either ηx = 0 or cx(η) = 1. (2.1)

Denote by µ(n) the probability measure on Ω obtained by iterating n-times

the above mapping starting from µ. As n → ∞ µ(n) converges to a limiting

measure µ(∞) [33] and it is natural to define the critical value qbp as

qbp = inf{q ∈ [0, 1] : µ(∞)(η0 = 0) = 1}
i.e. the infimum of the values q such that, with probability one, the lattice
can be entirely emptied. Using the fact that the cx’s are increasing function

of η it is easy to check that for any q > qbp µ(∞)(η0 = 0) = 1.

Proposition 2.4. qc = qbp and for any q > qc 0 is a simple eigenvalue for L.

Proof. Assume q < qbp and call f the indicator of the event that the origin
cannot be emptied by any finite number of iterations of the bootstrap map
T (2.1). By construction Var(f) 6= 0 and Lf = 0 a.s. (µ). Therefore 0 is not
a simple eigenvalue of L and q ≤ qc.

Suppose now that q > qbp and that f ∈ Dom(L) satisfies Lf = 0 or, what
is the same, D(f) = 0. We want to conclude that f = const. a.e. (µ). For this
purpose we will show that D(f) = 0 implies that the unconstrained Glauber

2In most of the boostrap percolation literature the role of the 0’s and the 1’s is inverted
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Dirichlet form
∑

x µ (Varx(f)) is zero which makes the sought conclusion
obvious since Var(f) ≤ ∑

x µ (Varx(f)).

Given x ∈ Zd let An ≡ An,x = {η : T n(η)x = 0}. Since q > qbp, clearly
µ (∪nAn) = 1. Write

µ (Varx(f)) = pq
∑

n

∫

An\An−1

dµ(η)[f(ηx) − f(η)]2

where ηx denotes the flipped configuration at x. For any η ∈ An it is
easy to convince oneself that it is possible to find a collection of vertices

x(1), . . . , x(k), with k and d(x, x(j)) bounded by a constant depending only

on n, and a collection of configurations η(1), η(2), . . . , η(k) such that η(1) =

η, η(k) = ηx, η(j+1) = (η(j))x
(j)

and cx(j)(η(j)) = 1. We can then write

[f(ηx) − f(η)] as a telescopic sum of terms like [f(η(j+1)) − f(η(j))] and
apply Schwartz inequality to get

∫

An\An−1

dµ(η)[f(ηx) − f(η)]2

≤ C(n)
∑

y: d(y,x)≤C′(n)

∫

dµ(σ)cy(σ)[f(σy) − f(σ)]2

where the constant C(n) takes care of the relative density supη∈An

µ(η)

µ(η(j))

and of the number of possible choice of the vertices {x(j)}k
j=1.

By assumption D(f) = 0 i.e.
∫

dµ(σ)cy(σ)[f(σy) − f(σ)]2 = 0 for any y and
the proof is complete. �

Having defined the bootstrap percolation it is natural to divide the 0-1
KCSM into two distinct classes.

Definition 2.5. We will say that a 0-1 KCSM is non cooperative if there exists
a finite set B ⊂ Zd such that any configuration η which is empty in all the sites
of B reaches the empty configurations (all 0’s) under iteration of the bootstrap
mapping. Otherwise the model will be called cooperative.

Remark 2.6. Because of the translation invariance of the constraints it is ob-
vious that any configuration η identically equal to zero in B + x, x ∈ Zd, will
reach the empty configuration under iterations of T . It is also obvious that qbp

and therefore qc are zero for all non-cooperative models.

In what follows we will now illustrate some of the most studied models.

[1] The East model [15]. Take d = 1 and set Cx = {x + 1}, i.e. a vertex
can flip iff its right neighbor is empty. The minimal boundary conditions
in finite volume are of course empty right boundary. The model is clearly
cooperative but qc = 0 since in order to empty the whole lattice it is enough
to start from a configuration for which any site x has a vacancy to its right.

[2] Frederickson-Andersen (FA-jf) models [17, 18]. Take 1 ≤ j ≤ d and
set

Cx = {A ⊂ Nx : |A| ≥ j}
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In words a vertex can be updated iff at least j of its neighbors are 0’s. When
j = 1 the minimal boundary conditions on a rectangle that will ensure er-
godicity of the Markov chain in e.g. a rectangle Λ will be exactly one 0 on
∂Λ. If instead j = d, ergodicity is guaranteed if we assume τy = 0 for e.g.
all y on ∂+Λ. If j = 1 the model is non-cooperative while for j ≥ 2 it is
cooperative. In any case qc = 0 [33].

[3] The Modified Basic (MB) model. Here we take

Cx = {A ⊂ Nx : A ∩ {−~ei, ~ei} 6= ∅, for all i = 1, . . . , d}
i.e. a move at x can occur iff in each direction there is a 0. The model is
cooperative and the minimal boundary conditions on a rectangle are the
same as those for the FA-df model. Once again qc = 0 [33].

[4] The N-E (North-East) model [25]. Here one chooses d = 2 and

Cx = {Kx}
The model is cooperative with minimal boundary conditions those that we
have chosen for the FA-2f model in d = 2. The critical point qc coincides
with 1 − po

c where po
c is the critical threshold for oriented percolation in Z2

[33].

2.4. Quantities of interest. Back to the general model we now define the
main quantities that will be studied in the sequel.

The first object of mathematical and physical interest is the spectral gap
(or inverse of the relaxation time) of the generator L, defined as

gap(L) := inf
f∈Dom(L)

f 6=const

D(f)

Var(f)
(2.2)

and similarly for the finite volume version of the process. A positive spec-
tral gap implies that the reversible measure µ is mixing for the semigroup
Pt with exponentially decaying correlations. It is important to observe the
following kind of monotonicity that can be exploited in order to bound the
spectral gap of one model with the spectral gap of another one.

Suppose that we are given two finite range and translation invariant in-
fluence classes C′

0, C0 such that, for all ω ∈ Ω and all x ∈ Zd, cx(ω) ≤ c′x(ω)
and denote the associated generators by L and L′ respectively. In this case
we say that the KCSM generated by L is dominated by the one generated
by L′. Clearly cx(ω) ≤ c′x(ω) for all ω and therefore gap(L) ≤ gap(L′). As

an example we can consider the FA-1f model in Zd. If instead of taking as
C0 the collection of non-empty subsets A of N0 (see above) we consider C0

with the extra constraint that A must contain at least one vertex between
±~e1, we get that the spectral gap of the FA-1f model in Zd is bounded from
below by the spectral gap of the FA-1f model in Z which in turn is bounded
from below by the spectral gap of the East model which is known to be
positive [3]. Similarly we could lower bound the spectral gap of the FA-2f
model in Zd, d ≥ 2, with that in Z2, by restricting the sets A ∈ C0 to e.g.
the (~e1, ~e2)-plane. In finite volume the comparison argument is a bit more
delicate since it heavily depends on the boundary conditions. For example,
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if we consider the FA-1f model in a rectangle with minimal boundary con-
ditions, i.e. a single 0 in one corner, the argument discussed above would
lead to a comparison with a non-ergodic Markov chain whose spectral gap
is zero.

Remark 2.7. The comparison technique can be quite effective in proving pos-
itivity of the spectral gap but the resulting bounds are in general quite poor,
particularly in the limiting case q ≈ qc.

The second observation we make consists in relating gap(L) to its finite
volume analogue. Assume that infΛ∈F gap(LΛ) > 0 where LΛ is defined
with e.g. good boundaries conditions outside Λ. It is then easy to conclude
that gap(L) > 0.

Indeed, following Liggett Ch.4 [27], for any f ∈ Dom(L) with Var(f) > 0
pick fn ∈ L2(Ω, µ) depending only on finitely many spins so that fn → f
and Lfn → Lf in L2. Then Var(fn) → Var(f) and D(fn) → D(f). But since
fn depends on finitely many spins

Var(fn) = VarΛ(fn) and D(fn) = DΛ(fn)

provided that Λ is a large enough square (depending on fn) centered at the
origin. Therefore

D(f)

Var(f)
≥ inf

Λ∈F

gap(LΛ) > 0.

and gap(L) ≥ infΛ∈F gap(LΛ) > 0.

The second quantity of interest is the so called persistence function (see
e.g. [21, 16]) defined by

F (t) :=

∫

dµ(η) P(ση
0 (s) = η0, ∀s ≤ t) (2.3)

where {ση
s}s≥0 denotes the process started from the configuration η. In

some sense the persistence function provides a measure of the “mobility” of
the system.

3. MAIN RESULTS FOR 0-1 KCSM

In this section we state our main results for 0-1 KCSM. Fix an integer
length scale ℓ larger than the range r and let Zd(ℓ) ≡ ℓ Zd. Consider a

partition of Zd into disjoint rectangles Λz := Λ0 + z, z ∈ Zd(ℓ), where

Λ0 = {x ∈ Zd : 0 ≤ xi ≤ ℓ − 1, i = 1, .., d}.

Definition 3.1. Given ǫ ∈ (0, 1) we say that Gℓ ⊂ {0, 1}Λ0 is a ǫ-good set of
configurations on scale ℓ if the following two conditions are satisfied:

(a) µ(Gℓ) ≥ 1 − ǫ.

(b) For any collection {ξ(x)}x∈K∗
0

of spin configurations in {0, 1}Λ0 such that

ξ(x) ∈ Gℓ for all x ∈ K∗
0 and for any ξ ∈ Ω which coincides with ξ(x)

in Λℓx, there exists a sequence of legal moves inside ∪x∈K∗
0
Λℓx (i.e. single

spin moves compatible with the constraints) which transforms ξ into a
new configuration τ such that the Markov chain generated by LΛ0 with
boundary conditions τ is ergodic.
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Remark 3.2. In general the transformed configuration τ will be identically
equal to zero on ∂∗

+Λ0. It is also clear that assumption (b) has been made
having in mind models, like the FA-jf, M-B or N-E, which, modulo rotations,

are dominated by a model with influence classe C̃x entirely contained in the

sector {y : y = x +
∑d

i=1 αi~ei, αi ≥ 0}. Moreover, for some other models, the

geometry of the tiles of the partition of Zd, rectangles in our case, should be
adapted to the influence classes {Cx}x∈Zd .

With the above notation our first main result, whose proof can be found
in section 5, can be formulated as follows.

Theorem 3.3. There exists a universal constant ǫ0 ∈ (0, 1) such that if there
exists ℓ and a ǫ0-good set Gℓ on scale ℓ then gap(L) > 0.

In several examples, e.g. the FA-jf and Modified Basic models, the nat-
ural candidate for the event Gℓ is the event that the tile Λ0 is “internally
spanned”, a notion borrowed from bootstrap percolation [2, 33, 22]:

Definition 3.4. We say that a finite set Γ ⊂ Zd is internally spanned by a
configuration η ∈ Ω if, starting from the configuration ηΓ equal to one outside
Γ and equal to η inside Γ, there exists a sequence of legal moves inside Γ
which connects ηΓ to the configuration identically equal to zero inside Γ and
identically equal to one outside Γ.

Of course whether or not the set Λ0 is internally spanned for η depends
only on the restriction of η to Λ0. One of the major result in bootstrap
percolation problems has been the exact evaluation of the µ-probability that
the box Λ0 is internally spanned as a function of the length scale ℓ and the
parameter q [22, 33, 12, 2]. For non-cooperative models it is obvious that
qbp = 0. For some cooperative systems like e.g. the FA-2f and Modified

Basic model in Z2, it has been shown that for any q > 0 such probability
tends very rapidly (exponentially fast) to one as ℓ → ∞ and that it abruptly
jumps from being very small to being close to one as ℓ crosses a critical scale
ℓc(q). In most cases the critical length ℓc(q) diverges very rapidly as q ↓ 0.
Therefore, for such models and ℓ > ℓc(q), one could safely take Gℓ as the
collection of configurations η such that Λ0 is internally spanned for η. We
now formalize what we just said.

Corollary 3.5. Assume that limℓ→∞ µ(Λ0 is internally spanned ) = 1 and that
the Markov chain in Λ0 with zero boundary conditions on ∪x∈K∗

0
Λℓx is ergodic.

Then gap(L) > 0.

The second main result concerns the long time behavior of the persistence
function F (t) defined in (2.3).

Theorem 3.6. Assume that gap(L) ≥ γ > 0. Then there exists a constant
c > 0 such that F (t) ≤ e−ct. For small values of γ the constant c can be taken
proportional to qγ.

Proof. Clearly F (t) = F1(t) + F0(t) where

F1(t) =

∫

dµ(η) P(ση
0 (s) = 1 for all s ≤ t)
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and similarly for F0(t). We will prove the exponential decay of F1(t) the
case of F0(t) being similar.

For any λ > 0 the exponential Chebychev inequality gives

F1(t) =

∫

dµ(η) P
(

∫ t

0
ds ση

0(s) = t
)

≤ e−λt Eµ

(

eλ
∫ t
0 ds ση

0 (s)
)

where Eµ denotes the expectation over the process started from the equi-

librium distribution µ. On L2(µ) consider the self-adjoint operator Hλ :=
L+λV , where V is the multiplication operator by σ0. By the very definition
of the scalar product < f, g > in L2(µ) and the Feynman–Kac formula, we

can rewrite Eµ(eλ
∫ t
0 σ0(s)) as < 1, etHλ1 > . Thus, if βλ denotes the supre-

mum of the spectrum of Hλ,

Eµ(eλ
∫ t
0

σ0(s)) 6 etβλ .

In order to complete the proof we need to show that for suitable positive λ
the constant βλ/λ is strictly smaller than one.

For any norm one function f in the domain of Hλ (which coincides with
Dom(L)) write f = α1 + g with < 1, g > = 0. Thus

< f, Hλf > = < g, Lg > +α2λ < 1, V 1 >+λ < g, V g >+2λα < 1, V g >

≤ (λ − γ) < g, g > +α2λp + 2λ|α|
(

< g, g > pq
)1/2

(3.1)

Since α2+ < g, g > = 1

βλ/λ ≤ sup
0≤α≤1

{

(1 − γ/λ)(1 − α2) + pα2 + 2α
(

(1 − α2)pq
)1/2

}

(3.2)

If we choose λ = γ/2 the r.h.s. of (3.2) becomes

sup
0≤α≤1

(1 + p)α2 − 1 + 2α
(

(1 − α2)pq
)1/2

≤ sup
0≤α≤1

(1 + p)α2 − 1 + 2
(

(1 − α2)pq
)1/2

=
pq

1 + p
+ p < 1.

since p 6= 1. Thus F1(t) satisfies

F1(t) ≤ e
−tγ

2
q

1+p .

A similar computation shows that F0(t) ≤ e−tγc with c independent of q. �

Remark 3.7. The above result indicates that one can obtain upper bounds on
the spectral gap by proving lower bounds on the persistence function. Con-
cretely a lower bound on the persistence function can be obtained by restricting
the µ-average to those initial configurations η for which the origin is blocked
with high probability for all times s ≤ t. In section 6 we will see few examples
of this strategy.

4. ANALYSIS OF A GENERAL AUXILIARY MODEL

Consider the following model characterized by the influence classes Cx =
K∗

x, x ∈ Zd and arbitrary finite probability space (S, ν) and choice of the
good event G ⊂ S with q := ν(G). For definiteness we will call it the
*-general model. The proof of theorem 3.3 is based on the analysis of the *-
general model in a finite set Λ with fixed good boundary conditions τ on its
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*-oriented neighborhood ∂∗
+Λ. Clearly the process does not depend on the

specific values of the (good) boundary configuration τ and, with a slightly
abuse of notation, we can safely denote the generator of the chain by LΛ

and the associated Dirichlet form by DΛ. Ergodicity of LΛ follows once we
observe that, starting from the sites in Λ whose *-oriented neighborhood is
entirely contained in Λc and whose existence is proved by induction, we can
reach any good configuration ω′ ∈ GΛ and from there any other configura-
tion ω̃.

The following monotonicity of the spectral gap will turn out to be quite
useful in simplifying some of the arguments given below.

Lemma 4.1. Let V ⊂ Λ. Then

gap(LΛ) ≤ gap(LV )

Proof. For any f ∈ L2(ΩV , µV ) we have VarV (f) = VarΛ(f) because of the
product structure of the measure µΛ and DΛ(f) ≤ DV (f) because, for any
x ∈ V and any ω ∈ ΩΛ, cx,Λ(ω) ≤ cx,V (ω). The result follows at once from
the variational characterization of the spectral gap. �

We now state our main theorem concerning the *-general model.

Theorem 4.2. There exists q0 < 1 independent of S, ν such that for any q > q0

inf
Λ∈F

gap(LΛ) > 1/2.

and in particular gap(L) > 0.

Proof. Thanks to Lemma (4.1) we need to prove the result only for rect-
angles. Our approach is based on the “bisection method” introduced in
[28, 29] and which, in its essence, consists in proving a suitable recursion
relation between the spectral gap on scale 2L with that on scale L. At the
beginning the method requires a simple geometric result (see [8]) which we
now describe.

Let lk := (3/2)k/2, and let Fk be the set of all rectangles Λ ⊂ Zd which,
modulo translations and permutations of the coordinates, are contained in

[0, lk+1] × · · · × [0, lk+d]

The main property of Fk is that each rectangle in Fk\Fk−1 can be obtained
as a “slightly overlapping union” of two rectangles in Fk−1. More precisely
we have:

Lemma 4.3. For all k ∈ Z+, for all Λ ∈ Fk\Fk−1 there exists a finite sequence

{Λ(i)
1 ,Λ

(i)
2 }sk

i=1 in Fk−1, where sk := ⌊l1/3
k ⌋, such that, letting δk := 1

8

√
lk − 2,

(i) Λ = Λ
(i)
1 ∪ Λ

(i)
2 ,

(ii) d(Λ\Λ(i)
1 ,Λ\Λ(i)

2 ) ≥ δk,

(iii)
(

Λ
(i)
1 ∩ Λ

(i)
2

)

∩
(

Λ
(j)
1 ∩ Λ

(j)
2

)

= ∅, if i 6= j

The bisection method then establishes a simple recursive inequality be-
tween the quantity γk := supΛ∈Fk

gap(LΛ)−1 on scale k and the same quan-
tity on scale k − 1 as follows.

Fix Λ ∈ Fk\Fk−1 and write it as Λ = Λ1∪Λ2 with Λ1,Λ2 ∈ Fk−1 satisfying
the properties described in Lemma 4.3 above. Without loss of generality
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we can assume that all the faces of Λ1 and of Λ2 lay on the faces of Λ
except for one face orthogonal to the first direction ~e1 and that, along that
direction, Λ1 comes before Λ2. Set I ≡ Λ1 ∩ Λ2 and write, for definiteness,
I = [a1, b1]× · · · × [ad, bd]. Lemma 4.3 implies that the width of I in the first
direction, b1 − a1, is at least δk. Let also ∂rI = {b1} × · · · × [ad, bd] be the
right face of I along the first direction.

Next, for any x, y ∈ I and any ω ∈ ΩI , we write x
ω→ y if there exists a

sequence (x(1), . . . , x(n)) in I, starting at x and ending at y, such that, for

any j = 1, . . . , n − 1, x(j) ∼ x(j+1) and ωx(j) /∈ G, where ∼ has been defined
in section 2.1. With this notation we finally define the bad cluster of x as the

set Ax(ω) = {y ∈ I; x
ω→ y}. Notice that, by construction, ωz ∈ G for any

z ∈ ∂∗Ax(ω).

Definition 4.4. We will say that ω is I-good iff, for all x ∈ ∂rI, the set Ax(ω)∪
∂∗Ax(ω) is contained in I.

With the help of the above decomposition we now run the following con-
strained “block dynamics” on ΩΛ (in what follows, for simplicity, we sup-
press the index i) with blocks B1 := Λ \ Λ2 and B2 := Λ2. The block B2

waits a mean one exponential random time and then the current configu-
ration inside it is refreshed with a new one sampled from µΛ2 . The block
B1 does the same but now the configuration is refreshed only if the current
configuration ω is I-good (see Figure 2). The Dirichlet form of this auxiliary

B1 B2

I

∂rI

FIGURE 2. The two blocks and the strip I.

chain is simply

Dblock(f) = µΛ (c1 VarB1(f) + VarB2(f))

where c1(ω) is just the indicator of the event that ω is I-good and VarB1(f),
VarB2(f) depend on ωBc

1
and ωBc

2
respectively.

Denote by γblock(Λ) the inverse spectral gap of this auxiliary chain. The
following bound, whose proof is postponed for clarity of the exposition, is
not difficult to prove.
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Proposition 4.5. Let εk ≡ max
I

P(ω is not I-good) where the maxI is taken

over the sk possible choices of the pair (Λ1,Λ2). Then

γblock(Λ) ≤ 1

1 −√
εk

In conclusion, by writing down the standard Poincaré inequality for the
block auxiliary chain, we get that for any f

VarΛ(f) ≤
( 1

1 −√
εk

)

µΛ

(

c1 VarB1(f) + VarB2(f)
)

(4.1)

The second term, using the definition of γk and the fact that B2 ∈ Fk−1 is
bounded from above by

µΛ

(

VarB2(f)
)

≤ γk−1

∑

x∈B2

µΛ

(

cx,B2 Varx(f)
)

(4.2)

Notice that, by construction, for all x ∈ B2 and all ω, cx,B2(ω) = cx,Λ(ω).
Therefore the term

∑

x∈B2
µΛ

(

cx,B2 Varx(f)
)

is nothing but the contribution

carried by the set B2 to the full Dirichlet form DΛ(f).

Next we examine the more complicate term µΛ

(

c1 VarB1(f)
)

with the

goal in mind to bound it with the missing term of the full Dirichlet form
DΛ(f).

For any I-good ω let Πω = ∪x∈∂rIAx(ω), let Bω be the connected (w.r.t.
the graph structure induced by the ∼ relationship) component of B1 ∪ I \
(Πω ∪ ∂∗Πω ∪ ∂rI) which contains B1 (see Figure 3). A first key observation

B1 I
∂+Λ

∂rI

FIGURE 3. An example of an I-good configuration ω: empty
sites are good and filled ones are noT good. The grey re-
gion is the set Πω ∪ ∂∗Πω ∪ ∂Ir. The dotted lines mark the
connected components of B1 ∪ I \ (Πω ∪ ∂∗Πω ∪ ∂Ir). The
connected component containing B1 is the shaded one.
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is now the following.

Claim 4.6. For any z ∈ ∂∗
+Bω it holds true that ωz ∈ G .

Proof of the claim. To prove the claim suppose the opposite and let z ∈
∂∗

+Bω be such that ωz /∈ G and let x ∈ Bω be such that K∗
x ∋ z. Necessarily

z ∈ Πω because of the good boundary conditions in ∂∗
+Λ and the fact that

ωy ∈ G for all y ∈ ∂∗Πω ∪ (∂rI \ Πω). However z ∈ Πω is impossible because
in that case z ∈ Ay(ω) for some y ∈ ∂rI and therefore x ∈ Ay(ω) ∪ ∂∗Ay(ω)
i.e. x ∈ Πω ∪ ∂∗Πω, a contradiction. �

The second observation is the following.

Claim 4.7. For any Γ ⊂ ΩΠ := ∪ω I-goodΠω, the event {ω : Πω = Γ} does not
depends on the values of ω in BΓ, the connected component (w.r.t. ∼) of
B1 ∪ I \ Γ ∪ ∂∗Γ ∪ ∂rI which contains B1.

Proof of the claim. Fix Γ ∈ ΩΠ. The event Πω = Γ is equivalent to:

(i) ωz ∈ G for any z ∈ ∂rI \ Γ;
(ii) ωz ∈ G for any z ∈ ∂∗Γ ∩ I;

(iii) ωz /∈ G for all z ∈ Γ.

In fact trivially Πω = Γ implies (i),(ii) and (iii). To prove the other direction
we first observe that (i) and (iii) imply that Πω ⊃ Γ. If Πω 6= Γ there exists
z ∈ Πω\Γ which is in ∂∗Γ∩I and such that ωz /∈ G. That is clearly impossible
because of (ii). �

If we observe that VarB1(f) depends only on ωB2, we can write (we omit
the subscript Λ for simplicity)

µ
(

c1 VarB1(f)
)

=
∑

Γ∈ΩΠ

µ
(

1I{Πω=Γ} VarB1(f)
)

=
∑

Γ∈ΩΠ

∑

ωB2\I

µ(ωB2\I)
∑

ωI

µ(ωI)1I{Πω=Γ} VarB1(f)

=
∑

Γ∈ΩΠ

∑

ωB2\I

µ(ωB2\I)
∑

ωI\IΓ

µ(ωI\IΓ)1I{Πω=Γ}
∑

ωIΓ

µ(ωIΓ)VarB1(f) (4.3)

where IΓ = BΓ ∩ I and we used the independence of 1I{Πω=Γ} from ωIΓ.

The convexity of the variance implies that
∑

ωIΓ

µ(ωIΓ)VarB1(f) ≤ VarBΓ
(f)

The Poincaré inequality together with Lemma (4.1) finally gives

VarBΓ
(f) ≤ gap(LBΓ

)−1
∑

x∈BΓ

µBΓ

(

cx,BΓ
Varx(f)

)

≤ gap(LB1∪I)
−1

∑

x∈BΓ

µBΓ

(

cx,BΓ
Varx(f)

)

(4.4)

The role of the event {Πω = Γ} should at this point be clear. For any ω ∈ ΩΛ

such that Πω = Γ, let ωBΓ
be its restriction to the set BΓ. From claim 4.6 we

infer that

cx,Λ(ω) = cx,BΓ
(ωBΓ

) ∀x ∈ BΓ . (4.5)
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If we finally plug (4.4) and (4.5) in the r.h.s. of (4.3) and recall that B1∪I =
Λ1 ∈ Fk−1, we obtain

µΛ

(

c1 VarB1(f)
)

≤ gap(LΛ1)
−1µΛ

(

c1

∑

x∈BΠω

cx,Λ Varx(f)
)

≤ γk−1 µΛ

(

∑

x∈Λ1

cx,Λ Varx(f)
)

(4.6)

In conclusion we have shown that

VarΛ(f) ≤
( 1

1 −√
εk

)

γk−1

(

DΛ(f) +
∑

x∈Λ1∩Λ2

µΛ

(

cx,Λ Varx(f)
)

)

(4.7)

Averaging over the sk = ⌊l1/3
k ⌋ possible choices of the sets Λ1,Λ2 gives

VarΛ(f) ≤
( 1

1 −√
εk

)

γk−1(1 +
1

sk
)DΛ(f) (4.8)

which implies that

γk ≤
( 1

1 −√
εk

)

(1 +
1

sk
)γk−1 (4.9)

≤ γk0

k
∏

j=k0

( 1

1 −√
εj

)

(1 +
1

sj
) (4.10)

where k0 is the smallest integer such that δk0 > 1.
It is at this stage (and only here) that we need a restriction on the prob-

ability q of the good set G. If q is taken large enough (but uniformly
in the cardinality of S), the quantity εj becomes exponentially small in

δj = 1
8

√

lj − 2 (the minimum width of the intersection between the rect-
angles Λ1,Λ2 on scale lj) with a large constant rate and the convergence of

the infinite product
∏∞

j=k0

(

1
1−√

εj

)

(1 + 1
sj

) as well as the fact that the quan-

tity γk0

∏k
j=k0

(

1
1−√

εj

)

(1 + 1
sj

) is smaller than 2 follows at once from the

exponential growth of the scales lj = (3/2)j/2. �

Proof of Proposition (4.5). For any mean zero function f ∈ L2(ΩΛ, µΛ) let

π1f := µB2(f), π2f := µB1(f)

be the natural projections onto L2(ΩBi , µBi), i = 1, 2. Obviously π1π2f =
π2π1f = 0. The generator of the block dynamics can then be written as:

Lblockf = c1

(

π2f − f
)

+ π1f − f

and the associated eigenvalue equation as

c1

(

π2f − f
)

+ π1f − f = λf. (4.11)

By taking f(σΛ) = g(σB2) we see that λ = −1 is an eigenvalue. Moreover,
since c1 ≤ 1, λ ≥ −1. Assume now 0 > λ > −1 and apply π2 to both sides
of (4.11) to obtain (recall that c1 = c1(σB2))

−π2f = λπ2f ⇒ π2f = 0 (4.12)
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For any f with π2f = 0 the eigenvalue equation becomes

f =
π1f

1 + λ + c1
(4.13)

and that is possible only if

µB2(
1

1 + λ + c1
) = 1.

We can solve the equation to get

λ = −1 +
√

1 − µB2(c1) ≤ −1 +
√

εk.

�

5. PROOF OF THEOREM 3.3

In this section we provide the proof of the main Theorem 3.3. For the
relevant notation we refer the reader to section 3.

Define ǫ0 = 1 − q0 where q0 is the threshold appearing in Theorem 4.2
and assume that ℓ is such that there exists a ǫ0-good event Gℓ on scale ℓ.
Consider the *-general model on Zd(ℓ) with S = {0, 1}Λ0 , ν = µΛ0 and

good event Gℓ. Obviously the two probability spaces Ω =
(

{0, 1}Z
d
, µ

)

and

Ω(ℓ) =
(

SZ
d(ℓ),

∏

x∈Zd(ℓ) νx

)

coincide. Thanks to condition (a) on Gℓ we can

use theorem 4.2 to get that for any f ∈ Dom(L)

Var(f) ≤ 2
∑

x∈Zd(ℓ)

µ
(

c̃x VarΛx(f)
)

(5.1)

where the (renormalized) rate c̃x(σ) is simply the indicator function of the
event that for any y ∈ K∗

{x/ℓ} the restriction of σ to the rectangle Λℓy belongs

to the good set Gℓ on scale ℓ.
In the sequel we will often refer to (5.1) as the renormalized-Poincaré

inequality with parameters (ℓ,Gℓ).
Let us examine a generic term µ

(

c̃x(ξ)VarΛx(f)
)

which we write as

1

2

∫

dµ(ξ)c̃x(ξ)

∫ ∫

dµΛx(σ)dµΛx(η)
[

f(σ · ξ) − f(η · ξ)
]2

(5.2)

By assumption, if c̃x(ξ) = 1 necessarily there exists τ and a sequence of

configurations (ξ(0), ξ(1), . . . , ξ(n)), n ≤ 3ℓd, with the following properties:

(i) ξ(0) = ξ and ξ(n) = τ ;
(ii) the chain in Λx with boundary conditions τ is ergodic;

(iii) ξ(i+1) is obtained from ξ(i) by changing exactly only one spin at a suit-

able site x(i) ∈ ∪y∈K∗
{x/ℓ}

Λℓy;

(iv) the move at x(i) leading from ξ(i) to ξ(i+1) is permitted i.e. cx(i)(ξ(i)) =
1 for every i = 0, . . . , n.

Remark 5.1. Notice that for any i = 0, . . . , n, the intermediate configura-

tion ξ(i) coincides with ξ outside ∪y∈K∗
{x/ℓ}

Λℓy. Therefore, given ξ(i) = η, the

number of starting configurations ξ = ξ(0) compatible with η is bounded from

above by 23ℓd
and the relative probability µ(ξ)/µ(η) by

(

min(p, q)
)3ℓd

.
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By adding and subtracting the terms f(σ ·τ), f(η ·τ) inside
[

f(σ ·ξ)−f(η ·ξ)
]2

and by writing f(σ·τ)−f(σ·ξ) as a telescopic sum
∑n−1

i=1

[

f(σ·ξi+1)−f(σ·ξi)
]

we get
[

f(σ · ξ) − f(η · ξ)
]2 ≤ 3

[

f(σ · τ) − f(η · τ)
]2

+3n
n−1
∑

i=1

[

f(σ · ξ(i+1)) − f(σ · ξ(i))
]2

+ 3n
n−1
∑

i=1

[

f(η · ξ(i+1)) − f(η · ξ(i))
]2

(5.3)

If we plug (5.3) inside the r.h.s. of (5.2) and use properties (i),...,(iv) of

the intermediate configurations {ξ(i)}n
i=1 together with the remark and the

fact that the inverse spectral gap in Λx with ergodic boundary conditions τ
is bounded from above by a constant depending only on (q, ℓ), we get that
there exists a finite constant c := c(q, ℓ) such that

µ
(

c̃x(ξ)VarΛx(f)
)

≤ c
∑

y∈Λx∪y∈K∗
{x/ℓ}

Λℓy

µ
(

cy Vary(f)
)

and the proof is complete.

6. SPECIFIC MODELS

In this section we analyze the specific models that have been introduced
in section 2 and for each of them we prove positivity of the spectral gap for
q > qc together with upper and lower bounds bounds as q ↓ qc.

6.1. The East model. As a first application of our bisection method we
reprove the result contained in [3] on the positivity of the spectral gap, but
we sharpen (by a power of 2) their lower bound.

Theorem 6.1. For any q ∈ (0, 1) the spectral gap of the East model is positive.
Moreover, for any δ ∈ (0, 1) there exists Cδ > 0 such that

gap ≥ Cδq
log2(1/q)/(2−δ) (6.1)

In particular

lim
q→0

log(1/ gap)/(log(1/q))2 = (2 log 2)−1 (6.2)

Remark 6.2. Notice that (6.2) disproves the asymptotic behavior of the spec-
tral gap suggested in [16].

Proof. The limiting result (6.2) follows at once from the lower bound to-
gether with the analogous upper bound proved in [3].

In order to get the lower bound (6.1) we want to apply directly the bi-
section method used in the proof of theorem 4.2 but we need to choose the
length scales lk a little bit more carefully.

Fix δ ∈ (0, 1) and define lk = 2k, δk = ⌊l1−δ/2
k ⌋, sk := ⌊lδ/6

k ⌋. Let also
Fk be the set of intervals which, modulo translations, have the form [0, ℓ]

with ℓ ∈ [lk, lk + l
1−δ/6
k ] and define γk as the worst case over the elements

Λ ∈ Fk of the inverse spectral gap in Λ with empty boundary condition at
the right boundary of Λ. Thanks to lemma 4.1 the worst case is attained

for the interval Λk = [0, lk + l
1−δ/6
k ]. With these notation there exists kδ
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independent of q such that the same result of lemma 4.3 holds true as long
as k ≥ kδ . We can then repeat exactly the same analysis done in the proof
of theorem 4.2 to get that

γk ≤ γkδ

∞
∏

j=kδ

(

1

1 −√
εj

) ∞
∏

j=kδ

(

1 +
1

sj

)

(6.3)

Here the quantity εk is just the probability that an interval of width δk is
fully occupied (see proposition 4.5) i.e. εk = pδk . The convergence of the
product in (6.3) is thus guaranteed and the positivity of the spectral gap
follows.

Let us now discuss the asymptotic behavior of the gap as q ↓ 0. We
first observe that γkδ

< (1/q)αδ for some finite αδ. That follows e.g. from a
coupling argument. In a time lag one and with probability larger than qαδ for
suitable αd, any configuration in Λkδ

can reach the empty configuration by
just flipping one after another the spins starting from the right boundary. In
other words, under the maximal coupling, two arbitrary configurations will
couple in a time lag one with probability larger than qαδ i.e. γkδ

< (1/q)αδ .
We now analyze the infinite product (6.3) which we rewrite as

∞
∏

j=kδ

(

1

1 −√
εj

) ∞
∏

j=kδ

(

1 +
1

sj

)

.

The second factor, due to the exponential growth of the scales, is bounded
by a constant independent of q.

To bound the first factor define

j∗ = min{j : εj ≤ e−1} ≈ log2(1/q)/(1 − δ/2)

and write

∞
∏

j=kδ

(

1

1 −√
εj

)

≤
j∗
∏

j=1

(

1 +
√

εj

1 − εj

) ∞
∏

j>j∗

(

1

1 −√
εj

)

≤ eC 2j∗

j∗
∏

j=1

(

1

1 − εj

)

(6.4)

where we used the bound 1/(1 − √
εi) ≤ 1 + (e/(e + 1))

√
εj valid for any

j ≥ j∗ together with

∞
∑

j>j∗

log

(

1 +
e

e + 1

√
εj

)

≤ e

e + 1

∞
∑

j>j∗

√
εj

≤ e

e + 1

∫ ∞

j∗−1
dx exp(−q(2x(1−δ/2))/2) = Aδ

∫ ∞

2(j∗−1)(1−δ/2)

dz exp(−qz/2)/z

≤ 2Aδ2
−(j∗−1)(1−δ/2)q−1 exp(−q2(j∗−1)(1−δ/2)/2) ≤ C

for some constant C independent of q.
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Observe now that 1 − εj ≥ 1 − e−qδj ≥ Aqδj for any j ≤ j∗ and some

constant A ≈ e−1. Thus the r.h.s. of (6.1) is bounded from above by

C (
2

Aq
)j∗

j∗
∏

j=1

δ−1
j ≤ 1

qa
(1/q)j∗ 2−(1−δ/2)j2

∗/2 ≈ 1

qa
(1/q)log2(1/q)/(2−δ)

as q ↓ 0 for some constant a. �

6.2. FA-1f model. In this section we deal with the FA1f model. Our main
results is the following:

Theorem 6.3. For any q ∈ (0, 1) the spectral gap of the FA-1f model is positive.

Proof. The proof follows at once from Corollary 3.5 because the probability
that the rectangle Λ0 of side ℓ is internally spanned is equal to the probability

that Λ0 is not fully occupied which is equal to 1− (1−q)ℓ
d ↑ 1 as ℓ → ∞. �

In the next result we discuss the asymptotics of the spectral gap for q ↓
0. Such a problem has been discussed at length in the physical literature
with varying results based on numerical simulations and/or analytical work
[6, 7, 24]. As a preparation for our bounds we observe that on average the

vacancies are at distance O(q−1/d) and each one of them roughly performs
a random walk with jump rate proportional to q. Therefore a possible guess
is that

gap(L) = O(q× gap of a simple RW in a box of side O(q−1/d) ) = O(q1+2/d)

Although we are not able to prove or disprove the conjecture for d ≥ 3 our

bounds are consistent with it 3.

Theorem 6.4. For any d ≥ 1, there exists a constant C = C(d) such that for
any q ∈ (0, 1), the spectral gap gap(L) satisfies the following bounds.

C−1q3 6 gap(L) 6 Cq3 for d = 1,
C−1q2/ log(1/q) 6 gap(L) 6 Cq2 for d = 2,

C−1q2
6 gap(L) 6 Cq1+ 2

d for d > 3.

Proof. We begin by proving the upper bounds via a careful choice of a test
function to plug into the variational characterization for the spectral gap.
Fix d ≥ 1 and assume, without loss of generality, q ≪ 1. Let also ℓq =
( log(1−q0)

log(1−q)

)1/d ≈ λ0q
−1/d with λ0 = | log(1−q0)|1/d, where q0 is as in Theorem

4.2.
Let g be a smooth function on [0, 1] with support in [1/4, 3/4] and such

that
∫ 1

0
αd−1e−αd

g(α)dα = 0 and

∫ 1

0
αd−1e−αd

g2(α)dα = 1. (6.5)

Set (see figure (4))

ξ(σ) := sup {ℓ : σ(x) = 1 for all x such that ‖x‖∞ < ℓ}
3Notice that recent work [24] in the physics community suggests that gap ≈ q2 for any

d ≥ 2
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x

FIGURE 4. In dimension 2, a configuration σ where ξ(σ) = k
and ξ ◦ Tx(σ) = k + 1.

and notice that for any k = 0, . . . , ℓq,

µ(ξ = k) = pkd − p(k+1)d ≈ qdkd−1e−qkd
(6.6)

Having defined the r.v. ξ the test function we will use is f = g(ξ/ℓq). Using
(6.6) together with (6.5) one can check that

Var(f) ≈ 1

ℓq
≈ q1/d. (6.7)

On the other hand, by writing Tx for the spin-flip operator in x, i.e.

Tx(σ)(y) =

{

σ(y) if y 6= x

1 − σ(x) if y = x

and using reversibility we have

D(f) =
∑

x∈Zd

µ

[

cx

[

g(
ξ ◦ Tx

ℓq
) − g(

ξ

ℓq
)

]2
]

=
∑

x∈Zd

ℓq
∑

k=0

µ

[

cx

[

g(
ξ ◦ Tx

ℓq
) − g(

ξ

ℓq
)

]2

1Iξ=k

]

(6.8)

= 2

⌊ 3
4
ℓq⌋

∑

k=⌊ 1
4
ℓq−1⌋

(

g
(k + 1

ℓq

)

− g
( k

ℓq

)

)2 ∑

x
‖x‖∞=k+1

µ (cx1Iξ◦Tx=k+11Iξ=k) .

Notice that for any k, any x such that ‖x‖∞ = k + 1,

µ (cx1Iξ◦Tx=k+11Iξ=k)

= µ (cx | ξ ◦ Tx = k + 1, ξ = k) µ (ξ ◦ Tx = k + 1 | ξ = k)µ (ξ = k)

6 c
q

kd−1
µ (ξ = k)

for some constant c depending only on d. The factor q above comes from the
fact that, given ξ = k and ξ ◦ Tx = k + 1, x is necessarily the only empty site
in the (k + 1)th-layer. Therefore, the flip at x can occur only if the nearest
neighbor of x in the next layer is empty (see figure (4)). Moreover, given
ξ = k, the conditional probability of having zero at x and the rest of the
layer completely filled is of order 1/kd−1. It follows that
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∑

x:‖x‖∞=k+1

µ (cx1Iξ◦Tx=k+11Iξ=k) 6 c′qµ (ξ = k) .

In conclusion, using (6.6) and writing α := k/ℓq,

D(f) 6 c′′q

⌊ 3
4
ℓq⌋

∑

k=⌊ 1
4
ℓq−1⌋

µ (ξ = k)
(

g
(k + 1

ℓq

)

− g
( k

ℓq

)

)2

≈ q

ℓ3
q

∫ 3
4

1
4

αd−1e−(λ0α)d
g′ (α)2 dα ≈ q1+ 2

d

ℓq
. (6.9)

as q ↓ 0. The upper bound on the spectral gap follows from (6.7),(6.9) and
(2.2).

We now discuss the lower bound. The first step relates the spectral gap
in infinite volume to the spectral gap in a q-dependent finite region.

Lemma 6.5. Let gap(q) be the spectral gap of the FA1f model in Λ2ℓq = {x ∈
Zd : ‖x‖∞ ≤ 2ℓq−1} with minimal boundary condition, i.e. exactly one empty
site on the boundary. There exists a constant C = C(d) such that

gap(L) ≥ C gap(q)

Proof of the Lemma. The starting point is the bound (5.1) for ℓ = ℓq:

Var(f) ≤ 2
∑

x∈Zd(ℓq)

µ
(

c̃x VarΛx(f)
)

(6.10)

Recall that c̃x(σ) is simply the indicator function of the event that for any
y ∈ K∗

{x/ℓ} the block Λℓy is internally spanned for σ i.e. it is not completely

filled. Let us examine a generic term µ
(

c̃x VarΛx(f)
)

. Given σ such that
c̃x(σ) = 1 let ξ(σ) be the largest r ≤ ℓq such that there exists an empty site
on ∂Λx,r, where Λx,r = {y : d∞(y,Λx) ≤ r}. Exactly as in the proof of
Theorem 4.2 the convexity of the variance implies that

µ
(

c̃x VarΛx(f)
)

≤ µ
(

1Iξ≤ℓq VarΛx,ξ
(f)

)

(6.11)

Since by construction VarΛx,ξ
(f) is computed with an empty site in ∂Λx,ξ,

we can use the Poincaré inequality for the FA-1f model in Λx,ξ with minimal
boundary conditions to get

µ
(

ĉx VarΛx(f)
)

≤ µ
(

gap(LΛx,ξ
)−1

∑

z∈Λx,ξ

µΛx,ξ

(

cz Varz(f)
)

)

(6.12)

By monotonicity of the gap (see Lemma 4.1) gap(LΛx,ξ
) ≥ gap(q). Thus the

r.h.s. of (6.12) is bounded from above by

gap(q)−1
∑

z∈Λx,ℓq

µ
(

cz Varz(f)
)

(6.13)

If we finally plug (6.13) into the r.h.s of (6.10) we get

Var(f) ≤ gap(q)−1c(d)
∑

z∈Zd

µ
(

cz Varz(f)
)

and the Lemma follows. �
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The proof of the lower bound will then be complete once we prove the
following result.

Proposition 6.6. There exists a constant C = C(d) such that for any q ∈
(0, 1),

gap(q) ≥ C











q3 if d = 1

q2/ log(1/q) if d = 2

q2 if d = 3

(6.14)

Proof of the proposition. We begin with the d = 2 case. For simplicity of
notation we simply write Λ for Λ2ℓq .

The starting point is the standard Poincaré inequality for the Bernoulli
product measure on Λ (see e.g. [4, chapter 1]). For every function f

VarΛ(f) 6
∑

x∈Λ

µ (Varx(f)) . (6.15)

Our aim is to bound from above the r.h.s. of (6.15) with the Dirichlet form of
the FA-1f model in Λ with minimal boundary conditions using a path argu-
ment. Intuitively it works as follows. Computing the local variance Varx(f)
at x involves a spin-flip at site x which might or might not be allowed by the
constraints, depending on the structure of the configuration around x. The
idea is then to (see fig. 5 and 6 for a graphical illustration):

(i) define a geometric path γx inside Λ connecting x to the (unique) empty
site at the boundary of Λ;

(ii) look for the empty site on γx closest to x;
(iii) move it, step by step using allowed flips, to one of the neighbors of x

but keeping the configuration as close as possible to the original one;
(iv) do the spin-flip at x in the modified configuration.

In order to get an optimal result the choice of the path γx is not irrelevant
and we will follow the strategy of [32] to analyze the simple random walk
on the graph consisting of two squares grids sharing exactly one corner.

We first need a bit of extra notation. We denote by x∗ the unique empty
site on the boundary ∂Λ and for any y ∈ Λ and any η ∈ ΩΛ we write ηy

for the flipped configuration Ty(η). Next we declare any pair e = (η, ηy) ≡
(e−, e+) an edge iff cy(η) = 1 (i.e. the spin-flip at y in the configuration η is
a legal one). With these notations,

D(f) =
∑

e

µ(e−)
(

f(e+) − f(e−)
)2

.

To any edge e = (η, ηy) we associated a weight w(e) defined by w(e) = i + 1
if d1(y, x∗) = i.

Let now, for any x ∈ Λ, γx = (x∗, x(1), x(2), · · · , x(n−1), x) be one of
the geodesic paths from x∗ to x such that, for any y ∈ γx, the Euclidean

distance between y and the straight line segment [x, x∗] is at most
√

2/2
(see Figure 5). Given a configuration σ we will construct a path Γσ→σx =
{η(0), η(1), . . . , η(j)}, j ≤ 2n, with the properties that:

i) η(0) = σ and η(j) = σx;
ii) the path is self-avoiding;
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x

x∗

FIGURE 5. An example of geodesic for the path γx.

iii) for any i the pair (η(i−1), η(i)) forms an edge and the associated spin-flip
occurs on γx;

iv) for any i the configuration η(i) differs from σ in at most two sites.

We will denote by |Γσ→σx |w :=
∑

e∈Γσ→σx
1

w(e) the weighted length of the

path Γσ→σx . By the Cauchy-Schwartz inequality, we have
∑

x∈Λ

µ (Varx(f)) = pq
∑

x∈Λ

µ
(

[

f(σx) − f(σ)
]2

)

= pq
∑

x∈Λ

∑

σ

µ(σ)





∑

e∈Γσ→σx

√

w(e)(f(e+) − f(e−))
√

w(e)





2

6 pq
∑

x∈Λ

∑

σ

µ(σ)|Γσ→σx |w
∑

e∈Γσ→σx

w(e)
(

f(e+) − f(e−)
)2

= pq
∑

e

(

f(e+) − f(e−)
)2

w(e)
∑

x∈Λ,σ:
Γσ→σx∋e

µ(σ)|Γσ→σx |w

6 D(f)max
e

{pq w(e)

µ(e−)

∑

x∈Λ,σ:
Γσ→σx∋e

µ(σ)|Γσ→σx |w
}

.

Fix an edge e = (η, ηy) with w(e) = i+1. Let C denotes a constant that does
not depend on q and that may change from line to line. By construction, on

one hand we have for any σ and x such that Γσ→σx ∋ e,
µ(σ)
µ(e−)

6 C 1
q2 because

of property (iii) of Γσ→σx . On the other hand, for any σ and x,

|Γσ→σx |w 6 C

2ℓq
∑

i=1

1

i
6 C log(ℓq).

And finally, by construction, one has (see [32, section 3.2])

# {(x, σ) : Γσ→σx ∋ e} 6 C# {y : γx ∋ y} 6 C
|Λ|

i + 1
.

Collecting these computations leads to

∑

x∈Λ

µ (Varx(f)) 6
C

q2
log(1/q)D(f).

i.e. the claimed bound on gap(q).
In d > 3, the above strategy applies in the same way but one needs a

different choice of the edge-weight w(e) namely w(e) = (i + 1)d−2 (see
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again [32, section 3.2]). In d = 1 instead one can convince oneself that the
weight function w ≡ 1 in the previous proof leads to the upper bound 1/q3,
up to some constant.

It remains to discuss the construction of the path Γσ→σx with the desired

properties. Given σ, x and γx =
(

x0 = x∗, x(1), x(2), · · · , x(n−1), x(n) = x
)

define i0 = max{0 6 i 6 n − 1 : σ(x(i)) = 0}. In this way for any i > i0 + 1,

σ(x(i)) = 1. We will denote by ηx,y = (ηx)y the configuration η flipped in x
and y.

If i0 = n−1 then trivially Γσ→σx = {σ, σx}. Hence assume that i0 6 n−2.
We set

Γσ→σx =
{

η(0) = σ, η(1), . . . , η(2(n−i0)−1) = σx
}

with η(1) = σx(i0+1)
and for k = 1, . . . , n − i0 − 1, η(2k) = σx(i0+k),x(i0+k+1)

,

η(2k+1) = σx(i0+k+1)
(see figure 6). One can easily convince oneself that

Γσ→σx satisfies the prescribed property (i) − (iv) set above. �

x

x∗

xi0

η(0) = σ η(1) η(2) η(3) σx

FIGURE 6. The path Γσ→σx .

The proof of the lower bound is complete. �

6.3. FA-jf and Modified Basic model in Zd. Next we examine the FA-jf and
Modified Basic (MB) model in Zd with d ≥ 2 and j ≤ d.

Theorem 6.7. For any q ∈ (0, 1) any d ≥ 2 and j ≤ d the spectral gap of the
FA-jf and MB models is positive.

Proof. Under the hypothesis of the theorem both models have a trivial boot-
strap percolation threshold qbp = 0 and moreover they satisfy the assump-
tion of corollary 3.5 (see [33]) for any q > 0. Therefore gap > 0 by Corollary
3.5. �

We now study the asymptotics of the spectral gap as q ↓ 0 and we restrict
ourselves to the most constrained case, namely either the MB model or the
FA-df model. For this purpose we need to introduce few extra notation and
to recall some results from boostrap percolation theory (see [23]).

Let δ ∈ {1, . . . , d}. We define the δ-dimensional cube Qδ(L) := {0, . . . , L−
1}δ × {1}d−δ ⊂ Zd. By a copy of Qδ(L) we mean an image of Qδ(L) under

any isometry of Zd.

Definition 6.8. Given a configuration η, we will say that Qδ(L) is “δ inter-

nally spanned” if {1, . . . , L − 1}δ is internally spanned for the bootstrap map

associated to the corresponding model restricted to Zδ (i.e. with the rules either
of the FA-δf or of the MB model in Zδ). Similarly for any copy of Qδ(L).

Define now

Id(L, q) := µ
(

Qd(L) is internally spanned
)
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and let expn denote the n-th iterate of the exponential function. Then the
following results is known to hold for both models [12, 13, 22, 23].
There exists two positive constants 0 < λ1 ≤ λ2 such that for any ǫ > 0

lim
q→0

Id
(

expd−1(
λ1 − ǫ

q
), q

)

= 0 (6.16)

lim
q→0

Id
(

expd−1(
λ2 + ǫ

q
), q

)

= 1 (6.17)

Moreover there exists c = c(d) < 1 and C = C(d) < ∞ such that if ℓ is such

that Id(ℓ, q) ≥ c then, for any L ≥ ℓ,

Id(L, q) ≥ 1 − Ce−L/ℓ (6.18)

For the FA-2f model and for the MB model for all d ≥ 2 the threshold is
sharp in the sense that λ1 = λ2 = λ with λ = π2/18 for the FA-2f model and
λ = π2/6 for the MB model [22, 23]. We are now ready to state our main
result.

Theorem 6.9. Fix d ≥ 2 and ǫ > 0. Then for both models there exists c = c(d)
such that

[

expd−1(c/q2)
]−1

≤ gap(L) ≤
[

expd−1
(λ1 − ǫ

q

)

]−1

d ≥ 3 (6.19)

exp(−c/q5) ≤ gap(L) ≤ exp
(

−(λ1 − ǫ)

q

)

d = 2 (6.20)

as q ↓ 0.

Proof. In the course of the proof we will use the following well known ob-
servation. If a configuration η is identically equal to 0 in a d-dimensional
cube Q and each face F of ∂Q is “(d − 1) internally spanned” (by η), then
Q ∪ ∂Q is internally spanned.

(i). We begin by proving the upper bound following the strategy outlined
in remark 3.7. Fix ǫ > 0, let Λ1 be the cube centered at the origin of side

L1 := expd−1
(λ1−ǫ/2

q

)

and let m = expd−2(K
q2 ) where K is a large constant

to be chosen later on. Define the two events:

A = {η : Λ1 is not internally spanned}
B = {η : any (d − 1)-dimensional cube of side m inside Λ1 is

“(d − 1) internally spanned”}. (6.21)

Thanks to (6.17) and (6.18), µ(A) > 1/2 and µ(B) ≥ 3
4 if K and q are cho-

sen large enough and small enough respectively. Therefore µ(A ∩ B) ≥ 1/4
for small q. Pick now η ∈ A∩B and consider η̃ which is identically equal to
one outside Λ1 and equal to η inside. We begin by observing that, starting
from η̃, the little square Q of side m centered at origin cannot be completely
emptied by the bootstrap map T (2.1). Assume in fact the opposite. Then,
after Q has been emptied and using the fact that η ∈ B, we could empty ∂Q
and continue layer by layer until we have emptied the whole Λ1, a contra-
diction with the assumption η ∈ A. The above simple observation implies
in particular that, if we start the Glauber dynamics from η̃, there exists a

point x ∈ Q such that ση̃
x(s) = ηx for all s > 0. However, and this is the
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second main observation, if t = 1
4L1, by standard results on “finite speed of

propagation of information” (see e.g. [28]) and the basic coupling between
the process started from η and the process started from η̃,

P
(

∃x ∈ Q : ση̃
x(s) 6= ση

x(s) for some s ≤ t
)

≪ 1

Therefore

P(∃x ∈ Q : ση
x(s) = ηx ∀s ≤ 1

4
L1) ≥

1

2
for all sufficiently small q.

We are finally in a position to prove the r.h.s. of (6.19). Using theorem
3.6 combined with the above discussion we can write

e
−t q gap

2(1+p) ≥ F (t)

≥ 1

|Q|

∫

A∩B
dµ(η)P(∃x ∈ Q : ση

x(s) = ηx ∀s ≤ t) ≥ 1

8|Q|
that is gap ≤ c log

(

|Q|
)

/qt for some constant c, i.e. the sought upper bound
for q small, given our choice of t.

(ii) We now turn to the proof of the lower bound in (6.19). It is enough
to consider only the MB model since, being more restrictive than the FA-df
model, it has the smallest spectral gap.

Fix ǫ ∈ (0, 1), let ℓ = expd−1
(

(λ + 5ǫ)/q
)

, λ = π2/6, and let m =

expd−2(1/q2) if d ≥ 3 and m = K/q2 if d = 2, where K is a large con-

stant to be fixed later on. Let E1 be the event that Qd(ℓ) contains some copy

of Qd(m) which is internally spanned and let E2 be the event that for each

δ ∈ [1, . . . d − 1], every copy of Qδ(m) in Qd(ℓ) is “δ internally spanned”.
Then it is possible to show (see section 2 of [23] for the case d ≥ 3 and
section 4 of [22] for the case d = 2) that both µ(E1) and µ(E2) tend to one
as q → 0 if K is chosen large enough.

Recall now the notation at the beginning of section 3. The first step is
to relate the infinite volume spectral gap to the spectral gap in the cube
Λ0 ≡ Qd(ℓ) with zero boundary condition on ∂∗

+Λ0.

Proposition 6.10. There exists a constant c = c(d) such that, for any q small
enough,

gap(L) ≥ e−cmd
gap(LΛ0)

Proof. As in the case of the FA-1f model, our starting point is the renormal-
ized Poincaré inequality (5.1) on scale ℓ and ǫ0-good event Gℓ := E1 ∩ E2.
Thanks to (5.1) we can write

Var(f) ≤ 2
∑

x∈Z(ℓ)

µ (c̃x VarΛx(f))

where the c̃x’s are as in (5.1). Without loss of generality we now examine
the term µ (c̃0 VarΛ0(f)).

Lemma 6.11. There exists a constant c = c(d) such that, for any q small
enough,

µ (c̃0 VarΛ0(f)) ≤ ecmd
gap(LΛ0)

−1
∑

x∈∪y∈K∗
0
∪{0}Λℓy

µ (cx Varx(f))



28 N. CANCRINI, F. MARTINELLI, C. ROBERTO, AND C. TONINELLI

where the cx’s are the constraints for the MB model.

Clearly the Lemma completes the proof of the proposition �

Proof of the Lemma. By definition

VarΛ0(f) ≤ gap(LΛ0)
−1

∑

x∈Λ0

µΛ0

(

cx,Λ0 Varx(f)
)

where, we recall, the subscript Λ0 in cx,Λ0 means that zero boundary condi-
tion on ∂∗

+Λ0 are assumed. Notice that, if K∗
x ⊂ Λ0, then cx,Λ0 = cx. If we

plug the above bound into µ (c̃0 VarΛ0(f)) and use the trivial bound c̃0 ≤ 1,
we see that all what is left to prove is that

µ
(

c̃0 cx,Λ0 Varx(f)
)

≤ ecmd
µ
(

cx Varx(f)
)

(6.22)

for all x ∈ Λ0 such that Kx * Λ0. For simplicity we assume that Kx ∩ Λc
0

consists of a unique point z ∈ Λℓy and we proceed as in the proof of Theorem
3.3. Assign some arbitrary order to all cubes of side m inside Λℓy. Because
of the constraint c̃0 on the configuration ξ in ∪y∈K∗

0
Λℓy, for each y ∈ K∗

0

there exists a sequence of configurations (ξ(0), ξ(1), . . . , ξ(n)), n ≤ 2md, with
the following properties:

(i) ξ(0) = ξ and ξ(n) = ξ′, where ξ′ is completely empty in the first cube
Q ⊂ Λℓy of side m which was internally spanned for ξ and otherwise
coincides with ξ;

(ii) ξ(i+1) is obtained from ξ(i) by changing exactly only one spin at a suit-

able site x(i) ∈ Q;
(iii) the move at x(i) leading from ξ(i) to ξ(i+1) is permitted i.e. cx(i)(ξ(i)) =

1 for every i = 0, . . . , n.

Remark 6.12. Notice that, given ξ(i) = η, the number of starting configura-

tions ξ = ξ(0) compatible with η is bounded from above by 2cmd
, c = c(d), and

the relative probability µ(ξ)/µ(η) by
(

p/q
)cmd

.

We can proceed as in (5.3) and conclude that

µ
(

c̃0 cx,Λ0 Varx(f)
)

≤ ec′md
µ
(

c̃0 ĉ0 cx,Λ0 Varx(f)
)

(6.23)

where now ĉ0 is the indicator of the event that for each y ∈ K∗
0 there exists

a cube Q ⊂ Λℓy of side m which is completely empty.
Next we observe that for any sequence of adjacent (in e.g. the first di-

rection) cubes Q1, Q2, . . . Qj of side m inside Λℓy, ordered from left to right,
and for any configuration η ∈ E2 which is identically equal to 0 in Q1, one

can construct a sequence of configurations (η(0), η(1), . . . , η(n)), n ≤ jmd,
such that:

(i) η(0) = η and η(n) is completely empty in Qj and otherwise coincides
with η;

(ii) η(i+1) is obtained from η(i) by changing exactly only one spin at a suit-

able site x(i) ∈ ∪j
i=1Qi;

(iii) the move at x(i) leading from η(i) to η(i+1) is permitted i.e. cx(i)(η(i)) =
1 for every i = 0, . . . , n.
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In other words one can move the empty square Q1 to the position occupied
by Qj in no more than jmd steps. The construction is very simple and it
is based on the basic observation described at the beginning of the proof.
Starting from Q1 and using the fact that any copy of Qd−1(m) inside Λℓy

is “(d − 1) internally spanned”, by a sequence of legal moves one can first
empty Q2. Next one repeats the same scheme for Q3. Once that also Q3 has
been emptied one backtracks and readjust all the spins inside Q2 to their
original value in the starting configuration η. The whole procedure is then
iterated until the last square Qj is emptied and the configuration η fully

reconstructed in ∪j−1
i=1Qi.

The key observation at this point is that, given an intermediate step η(i)

in the sequence, the number of starting configurations η compatible with

h(i) is bounded from above by 2j · 4md
and the relative probability

µ(η(i))
µ(η) by

(

p/q
)2md

.
By using the path argument above and by proceeding again as in (5.3),

we can finally bound from above the r.h.s. (6.23) by

2ℓ ec′′md
µ
(

c̃0 ĉ0,x cx,Λ0 Varx(f)
)

where ĉ0,x is the indicator of the event that there exists a cube Q of side m,
laying outside Λ0 but such that K∗

x ∩ Λc
0 ⊂ Q , which is completely empty.

Clearly c̃0 ĉ0,x cx,Λ0 ≤ cx because the sites in K∗
x ∩Λc

0 are forced to be empty
and the proof of the Lemma is complete. �

As a second step we lower bound gap(LΛ0) by the spectral gap in the

reduced volume Λ1 := Qd
ℓ/2 (we assume here for simplicity that both ℓ and

m are powers of 2). To this end we partition Λ0 into disjoint copies of Λ1,

{Λ(i)
1 }2d

i=1 and, mimicking the argument of section 4, we run the constrained

dynamics of the ∗-general model on Λ0 with blocks {Λ(i)
1 }2d

i=1 and good event

the event that for each δ ∈ [1, . . . d−1], every copy of Qδ(m) in Qd(ℓ/2) is “δ
internally spanned”. By choosing the constant K appearing in the definition
of m larfge enough the probability of G is very close to one as q → 0 and
therefore the Poincaré inequality

VarΛ0(f) ≤ 2

2d
∑

i=1

µ
(

ci Var
Λ

(i)
1

(f)
)

(6.24)

holds, where ci are the constraints of the ∗-general model. At this point we
can proceed exactly as in the proof of lemma 6.11 and get that the r.h.s. of
(6.24) is bounded from above by

ecmd
gap(LΛ1)

−1DΛ0(f)

for some constant c = c(d). We have thus proved that

gap(LΛ0)
−1 ≤ ecmd

gap(LΛ1)
−1

If we iterate N times, where N is such that 2−N ℓ = m we finally get

gap(LΛ0)
−1 ≤ ecN md

gap(LΛN
)−1

where ΛN = Qd
m. �
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6.4. The N-E model. The N-E model is the natural two dimensional ana-
logue of the one dimensional East model. Before giving our results we need
to recall some definitions of the oriented percolation [14, 33]. A NE ori-

ented path is a collection {x(0), x(1), · · · , x(n)} of distinct points in Z2 such

that x(i+1) = x(i) + α1~e1 + α2~e2, αj = 0, 1 and α1 + α2 = 1 for all i. Given

a configuration η ∈ Ω and x, y ∈ Z2, we say that x → y if there is a NE
oriented path of occupied sites starting in x and ending in y. For each site
x ∈ Z2 its NE occupied cluster x is the random set

Cx(η) := {y ∈ Z2 : x → y}
The range of Cx(η) is the random variable

Ax(η) =

{

0 if Cx(η) = ∅
sup{1 + ‖y − x‖1 : y ∈ Cx(η)} otherwise

Remark 6.13. If Ax(η) > 0 then at least Ax(η) legal (i.e. fulfilling the NE
constraint) spin flip moves are needed to empty the site x.

Finally we define the monotonic non decreasing function θ(p) := µ(A0 =
∞) and let

po
c = inf{p ∈ [0, 1] : θ(p) > 0}

It is known (see [14]) that 0 < po
c < 1. In [33] it is proven that the per-

colation threshold and bootstrap percolation threshold (see section 2.3) are
related by po

c = 1− qbp and therefore, thanks to proposition 2.4, qc = 1− po
c.

The presence of a positive threshold qc reflects a drastic change in the be-
havior of the NE process when q < qc due to the presence of blocked con-
figurations (NE occupied infinite paths) with probability one. In [26] it is
proven that the measure µ on the configuration space is mixing for q ≥ qc,
a result that follows at once from the the arguments given in the proof of
proposition 2.4 since θ(po

c) = 0 [9].
We now analyze the spectral gap of the N-E process above, below and at

the critical point qc.

Case q > qc. This region is characterized by the following result of [14].

Proposition 6.14. If p < po
c there exists a positive constant ς = ς(p) > 0 such

that

lim
n→∞

− 1

n
log µ(A0 ≥ n) = ς (6.25)

We can now state our main theorem

Theorem 6.15. For any q > qc the spectral gap of N-E model is positive.

Proof. Recall the notation of section 3. Using theorem 3.3 we need to find
a set of configurations Gℓ satisfying properties (a) and (b) of definition 3.1.
Fix δ ∈ (0, 1) and ℓ > 2 and define

Gℓ := {η ∈ {0, 1}Λ0 : ∄ occupied oriented path in Λ0 longer than ℓδ}
Since q > qc we can use (6.25) to obtain that for any ǫ ∈ (0, 1) there exists
ℓc(q, ε, δ) such that, for any ℓ ≥ ℓc(q, ε, δ), µ(Gℓ) ≥ 1 − ε and property (a)
follows. Property (b) also follows directly from the definition of Gℓ. Indeed,
if the restriction of a configuration η to each one of the squares Λ0 + ℓx,
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x ∈ K∗
0, belongs to Gℓ, then necessarily there is no occupied oriented path

in ∪x∈K∗
0
{Λ0 + ℓx} of length greater than 3ℓδ. Therefore, by a sequence of

legal moves, all the ∂∗
+Λ0 can be emptied for η and the proof is complete. �

Case q < qc. Following [14] we need few extra notation. For every L ∈ N
and η ∈ Ω let C

(L)
0 (η) = {x ∈ C0(η) : ‖x‖1 = L} and let

ξ
(L)
0 (η) := ∪

x∈C
(L)
0 (η)

{x1}

be the projection onto the first coordinate axis of C
(L)
0 (η). Denote by rL, lL

the right and left edge of ξ
(L)
0 (η) respectively. If p > po

c it is possible to show
[14] that there exists positive constants a, ζ such that

µ
(

{ξ(L)
0 6= ∅} ∩ {rL ≤ aL}

)

= µ
(

{ξ(L)
0 6= ∅} ∩ {lL ≥ aL}

)

≤ e−ζL (6.26)

for any L large enough. We can now state our result for the spectral gap.

����

��������

��
��
��
��
�
�
�
�

��

��������������������

��������������

�
�
�
��
�
�
�
�
�
�
�

��
��
��
���
�
�
��
�
�
�
�
�
�
�
�
�
�
���

����

��

����������

����������

�
�
�
��
�
�
��
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����

��
��
������������������

��

��

����

����

��

��

��

����

��

�
�
�
��
�
�
��
�
�
�
��
��
��
��
��
��
��
��
��
��
��
����
��
��
����������

����

����

����

��������

�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
����
��
��
��
��
��
��
������

����

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�

�
�
�
�

����

����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
��
�
�
��
�
�
�
�
�
�
�����

����

��

����

��

����������

��������������

������

�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
��
��
��
��
��
��
����
��
��
��

��

��
��
��
��

��
��
��
��

��

�������� ��

����
����
����
����
����

����
����
����
����
����

��

00 L

LL

L x1 x1

x2x2

lL rL

{x : ||x|1 = L}

FIGURE 7. An example of configuration η with the sets C0(η)

(on the left) , C
(L)
0 (η) and ξ

(L)
0 (η) (on the right).

Theorem 6.16. Let Λ ⊂ Z2 be a square of side L ∈ N. For any q < qc there
exists two positive constants c1, c2 such that

exp{−c1L} ≤ gap(LΛ) ≤ exp{−c2L} (6.27)

Proof. We first discuss the upper bound by exhibiting a suitable test function
f to be plugged into the variational characterization of the spectral gap.

For this purpose let BL := {η : ξ
(L)
0 6= ∅} and define f = 1IBL

. Since
q < qc, there exists two positive constants 0 < k1(q) ≤ k2(q) < 1 such that
k1 ≤ µ(BL) ≤ k2 , see [14]. Thus the variance of f is bounded from below
uniformly in L. On the other hand, by construction,

D(f) =
∑

x∈Λ

µ (cx Varx(f)) ≤ |Λ|µ(B̄L)

where B̄L := {η : |ξ(L)
0 | = 1} = {η : rL = lL}. Thanks to (6.26)

µ(B̄L) ≤ µ({rL = lL} ∩ {rL > aL}) + µ({rL = lL} ∩ {rL ≤ aL})
≤ 2µ(ξ

(L)
0 6= ∅} ∩ {rL ≤ aL}) ≤ exp{−ζL}

and the r.h.s. of (6.27) follows.
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The bound from below comes from the bisection method of theorem 4.2
where in proposition 4.5 εk is defined as the probability that there is at least
one left-right NE occupied oriented path. Trivially εk ≤ 1 − e−cδk for some
constant c. If we plug such a bound bound into (4.9) and we remember that
the number of steps of the iterations grows as c log L, we obtain the desired
result. �

The case q = qc.

Theorem 6.17. The spectral gap is continuous at qc where, necessarily, it is
zero.

Proof. Assume q = qc and suppose that the spectral gap is positive. Then, by
Theorem 3.6, the persistence function decays exponentially fast as t → ∞.
We will show that such a decay necessarily implies that the all moments of
the size of the oriented cluster C0 are finite i.e. q > qc, a contradiction.

Let H(t) := {η : A0(η) ≥ 2t} and observe that, again by the “finite speed

of propagation” (see section 6.3), P(ση
0(s) = η0 for all s ≤ t) ≥ 1

2 for all
η ∈ H(t). Using H(t) we can lower bound F (t) as follows.

F (t) =

∫

dµ(η) P(ση
0 (s) = η0 for all s ≤ t)

≥
∫

H(t)
dµ(η) P(ση

0 (s) = η0 for all s ≤ t)

≥ 1

2
µ(A0 ≥ 2t)

which implies,
µ(A0 ≥ 2t) ≤ 2F (t) ≤ 2 e−ct (6.28)

for a suitable constant c > 0. But (6.28) together with the fact that |C0| ≤
A2

0 + 1 implies that µ (|C0|n) < ∞ for all n ∈ N, i.e. p < po
c [1].

The same argument proves continuity at qc.
Suppose in fact that lim supq↓qc

gap > 0. That would imply (6.28) for any

q > qc with c independent of q, i.e. supq>qc
µ (|C0|) < ∞, again a contra-

diction since µ (|C0|) is an increasing function of q which is infinite at qc

[14, 20]. �

Corollary 6.18. At q = qc the persistence function F satisfies
∫ ∞

0
dt F (

√
t) = ∞

Proof. By (6.28)
∫ ∞

0
dt F (

√
t) ≥ 1

2

∫ ∞

0
dt µ(A0 ≥

√
2t)

≥ 1

2

∫ ∞

0
dt µ

(

|C0| ≥ c′t
)

= +∞

because µ (|C0|) = +∞ at qc. �

7. SOME FURTHER OBSERVATIONS

We collect here some further comments and aside results that so far have
been omitted for clarity of the exposition.
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7.1. Logarithmic and modified-logarithmic Sobolev constants.
A first natural question is whether it would be possible to go beyond the
Poincaré inequality and prove a stronger coercive inequality for the gener-
ator L like the logarithmic or modified-logarithmic Sobolev inequalities [4].
As it is well known, the latter is weaker than the first one and it implies
in particular that, for any non-negative mean one function f depending on
finitely many variables, the entropy Ent(Ptf) := µ (Ptf log(Ptf)) satisfies:

Ent(Ptf) ≤ Ent(f)e−αt (7.1)

for some positive α. As we briefly discuss below such a behavior is in gen-
eral impossible and both the (infinite volume) logarithmic and modified

logarithmic Sobolev constants are zero4. For simplicity consider any of the
0-1 KCSM analyzed in section 6 and choose f as the indicator function of
the event that the box of side n centered at the origin is fully occupied, nor-
malized in such a way that µ(f) = 1. Denote by µf the probability measure
whose relative density w.r.t. µ is f . If we assume (7.1) the relative entropy
Ent(µfPt/µ) satisfies

Ent(µfPt/µ) = Ent(Ptf) ≤ Cnde−αt. (7.2)

which implies, thanks to Pinsker inequality, that

‖µfPt − µPt‖2
TV = ‖µfPt − µ‖2

TV ≤ 2Ent(µfPt/µ) ≤ 2Cnde−αt (7.3)

i.e. ‖µfPt − µPt‖TV ≤ e−1 for any t ≥ O(α−1 log(n)). However the above
conclusion clashes with a standard property of interacting particles systems
with bounded rates known as “finite speed of propagation” (see e.g. [28])
which can be formulated as follows. Let τ(η) be the first time the origin

is updated starting from the configuration η. Then
∫

dµf (η)P(τ(η) < t) ≤
Cnd−1P(Z ≥ n/r) where Z is a Poisson variable of mean t and r is the
range defined in section 2.2. The above bound implies in particular that
∫

dµf (η)E(ση
0 (t)) ≈ 1 for any t ≪ n i.e. a contradiction with the previous

reasoning.

7.2. More on the ergodicity/non ergodicity issue in finite volume.
In section 2.1 we mentioned that one could try to analyze a 0-1 KCSM in
a finite region without inserting appropriate boundary conditions in order
to guarantee ergodicity but rather by restricting the configuration space to
a suitable ergodic component. Although such an approach appears rather
complicate for e.g. cooperative models, it is within reach for non-cooper-
ative models.

For simplicity consider the FA-1f model in a finite interval Λ = [1, . . . , L]
with configuration space Ω+

Λ := {η ∈ ΩΛ :
∑

x∈Λ ηx < L}, i.e. configuration
with at least one empty site, and constraints corresponding to boundary
conditions outside Λ identically equal to one. In other words the constraints
only consider sites inside Λ. The resulting Markov process is ergodic and
reversible w.r.t the conditional measure µ+

Λ := µΛ(· |Ω+
Λ ). We now show

how to derive from our previous results that also the spectral gap of this new

4In finite volume with minimal boundary conditions it is not difficult to show that for

some of the models discussed before the logarithmic Sobolev constant shrinks to zero as the

inverse of the volume
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process stays uniformly positive as L → ∞. To keep the notation simple we
drop the subscript Λ from now on.

For any η ∈ Ω+, let ξ(η) = min{x ∈ Λ : ηx = 0} and write, for an arbitrary
f ,

Var+(f) = µ+
(

Var+(f | ξ)
)

+ Var+
(

µ+(f | ξ)
)

(7.4)

with self explanatory notation. Since Var+(f | ξ) is computed with “good”,
i.e. zero, boundary condition at ξ, we get that

Var+ (f | ξ)) = Var (f | ξ)) (7.5)

≤ const.
∑

x<ξ

µ (cx Varx(f) | ξ) = const.
∑

x<ξ

µ+ (cx Varx(f) | ξ) . (7.6)

Therefore the first term in the r.h.s of (7.4) is bounded from above by a
constant times the Dirichlet form. In order to bound the second term in the
r.h.s of (7.4) we observe that ξ is a geometric random variable condition to
be less or equal than L. By the classical Poincaré inequality for the geometric
distribution, we can then write

Var+
(

µ+(f | ξ)
)

≤ const.
L−1
∑

x=1

µ+
(

b(x)
[

µ+(f | ξ = x + 1) − µ+(f | ξ = x)
]2

)

(7.7)

where b(x) = µ+(ξ = x + 1)/µ+(ξ = x). A little bit of algebra now shows
that

µ+(f | ξ = x) − µ+(f | ξ = x + 1) =

= µ+
(

ηx+1(f(η) − f(ηx+1) | ξ = x
)

+ µ+ (f(ηx) − f(η) | ξ = x + 1)

= µ+
(

ηx+1cx+1(f(η) − f(ηx+1) | ξ = x
)

+µ+ (cx(f(ηx) − f(η)) | ξ = x + 1) (7.8)

In the last equality we have inserted the constraints cx+1 and cx because
they are identically equal to one. If we now insert (7.8) into the r.h.s. of
(7.7) and use Schwartz inequality, we get that also the second term in the
r.h.s of (7.4) is bounded from above by a constant times the Dirichlet form
and the spectral gap stay bounded away from zero uniformly in L.
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