
ON THE DYNAMICAL BEHAVIOR OF THE ABC MODELLORENZO BERTINI, NICOLETTA CANCRINI, AND GUSTAVO POSTAAbstra
t. We 
onsider the ABC dynami
s, with equal density of the threespe
ies, on the dis
rete ring with N sites. In this 
ase, the pro
ess is reversiblewith respe
t to a Gibbs measure with a mean �eld intera
tion that undergoes ase
ond order phase transition. We analyze the relaxation time of the dynami
sand show that at high temperature it grows at most as N2while it grows atleast as N3at low temperature.1. Introdu
tionThe ABC model has been introdu
ed by Evans et al. [12, 13℄, it exhibits thepe
uliar feature of being a one-dimensional sto
hasti
 
onservative dynami
s withlo
al jump rates whose invariant measure undergoes a phase transition. The ABCmodel is a system 
onsisting of three spe
ies of parti
les, traditionally labeled A,B, C, on a dis
rete ring with N sites. The system evolves by nearest neighborsparti
les ex
hanges with the following asymmetri
 rates: AB ! BA, BC ! CB,CA ! AC with rate q 2 (0; 1℄ and BA ! AB, CB ! BC, AC ! CA withrate 1=q. In parti
ular, the total numbers of parti
les N�, � 2 fA;B;Cg, of ea
hspe
ies are 
onserved and satisfy NA+NB+NC = N . Observe that the 
ase q = 1
orresponds to a three state version of the symmetri
 simple ex
lusion pro
ess.When q 2 (0; 1), Evans et al. [12, 13℄ argued that in the thermodynami
 limitN ! 1 with N�=N ! r� the system segregates into pure A, B, and C regions,with translationally invariant distribution of the phase boundaries. In the equaldensity 
ase NA = NB = NC = N=3 the dynami
s is reversible and its invariantmeasure 
an be expli
itly 
omputed.As dis
ussed by Clin
y et al. [7℄, the natural s
aling to investigate the asymp-toti
 behavior of the ABC model is the weakly asymmetri
 regime q = exp�� �2N 	,where the parameter � 2 [0;+1) plays the role of an inverse temperature. Withthis 
hoi
e the reversible measure of the equal densities 
ase rA = rB = rC = 1=3be
omes a 
anoni
al Gibbs measure, that we denote by ��N , with a mean �eld Hamil-tonian. The measure ��N undergoes a se
ond order phase transition at �
 = 2�p3 �10:88. This phase transition has been further analyzed in [1℄ and it is des
ribedin terms of the free energy fun
tional F� asso
iated to ��N . The fun
tional F� is(apart an additive 
onstant) the large deviations rate fun
tion for ��N in the s
alinglimit in whi
h the dis
rete ring with N sites is embedded in the one-dimensionaltorus and the parti
les 
on�guration is des
ribed in terms of the 
orresponding den-sities pro�les(�A; �B ; �C). In this limit, F�(�A; �B ; �C) thus gives the asymptoti
probability of observing the density pro�le (�A; �B; �C). In parti
ular, the mini-mizer of F� des
ribes the typi
al behavior of the system as N ! 1. The phase2000 Mathemati
s Subje
t Classi�
ation. Primary 60K35, 82C20; Se
ondary 82C22, 60B15.Key words and phrases. ABC model, Spe
tral gap, Mean �eld Gibbs measures, Inter
hangepro
ess.
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orresponds to the following behavior of the free energy fun
tional.For � 2 [0; �
℄ the minimum of F� is uniquely a
hieved at the homogeneous pro�le(1=3; 1=3; 1=3). For � > �
 the fun
tional F� has instead a one-parameter familyof minimizers whi
h des
ribe the phase segregation. As shown in [2℄, this phasetransition 
an also be dete
ted via the two-point 
orrelation fun
tions of ��N whi
hbe
ome singular when the system approa
hes the transition.For unequal densities the invariant measure of the ABC dynami
s on a ring isnot reversible, that is the stationary state is no longer an equilibrium state, and
annot be 
omputed expli
itly. As dis
ussed in [2, 7℄, a stability analysis of thehomogeneous density pro�le shows that for � > 2��1 � 2(r2A + r2B + r2C)��1=2 itbe
omes unstable. As stated there, one however expe
ts that the phase transition,at least for parti
ular values of the parameters rA, rB , rC , be
omes of the �rstorder. Again in [2, 7℄, the asymptoti
 of the two-point 
orrelation fun
tions is
omputed in the homogeneous phase and the large deviation rate fun
tion F� hasbeen 
al
ulated up to order �2. When the ABC dynami
s is 
onsidered on an openinterval with re
e
ting endpoints, the 
orresponding invariant measure is reversiblefor all values of the densities [1℄. In parti
ular, it has the same Gibbs form as theone in the ring for the equal density 
ase.Main purpose of the present paper is the dis
ussion of the phase transition ofthe ABC model on a ring with N sites from a dynami
al viewpoint. More pre-
isely, we fo
us on the asymptoti
 behavior, as N diverges, of the relaxation time��N whi
h measures the time the dynami
s needs to rea
h the stationary probabil-ity. Our analysis is restri
ted to the equal density 
ase rA = rB = rC = 1=3 inwhi
h the invariant measure ��N is expli
itly known and reversible. As usual, therelaxation time ��N is de�ned as the inverse of the spe
tral gap of the generator L�Nof the underlying Markov pro
ess. Observe that, in view of the reversibility, L�Nis selfadjoint in L2(d��N ). Our main result implies that the asymptoti
 behavior ofthe relaxation time ��N re
e
ts the phase transition of the 
orresponding stationarymeasure ��N . We indeed show that for � small enough ��N is at most of order N2while for � > �
 it is at least of order N3.The di�usive behavior ��N � N2 is 
hara
teristi
 of 
onservative dynami
s inthe high temperature regime, the typi
al example being the Kawasaki dynami
sfor the Ising model. Indeed, this has been proven by di�erent te
hniques in several
ontexts, see e.g. [3, 5, 17℄. We here follow the approa
h introdu
ed in [3℄ whi
his based upon a perturbative argument in � and 
an be dire
tly applied to the
ase of mean �eld intera
tions. On the other hand, the behavior ��N � N3 in thesuper
riti
al regime is 
hara
teristi
 of the system under 
onsideration, we brie
ydis
uss the heuristi
 pi
ture. As stated in [1, 2℄, at time O(N2) the densities pro�lesof the three spe
ies (�A; �B ; �C) evolve a

ording to the hydrodynami
 equations�t�A + �r��A(�C � �B)� = ��A�t�B + �r��B(�A � �C)� = ��B�t�C + �r��C(�B � �A)� = ��C (1.1)where r and � denote respe
tively the gradient and Lapla
ian on the ma
ros
opi
torus. As follows from mi
ros
opi
 reversibility, the evolution (1.1) 
an be obtainedas a suitable gradient 
ow of the free energy F�. In parti
ular, while the homoge-neous pro�le (1=3; 1=3; 1=3) is the unique, globally attra
tive, stationary solution



DYNAMICAL BEHAVIOR OF THE ABC MODEL 3to (1.1) for � < �
, the (one parameter family) minimizers of F� are stationarysolutions to (1.1) when � > �
. A

ording to the 
u
tuating hydrodynami
 theory,we argue that, for large but �nite N , the hydrodynami
 equation (1.1) gives ana

urate des
ription of the system provided one adds in (1.1) a suitable noise termO�1=pN�. At time O(N2) the ABC model then behaves as a Brownian motionon the set of minimizers of F� with di�usion 
oeÆ
ient proportional to 1=N . Thetime to thermalize is thus O(N3).2. Notation and resultsThe ABC pro
ess. Given a positive integer N , we let ZN = f0; � � � ; N � 1gbe the ring of the integers modulo N . The 
on�guration spa
e with N sites ise
N := fA;B;CgZN , elements of e
N are denoted by �, for x 2 ZN the spe
ies ofthe parti
le at the site x is thus �(x) 2 fA;B;Cg. We also let �� : e
N ! f0; 1gZN ,� 2 fA;B;Cg, be the � o

upation numbers namely, [��(�)℄(x) := 1f�g(�(x)) inwhi
h 1E stands for the indi
ator fun
tion of the set E. Note that for ea
h x 2 ZNwe have �A(x) + �B(x) + �C(x) = 1. Whereas � = (�A; �B ; �C) is a fun
tion of the
on�guration � we shall omit to write expli
itly the dependen
e on �.Given x 2 ZN and � 2 e
N we denote by �x;x+1 the 
on�guration obtained from� by ex
hanging the parti
les at the sites x and x+ 1, i.e.��x;x+1� (y) :=8><>:�(x + 1) if y = x;�(x) if y = x+ 1;�(y) otherwise: (2.1)The ABC pro
ess is the Markov 
hain on the state spa
e e
N whose generatorLN = L�N a
ts on fun
tions f : e
N ! R asL�Nf(�) = Xx2ZN 
�x(�)�f(�x;x+1)� f(�)�: (2.2)For � � 0, the jump rates 
�x = 
�x;N are given by
�x;N(�) := (expf� �2N 	 if (�(x); �(x + 1)) 2 f(A;C); (C;B); (B;A)gexpf �2N 	 otherwise. (2.3)As follows from (2.2), the ABC dynami
s 
onserves the total number of parti
lesof ea
h spe
ies. Therefore, given three positive integers N�, � 2 fA;B;Cg su
hthat NA + NB + NC = N , we have a well de�ned pro
ess on the linear manifoldPx2ZN ��(x) = N�, � 2 fA;B;Cg. As straightforward to 
he
k, the ABC dy-nami
s is irredu
ible when restri
ted to su
h manifold; hen
e the pro
ess is ergodi
and admits a unique invariant measure. In the 
ase � = 0 this measure is theuniform probability. On the other hand, when � > 0 the expli
it expression of theinvariant measure is in general not known. However, as we next dis
uss, in the
ase NA = NB = NC the ABC pro
ess satis�es the detailed balan
e 
ondition withrespe
t to a mean �eld Gibbs measure [12, 13℄.Invariant measure in the equal densities 
ase. We assume thatN is a multipleof 3 and we restri
t to the 
ase in whi
h NA = NB = NC . We shall then 
onsider



4 L. BERTINI, N. CANCRINI, AND G. POSTAthe ABC pro
ess on
N := n� 2 e
N : Xx2ZN �A(x) = Xx2ZN �B(x) = Xx2ZN �C(x) = N3 o: (2.4)The Hamiltonian HN : 
N ! R is de�ned byHN (�) := 1N2 X0�x<y�N�1 ��A(x)�C (y) + �B(x)�A(y) + �C(x)�B(y)�: (2.5)In view of the equal densities 
onstraint, an elementary 
omputation shows thatthe right hand side above does not depend on the 
hoi
e of the origin. Equivalently,HN is a translation invariant fun
tion on 
N . Given � � 0, we denote by ��N theprobability measure on 
N de�ned by��N (�) := 1Z�N exp�� �NHN (�)	 (2.6)where Z�N , the partition fun
tion, is the proper normalization 
onstant. In thesequel, given a fun
tion f on 
N we denote respe
tively by ��N (f) and ��N (f; f) theexpe
tation and varian
e of f with respe
t to ��N .As observed in [12, 13℄, the ABC pro
ess is reversible with respe
t to ��N . Inother worlds, the generator L�N in (2.2) is a self-adjoint operator on L2(
N ; ��N )and in parti
ular ��N is the invariant measure.Asymptoti
 of the spe
tral gap. The spe
trum of L�N in (2.2), 
onsidered asa self-adjoint operator on L2(
N ; ��N ), is a �nite subset of the negative real axesand, in view of the ergodi
ity of the pro
ess, zero is a simple eigenvalue of L�N . Thespe
tral gap of L�N , denoted by gap(L�N ), is the absolute value of the se
ond largesteigenvalue. The spe
tral gap 
an be 
hara
terized in variational terms as follows:gap(L�N ) is largest 
onstant � � 0 su
h that the Poin
ar�e inequality� ��N (f; f) � ���N�fL�Nf� (2.7)holds for any f 2 L2(d��N ). The spe
tral gap 
ontrols the speed of 
onvergen
e toequilibrium of the asso
iated pro
ess in the following sense. For ea
h f 2 L2(d��N ),��N�etL�Nf ; etL�Nf� � e�2 gap(L�N ) t ��N (f; f):Our main result 
on
erns the asymptoti
 behavior of gap(L�N ) as N diverges. Inparti
ular we show this behavior di�ers in the sub
riti
al and super
riti
al regimes.Theorem 2.1.(i) There exist 
onstants �0; C0 > 0 su
h that for any � 2 [0; �0℄ and any Ngap(L�N ) � C0 1N2 �(ii) Let �
 := 2�p3. For any � > �
 there exists a 
onstant C(�) > 0 su
h thatfor any N gap(L�N) � C(�) 1N3 �



DYNAMICAL BEHAVIOR OF THE ABC MODEL 5The above statements raise two natural issues. As dis
ussed in the Introdu
-tion, the 1=N2 asymptoti
 of the spe
tral gap is a 
ommon feature of 
onservativesto
hasti
 dynami
s in the high temperature regime. One then expe
ts that thisbehavior holds for any � 2 [0; �
). The methods used in the present paper arebased on a perturbation argument around � = 0 and their extension to the thewhole sub
riti
al regime does not appear feasible. In prin
iple, the te
hniques de-veloped in [5, 17℄, whi
h require as an input a strong spatial mixing of the stationaryprobability, 
an be applied up to the 
riti
al temperature. Those te
hniques havebeen however developed for short range intera
tions and they do not seem, at leastdire
tly, appli
able to mean �eld Hamiltonians.The se
ond, somehow more fundamental, issue is whether 1=N3 is the right s
al-ing of the spe
tral gap in the super
riti
al regime. We mention that this behavioris also the one expe
ted for the Kawasaki dynami
s for the low temperature twodimensional Ising model with plus boundary 
ondition (pure state) [4℄. Indeed,in this 
ase the heuristi
 pi
ture presented in the Introdu
tion 
orresponds to thedi�usion of the Wul� bubble. While the statement (ii) in Theorem 2.1 is provenby exhibiting a suitable slowly varying test fun
tion, a proof of a mat
hing lowerbound appears 
onsiderably harder. The ABC model is however mu
h simplerthen short range models and it therefore might be a useful starting point towardthe understanding of 
onservative dynami
s in the phase transition region.We next dis
uss the behavior of the spe
tral gap of the ABC pro
ess on aninterval with zero 
ux 
ondition at the endpoints. As shown in [1℄, in su
h a
ase the pro
ess is reversible with respe
t to a mean �eld Gibbs probability for allvalues of the densities. In the high temperature regime � � 1, the methods heredeveloped 
an be dire
tly applied to get the di�usive behavior 1=N2. As far the lowtemperature regime is 
on
erned, the 
ase of equal densities is the same as the oneon the ring and we 
an therefore 
on
lude that the lower bound 1=N3 holds also inthis setting. On the other hand, as proven in [1℄, in the unequal densities 
ase thefree energy has always a unique minimizer, it seems reasonable to expe
t that onan interval with unequal densities the spe
tral gap of the ABC pro
ess behaves as1=N2 for all values of �.3. Asymptoti
 of the Gibbs measureThe upper bound on the spe
tral gap in the super
riti
al regime requires the lawof large numbers for the empiri
al density with respe
t to the Gibbs measure ��N .This result is proven by 
ombining the large deviations prin
iple for ��N with theanalysis of the minimizers of the free energy in [1℄. As ��N is a Gibbs measure witha mean �eld intera
tion, the asso
iated large deviations prin
iple 
an be proven bystandard tools. As the spe
i�
 appli
ation to the ABC model has not however beendetailed in the literature, we present here the whole argument.Empiri
al density. We let T := R=Z be the one-dimensional torus of side lengthone; the 
oordinate onT is denoted by r 2 [0; 1). The inner produ
t in L2(T; dr;R3)is denoted by h�; �i. We set fM := L1�T; dr; [0; 1℄3� and denote by � = (�A; �B ; �C)its elements. We 
onsider fM endowed with the weak* topology. Namely, a sequen
ef�ng 
onverges to � in M i� h�n; �i ! h�; �i for any fun
tion � 2 L1(T; dr;R3),equivalently for any smooth fun
tion � 2 C1(T;R3). Note that fM is a 
ompa
tPolish spa
e, i.e. separable, metrizable, and 
omplete.



6 L. BERTINI, N. CANCRINI, AND G. POSTAWe introdu
eM := n� 2 fM : �A + �B + �C = 1 ; Z 10 dr ��(r) = 13 ; � 2 fA;B;Cgo (3.1)noti
ing it is a 
losed subset of fM that we 
onsider equipped with the relativetopology and the asso
iated Borel �-algebra. The set of Borel probability measureson M, denoted by P(M), is endowed with the topology indu
ed by the weak 
on-vergen
e of probability measures; namely, Pn ! P i� for ea
h 
ontinuous fun
tionF :M! R we have R dPn F ! R dP F . Note that also P(M) is a 
ompa
t Polishspa
e.We de�ne the empiri
al density as the map �N : 
N !M given by�N (�) (r) := Xx2ZN �(x)1[x=N;(x+1)=N)(r) ; r 2 T; (3.2)re
all � = �(�) is the map de�ned at the beginning of Se
tion 2. We set P�N :=��N Æ��1N namely, P�N is the law of �N when � is distributed a

ording to ��N . Notethat fP�Ng is a sequen
e in P(M).Large deviations prin
iple. The entropy is the 
onvex lower semi
ontinuousfun
tional S : M! [0;+1) de�ned byS(�) := Z 10 dr h�A(r) log �A(r)1=3 + �B(r) log �B(r)1=3 + �C(r) log �C(r)1=3 i (3.3)and the energy is the 
ontinuous fun
tional H : M! R de�ned byH(�) := Z 10 dr Z 1r dr0 h�A(r)�C(r0) + �B(r)�A(r0) + �C(r)�B(r0)i: (3.4)For � � 0 the free energy is �nally the fun
tional F� : M! R de�ned byF� := S + �H: (3.5)Theorem 3.1. The sequen
e fP�Ng satis�es a large deviation prin
iple with ratefun
tion I� = F� � inf F�. Namely, for ea
h 
losed set C � M and ea
h open setO �M limN!1 1N logP�N�C� � � inf�2C I�(�)limN!1 1N logP�N�O� � � inf�2O I�(�):Sin
e the beautiful Lanford's le
tures [16℄, large deviations prin
iples for Gibbsmeasures has be
ome a basi
 topi
 in equilibrium statisti
al me
hani
s, see in par-ti
ular [11℄ for the 
ase of mean �eld intera
tions. On the other hand, the 
urrentsetting is not 
ompletely standard as we are looking to large deviations of the em-piri
al density for 
anoni
al Gibbs measures. We therefore give a detailed proof ofthe above result. The �rst step is the large deviations prin
iple when � = 0; re
allthat P0N = �0N Æ ��1N is the law of �N when � is distributed a

ording to �0N whi
his the uniform probability on 
N .



DYNAMICAL BEHAVIOR OF THE ABC MODEL 7Lemma 3.2. The sequen
e fP0Ng satis�es a large deviation prin
iple with ratefun
tion S. Namely, for ea
h 
losed set C �M and ea
h open set O �MlimN!1 1N logP0N�C� � � inf�2C S(�) (3.6)limN!1 1N logP0N�O� � � inf�2OS(�): (3.7)Proof. The proof is split is few steps.Step 1. SetA := n� 2 C1(T;R3) : Z 10 dr e��(r)e�A(r) + e�B(r) + e�C(r) = 13 ; � 2 fA;B;Cgo (3.8)and let �: A ! R be the fun
tional�(�) := Z 10 dr log h13�e�A(r) + e�B(r) + e�C (r)�i: (3.9)We shall prove that for ea
h � 2 AlimN!1 1N log Z dP0N(�) exp�Nh�; �i	 = �(�): (3.10)We denote by �N (x) the average of � in the interval �x=N; (x + 1)=N�,�N� (x) := N Z x+1NxN dr ��(r) ; x 2 ZN ; � 2 fA;B;Cg :From the very de�nition of the measure P0N ,Z dP0N (�) exp�Nh�; �i	 = X�2
N �0N (�) exp �Nh�; �N (�)i	= X�2
N �0N (�) Yx2ZN expn X�2fA;B;Cg�N� (x)��(x)o (3.11)We denote by ��N the produ
t measure on e
N = fA;B;CgZN with marginals ��N;xgiven by ��N;x(�) = e�N� (x)e�NA (x) + e�NB (x) + e�NC (x) ; � 2 fA;B;Cg:When � = 0 we drop the supers
ript � from the notation so that �N is the uniformmeasure on e
N .Set �N (�) := Qx2ZN �e�NA (x) + e�NB (x) + e�NC (x)�. As �0N = �N (� j
N ), from(3.11) we get Z dP0N (�) exp�Nh�; �i	 = �N (�)3N ��N (
N )�N (
N ) :Sin
e �N is the uniform probability on e
N , limN 1N log�N (
N ) = 0. We 
laim thatalso limN 1N log��N (
N ) = 0. The proof of this step is then 
ompleted by observingthat 1N log ��N (�)=3N ℄! �(�).To prove the 
laim, we write��N�
N� = ��N� 1N Xx2ZN ��(x) = 13 ; � 2 fA;B;Cg�:



8 L. BERTINI, N. CANCRINI, AND G. POSTAIn view of the smoothness of � and the 
onstraints in (3.8), for ea
h � 2 fA;B;Cg1N Xx2ZN ��N���(x)� = 1N Xx2ZN e�N� (x)e�NA (x) + e�NB (x) + e�NC (x)= Z 10 dr e��(r)e�A(r) + e�B(r) + e�C(r) +O� 1N � = 13 +O� 1N �The 
laim now follows from an appli
ation of the lo
al 
entral limit theorem fortriangular arrays, see e.g. [18, Ch. VII℄.Step 2. We here prove the large deviations upper bound (3.6). Given � 2 A letP0;�N be the probability on M de�ned bydP0;�N := exp�N�h�; �i � �N(�)�	 dP0N (3.12)where �N(�) = 1N log Z dP0N (�) eNh�;�iGiven a measurable subset B of M, we then haveP0N (B) = ZBdP0;�N dP0NdP0;�N � sup�2B exp��N�h�; �i � �N (�)�	In view of Step 1, �N(�)! �(�) as N !1. We thus getlimN!1 1N logP0N (B) � � inf�2B �h�; �i � �(�)	 :By optimizing with respe
t to � 2 A and using a mini-max lemma, see e.g.Lemmata 3.2 and 3.3 in [15, App. 2℄, we dedu
e that for ea
h 
ompa
t K �MlimN!1 1N logP0N (K) � � inf�2K sup�2A �h�; �i � �(�)	 = � inf�2KS(�):By the 
ompa
tness of M this 
on
ludes the proof of the upper bound.Step 3. Given two probability measures P and Q, we denote by Ent(QjP ) =R dQ log[dQ=dP ℄ the relative entropy of Q with respe
t to P . A simple 
omputationbased on Jensen inequality, see e.g. [14, Prop. 4.1℄, shows that the large deviationslower bound (3.7) 
an be dedu
ed from the following statement. For ea
h � 2 Mthere exists a sequen
e of probability measures fQ�Ng su
h thatQ�N ! Æ� and limN!1 1N Ent�Q�N ��P0N� � S(�) (3.13)We here 
onstru
t the sequen
e fQ�Ng when � is 
ontinuously di�erentiable. Forsu
h a � let � = �(�) be su
h that�� = e��e�A + e�B + e�C ; � 2 fA;B;Cg:Observe that � 2 A sin
e � is 
ontinuously di�erentiable. Re
alling (3.12), we 
laimthat fP0;�(�)N g ful�ls the 
ondition (3.13). The law of large numbers P0;�(�)N ! Æ�
an be indeed 
he
ked by the same 
omputations of Step 1. Furthermore, in viewof su
h law of large numbers and Step 1,limN!1 1N Ent�P0;�(�)N ��P0N� = h�; �i � �(�) = S(�)where the last equality follows from the 
hoi
e of �.



DYNAMICAL BEHAVIOR OF THE ABC MODEL 9Step 4. The proof of the lower bound 
an be 
on
luded by an approximationargument. Let MÆ be the subset of M given by the 
ontinuously di�erentiablepro�les. The 
ondition that a large deviation rate fun
tion is lower semi
ontinuousis not restri
tive. More pre
isely, if a sequen
e of probabilities satis�es the largedeviations lower bound for some rate fun
tion, then the lower bound still holdswith the lower semi
ontinuous envelope of su
h rate fun
tion. If we let SÆ be thefun
tional equal to S on MÆ and SÆ(�) = +1 otherwise, in view of Step 3, theproof of the lower bound (3.7) is 
on
luded if we show that the lower semi
ontinuousenvelope of SÆ is S. This amounts to prove thatS(�) = supO3� inf�̂2O\MÆ S(�̂)where the �rst supremum is 
arried over all the open neighborhoods of �. The previ-ous identity is easily proven by 
onsidering a sequen
e of 
ontinuously di�erentiablepro�les f�ng whi
h 
onverges to � a.e. in T. �In view of the 
ontinuity of the fun
tional H onM, the large deviations prin
iplefor the sequen
e fP�Ng is straightforward 
onsequen
e of Lemma 3.2 and Lapla
e-Varadhan theorem.Proof of Theorem 3.1. Re
alling de�nitions (2.5), (3.2) and (3.4), we 
laim that forea
h � 2 
N HN (�) = H(�N (�)) : (3.14)It is indeed enough to noti
e that by writing expli
itly the right hand side abovethe diagonal terms vanish sin
e �A(x) + �B(x) + �C(x) = 1, x 2 ZN .Re
all that �0N is the uniform probability on 
N and let B be a measurablesubset ofM. From (3.14) and the de�nitions of the measures P�N and ��N , see (2.6)P�N (B) = X�2
N�N (�)2B ��N (�) = j
N jZ�N X�2
N�N (�)2B �0N (�) e��NHN (�)= j
N jZ�N ZBdP0N e��NH(�N ):In parti
ular, by taking B =M,Z�Nj
N j = Z dP0N e��NH(�N ):Sin
e M is 
ompa
t and H : M ! R is 
ontinuous, by using Lemma 3.2 andLapla
e-Varadhan theorem, see e.g. [8, Thm. 4.3.1℄, we dedu
elimN!1 1N log Z�Nj
N j = sup�2M�� �H(�)� S(�)	 = � inf�2MF�(�):Let C and O be respe
tively a 
losed and an open subset of M. Again fromLemma 3.2 and Lapla
e-Varadhan theorem, see e.g. [8, Ex. 4.3.11℄, we dedu
elimN!1 1N log ZCdP0N e��NH(�N ) � � inf�2CF�(�)limN!1 1N log ZOdP0N e��NH(�N ) � � inf�2OF�(�):The theorem follows readily. �



10 L. BERTINI, N. CANCRINI, AND G. POSTAMinimizers of the free energy. We here re
all the results in [1℄ 
on
erningthe minimizers of the free energy F� in (3.5) that are needed in our analysis. Asdis
ussed in [1℄, the Euler-Lagrange equation ÆF� = 0 
an be, equivalently, writtenas the system of ordinary di�erential equation�0A = � �A(�C � �B)�0B = � �B(�A � �C)�0C = � �C(�B � �A): (3.15)Note that the above 
ondition is equivalent to the statement that � = (�A; �B ; �C)is a stationary solution to the hydrodynami
 equation (1.1).Let �
 := 2�p3. In [1℄ it is proven that for � 2 [0; �
℄ the unique solution to(3.15) inM is the 
onstant solution � := � 13 ; 13 ; 13�. On the other hand, when � > �
there are non trivial solutions. In parti
ular, there exists a unique � 2 C1�R;R3�satisfying the following 
onditions: (i) � solves (3.15), (ii) � is periodi
 with period1, (iii) � satis�es the 
onstraints in (3.1) and 
an therefore by thought as an elementinM, (iv) the 
enter of mass of the B spe
ies is 1=2, i.e. 3 R 10 dr r�B(r) = 1=2. Weshall denote this solution by �� = ��;� . Note that any translation of ��;� satis�es
onditions (i){(iii) above but not (iv). We emphasize that the 
ondition (ii) requiresthe minimal period to be one; indeed, as dis
ussed in [1℄, when � > n�
 for someinteger n, there are solutions of (3.15) with period 1=n.Given s 2 T we denote by �s :M!M the translation by s, namely (�s�)(r) =�(r� s). If P is a probability on M, the 
orresponding translation is P Æ ��1s . Thefollowing statement is a (partial) rewriting of Theorems 4.1 and 5.2 in [1℄.Theorem 3.3.(i) If � 2 [0; �
℄ then arg inf F� = ��	;namely, the unique minimizer of F� is �.(ii) If � 2 (�
;+1) thenarg inf F� = ��s��;� ; s 2 T	;namely, F� has a one-parameter family of minimizers whi
h are obtainedby translating ��;�.Law of large numbers for the empiri
al density. As a 
orollary of the previousstatements, we here prove the law of large numbers for the sequen
e fP�Ng. The
orresponding limit point 
harges the set of minimizers of the free energy only. Inthe super
riti
al 
ase we show that ea
h �s��;� , s 2 T, is 
hosen with uniformprobability.Theorem 3.4.(i) If � 2 [0; �
℄ then the sequen
e fP�Ng 
onverges to Æ�.(ii) If � 2 (�
;+1) then the sequen
e fP�Ng 
onverges to R 10 ds Æ�s��;� .Proof. Item (i) follows immediately from the large deviations prin
iple stated inTheorem 3.1 and the uniqueness of minimizers of F� stated in item (i) of Theo-rem 3.3.To prove item (ii), let # : 
N ! 
N be the mi
ros
opi
 translation, i.e. #� is the
on�guration de�ned by (#�)(x) = �(x � 1), x 2 ZN . As follows from de�nition



DYNAMICAL BEHAVIOR OF THE ABC MODEL 11(2.6), the probability ��N is translation invariant, i.e. ��N Æ #�1 = ��N . This impliesthat the probability P�N is invariant by dis
rete translations: P�N Æ ��1x=N = P�N ,x 2 ZN . By the 
ompa
tness of M, there exists a probability P 2 P(M) and asubsequen
e fP�Ng su
h that P�N ! P . We 
laim that P is translation invariant.Indeed, �x a 
ontinuous fun
tion F on M and s 2 T. Observe that, in view of the
ompa
tness of M, F is uniformly 
ontinuous. Pi
k now a sequen
e fxN 2 ZNgsu
h that xN=N ! s. The uniform 
ontinuity of F implies that �xN=NF 
onvergesuniformly to �sF . Sin
e R dP�N �xN=NF = R dP�N F , by taking the limit N ! 1we dedu
e that R dP �sF = R dP F . In view of the arbitrariness of F we 
on
ludeP Æ ��1s = P . Moreover, Theorem 3.1 and item (ii) in Theorem 3.3 imply that thesupport of P is a subset of ��s��;� ; s 2 T	 =: T . Let now � : T ! T be thebije
tion de�ned by �s��;� 7! s and set � := P Æ��1. Sin
e P = P Æ ��1s , s 2 T, wededu
e that � is a translation invariant probability measure on T. As the Lebesguemeasure dr is the unique translation invariant probability measure on T we dedu
e�(dr) = dr. To proof is now 
ompleted by observing that for ea
h 
ontinuousF : M! R the previous identity imply R dP(�)F (�) = R 10 dsF (�s��). �4. Lower bound on the spe
tral gap in the sub
riti
al 
aseIn this se
tion we prove the �rst statement in Theorem 2.1. This result is derivedfrom an analysis of a perturbed inter
hange pro
ess, that is detailed in Appendix A,and a 
omparison of the 
orresponding Diri
hlet forms. This method has beenintrodu
ed in [19℄ and applied in di�erent 
ontexts, see e.g. [3℄.We start by de�ning the ABC pro
ess on the 
omplete graph with N verti
es.Given a (unoriented) bond fx; yg � ZN , x 6= y, and a fun
tion f : 
N ! R, weintrodu
e the gradient �rx;yf� (�) := f(�x;y)� f(�) (4.1)where, as in (2.1), �x;y denotes the 
on�guration obtained from � ex
hanging theparti
les in x and y. The ABC dynami
s on the 
omplete graph is then de�ned bythe Markov generator L�Nf := Xfx;yg�ZN 
�x;yrx;yf (4.2)where, re
alling (2.5), the jump rates 
�x;y = 
�;Nx;y : 
N ! (0;+1) are given by
�;Nx;y := 1N expn� �N2 rx;yHNo: (4.3)In parti
ular, the above rates satisfy the detailed balan
e with respe
t to the prob-ability measure ��N de�ned in (2.6). Re
alling (2.3) and (2.5), we also observe thatN 
�;Nx;x+1 = 
�;Nx .In Appendix A we prove that, provided � is small enough, the spe
tral gap ofL�N is of order one uniformly in N .Lemma 4.1. There exist reals �0; C1 2 (0;+1) su
h that for any � 2 [0; �0℄ andany N � 3 gap �L�N� � 1C1 �



12 L. BERTINI, N. CANCRINI, AND G. POSTAWe denote by D�N and D�N the Diri
hlet forms asso
iated to the generators L�Nand L�N , respe
tively. That is, given f : 
N ! R,D�N(f) := ��N�f (�L�N)f� = 12 NXx=1 ��N�
�x �rx;x+1f�2�; (4.4)D�N (f) := ��N�f (�L�N )f� = 12 Xfx;yg�ZN ��N�
�x;y �rx;yf�2�: (4.5)Lemma 4.2. The inequalityD�N (f) � 2 e3�N2D�N(f)holds for any � � 0 and any fun
tion f : 
N ! R.Proof. Given fx; yg � ZN we let Tx;y : 
N ! 
N be the involution de�ned byTx;y� := �x;y. We use the same notation for the 
orresponding linear map on theset of fun
tions f : 
N ! R, i.e. �Tx;yf�(�) := f(Tx;y�) = f��x;y�. As it is simpleto 
he
k, the long jump Tx;y 
an be de
omposed in terms of nearest neighborsjumps as followsTx;y = Tx+1;x Tx+2;x+1 � � � Ty�1;y�2 Ty�1;y Ty�2;y�1 � � � Tx+1;x+2 Tx;x+1We then write the teles
opi
 sumTx;yf � f= �Tx;x+1 � � �Ty;y�1 � � �Tx+2;x+1Tx+1;x f � Tx;x+1 � � �Ty;y�1 � � �Tx+2;x+1 f�+ �Tx;x+1 � � �Ty;y�1 � � �Tx+3;x+2Tx+2;x+1 f � Tx;x+1 � � �Ty;y�1 � � �Tx+3;x+2 f�+ � � � + �Tx;x+1 � � �Ty�2;y�1Ty;y�1 f � Tx;x+1 � � �Ty�2;y�1 f�+ � � �+ �Tx;x+1f � f�When
erx;yf(�) =�rx;x+1f��Tx+1;x � � �Ty�1;y � � �Tx+1;x+2��+ �rx+1;x+2f��Tx+1;x � � �Ty�1;y � � �Tx+2;x+3��+ � � �+ �ry�1;yf��Tx+1;x � � �Ty�2;y�1��+ � � �+ �rx;x+1f�(�) (4.6)In view of (2.5) and (2.6), for any � 2 R+, any z 2 ZN , and any positive fun
tiong : 
N ! R+ ��N�Tz;z+1g� � exp�N�kHNk1	 ��N (g) = e�=N ��N (g) (4.7)By S
hwarz inequality in (4.6) and using re
ursively the previous estimate we thenget, for 1 � x < y � N��N��rx;yf�2� � 2 [2(y � x) � 1℄ e2� y�1Xz=x ��N��rz;z+1f�2� (4.8)Indeed, in the generi
 term on the right hand side of (4.6) there is the 
omposition ofnearest neighbors ex
hanges Tx+k;x+k+1 whose number is at most 2(y�x)�2 � 2N .In view of (4.7) this yields the fa
tor e2�. As the number of terms on the righthand side of (4.6) is 2(y� x)� 1 and ea
h bond fz; z+1g, z = x; � � � ; y� 1 is usedat most two times, the bound (4.8) follows.To 
on
lude the proof of the lemma it is now enough to observe that the jumprates in the Diri
hlet forms (4.4) and (4.5) respe
tively satisfy the bounds 
�x �
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�x;y � e�=2. In view of (4.8) elementary 
omputations now yieldthe statement. �Proof of Theorem 2.1, item (i). Re
all the Rayleigh-Ritz variational 
hara
teriza-tion of the spe
tral gap (2.7). By Lemmata (4.1) and (4.2) we then dedu
e thestatement with C0 = 12e�3�C1. �5. Upper bound on the spe
tral gap in the super
riti
al 
aseWe dis
uss here the upper bound on the spe
tral gap when � > �
. In view ofthe Rayleigh-Ritz variational 
hara
terization (2.7), the proof will be a
hieved byexhibiting a suitable test fun
tion. The naive pi
ture is the following. When � > �
and N is large, the ABC pro
ess essentially performs a random walk on the set ofminimizers of the free energy F�, whi
h in the super
riti
al 
ase is homeomorphi
 tothe one-dimensional torus. We thus 
hoose as test fun
tion the one that 
orrespondsto the slow mode of su
h random walk and 
on
lude the argument.Proof of Theorem 2.1, item (ii). Pi
k a Lips
hitz fun
tion � : T ! R su
h thatR 10 dr �(r) = 0 to be 
hosen later and let fN : 
N ! R be the fun
tionfN := 1N NXx=1 �B(x)�� xN �:By the Rayleigh-Ritz prin
iple,gap(L�N ) � D�N(fN ; fN )��N�fN ; fN� (5.1)where the Diri
hlet form D�N has been de�ned in (4.4). We next estimate frombelow the denominator and from above the numerator.To bound the varian
e of fN , we �rst observe that, sin
e � has mean zero, wehave limN ��N�fN� = 13 R 10 dr �(r) = 0. Re
all (3.1) and let F : M! R be de�nedby F (�) = Z 10 dr �B(r)�(r):The 
ontinuity of � implieslimN!1 sup�2
N ��fN(�) � F ��N (�)��� = 0;where the empiri
al density �N : 
N !M has been de�ned in (3.2). By assump-tion, � > �
 and therefore Theorem 3.4, item (ii) implieslimN!1 ��N�f2N� = limN!1 ��N�F (�N )2� = Z 10 ds h Z 10 dr ��;�B (r � s)�(r)i2:We 
an 
hoose � su
h that the right hand side above is stri
tly positive. It isindeed enough to observe that, sin
e ��;� is not 
onstant, there exists a Lips
hitz,mean zero, fun
tion � su
h that R 10 dr ��;�B (r)�(r) 6= 0. For su
h 
hoi
e of � wededu
e there exists a 
onstant C(�) 2 (0;+1) su
h that ��N�fN ; fN� � C(�) forany N � 3.We next bound the Diri
hlet form. A straightforward 
omputation yieldsrx;x+1fN = 1N h��x+1N �� �� xN �i ��B(x) � �B(x+ 1)�:
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e 
x � exp� �2N 	, we then getE�N(fN ; fN ) � exp� �2N 	 12N2 NXx=1 h��x+1N �� �� xN �i2:Therefore, letting C� be the Lips
hitz 
onstant of �,limN!1N3 E�N(fN ; fN ) � 12 C2�whi
h 
on
ludes the proof. �Appendix A. Gap for high temperature ex
hange pro
essWe prove here a general result on the spe
tral gap on suitable Markov 
hainson the set of permutations of f1; : : : ; Ng. The jumps of this 
hain are obtained byrandomly 
hoosing a transposition. As referen
e pro
ess we 
onsider the so-
alledinter
hange pro
ess on f1; : : : ; Ng, see [6, 9℄. This pro
ess 
an be realized as thesimple random walk on the graph with vertex set given by the symmetri
 groupSN and edges given by the 
olle
tion of transpositions. A

ordingly, the referen
einvariant measure is the uniform probability on the symmetri
 group. We thenperturb this measure a

ording to the standard Gibbs formalism and 
onsider anasso
iated reversible 
hain. Under general 
onditions on the energy, we show that{ at high enough temperature { the relaxation time of perturbed 
hain behaves,for large N , as the one of the referen
e random walk. The ABC dynami
s on the
omplete graph (4.2) 
an be realized by looking at the previous 
hain in a 
olorblindway, that is resolving only 3 out of of the N 
olors.Let VN := f1; : : : ; Ng and BN := fb � VN : jbj = 2g. The 
omplete graph onN verti
es is GN := (VN ; BN) and SN := f� : VN ! VN ; bije
tiveg is the set ofpermutations on VN . For any � 2 SN , fx; yg 2 BN de�ne �fx;yg 2 SN as thepermutation obtained from � applying the transposition whi
h ex
hanges x and y�fx;yg(z) := 8><>:�(y) if z = x�(x) if z = y�(z) otherwise.Let EN : SN ! R be the energy fun
tion and � � 0 the inverse of temperature,we de�ne 
anoni
al measure�N (�) = ��N (�) := 1ZN exp f��EN (�)g :where ZN = Z�N is the partition fun
tion. For any f : SN ! R, a 2 BN de�nefa(�) := f(�a), raf := fa � f and the Markov generatorG�Nf = GNf := Xa2BN 
araf: (A.1)The transition rates are given by
b = 
�b;N := 1N exp�� �2 rbEN	 (A.2)and satisfy the detailed balan
e 
ondition with respe
t to the probability �N , i.e.,�N�
ag� = �N�
aga�: (A.3)



DYNAMICAL BEHAVIOR OF THE ABC MODEL 15The operator GN is self-adjoint in L2(�N ) and the 
orresponding Diri
hlet formis EN (f; f) = E�N (f; f) := ��N (fGNf) = 12 Xa2BN �N�
a (raf)2�:We next show that for � small enough the spe
tral gap of G�N is stri
tly positiveuniformly in N .Theorem A.1. Assume supN supb krbENk1 < +1. Then there exist �0; k0 > 0su
h that for any � 2 [0; �0℄ and any Nk0 � gap �G�N� � 1k0 : (A.4)Proof of the upper bound. In view of the variational 
hara
terization (2.7) of thespe
tral gap GN , it is enough to exhibit a suitable test fun
tion. We next show thatby 
hoosing f(�) = 1f1g(�(1)), the upper bound in (A.4) follows.The varian
e of f is 
learly �N (f; f) = �N [�(1) = 1℄�1 � �N [�(1) = 1℄�. To
ompute the Diri
hlet form, we �rst observe that(rbfN)2(�) = 1f1;yg(b)�1f1g(�(1)) + 1f1g(�(y))�:When
e, in view of (A.2),EN (f; f) = 12Xy �N�
f1;yg�1f1g(�(1)) + 1f1g(�(y))��� expn�2 supN;b krbENk1o�N [�(1) = 1℄:Therefore gap(G�N ) � expn�2 supN;b krbENk1o1� �N [�(1) = 1℄ :It remains to show that the denominator above is bounded away from 0. We 
laimthat1N expn� � supN;b krbENk1o � �N [�(1) = 1℄ � 1N expn� supN;b krbENk1o: (A.5)Indeed, �x k 2 VN and observe�N [�(1) = 1℄ = 1ZN X� �N (�)1f1g(�(1)) = 1ZN X� �N (�f1;kg)1f1g(�(k))= 1ZN X� �N (�)�N (�f1;kg)�N (�) 1f1g(�(k)) = �Nhe��rf1;kgEN1f1g(�(k))i:This yieldsexpn� � supN;b krbENk1o � �N [�(k) = 1℄�N [�(1) = 1℄ � exp�� supN;b krbENk1o:Summing over k 2 VN and observing that Pk �N [�(k) = 1℄ = 1 we get (A.5). �



16 L. BERTINI, N. CANCRINI, AND G. POSTAProof of the lower bound. An appli
ation of spe
tral theorem shows, see e.g., [3℄,that gap(GN ) is the largest 
onstant k su
h that for any f : SN ! R:�N�(GNf)2� � k EN(f; f) = k2 Xa2BN �N �
a(raf)2� : (A.6)To prove the lower bound in (A.4) it is therefore enough there exist a 
onstantk independent of N su
h that (A.6) holds. We pro
eed in two steps. We �rst showthat�N�(GNf)2�� Xa;b2BNa\b 6=; �N�
a
brafrbf�+ 12 Xa;b2BNa\b=; �Nh
a
b�1� 
ab
b �rafrbfi: (A.7)Then we prove there exists a 
onstant k independent of N su
h thatk2 Xa2BN �N�
a(raf)2�� Xa;b2BNa\b 6=; �N�
a
brafrbf�+ 12 Xa;b2BNa\b=; �Nh
a
b�1� 
ab
b �rafrbfi: (A.8)While the inequality (A.7) 
an be obtained as a 
onsequen
e of Corollary 2.3 andProposition 2.4 in [3℄, we next give a dire
t proof in the present setting. Observethat �N �(GNf)2� = Xa;b2BN �N �
a
brafrbf�= Xa\b 6=;�N�
a
brafrbf�+ Xa\b=;�N �
a
brafrbf�: (A.9)We rewrite last term asXa\b=;�N�
a
brafrbf�= 12 Xa\b=;�Nh
a
b�1� 
ab
b �rafrbfi+ 12 Xa\b=;�Nh
a
b�1 + 
ab
b �rafrbfi:We 
laim that last term on the right hand side above is positive. This statementtogether with (A.9) trivially implies (A.7). To prove the previous 
laim, �x a; b 2BN , with a\ b = ; and observe that in this 
ase (raf)a(rbf)a = �rafrbfa. Thedetailed balan
e 
ondition (A.3) now implies�Nh
a
b�1 + 
ab
b �rafrbfi = �Nh
a�
b + 
ab�rafrbfi= �N�
a�
ab + 
b�(raf)a(rbf)a� = ��N�
a�
ab + 
b�rafrbfa�:Then�Nh
a
b�1 + 
ab
b �rafrbfi = 12 �Nh
a�
b + 
ab��rafrbf �rafrbfa�i= �12 �N �
a�
b + 
ab�rafrarbf�; (A.10)
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t 
omputation,
a�
b + 
ab� = 
b�
a + 
ba�: (A.11)By using (A.10), (A.11), detailed balan
e (A.3), and (A.11) again we obtain�Nh
a
b�1 + 
ab
b �rafrbfi= �12 �N�
a�
b + 
ab�rafrarbf� = �12 �N�
b�
a + 
ba�rafrarbf�= 12 �N�
b�
a + 
ba�raf brarbf� = 12 �N�
a�
b + 
ab�raf brarbf�:Averaging the previous equation and (A.10) we obtain�Nh
a
b�1 + 
ab
b �rafrbfi = 14 �N �
a�
b + 
ab��raf b �raf�rarbf�= 14 �N �
a�
b + 
ab�(rarbf)2� � 0whi
h 
on
ludes the proof of the 
laim.In order to prove (A.8) we observe thatXa\b 6=;�N�
a
brafrbf� =Xa �N �
2a(raf)2�+ Xa\b 6=;a6=b �N�
a
brafrbf�: (A.12)Furthermore, given a; b 2 BN su
h that a \ b 6= ; and a 6= b there exists a uniquetriangle T su
h that a; b 2 T . A triangle here is an element ofTN := �fa; b; 
g � BN : jfa; b; 
gj = 3; a \ b 6= ;; a \ 
 6= ;; b \ 
 6= ;	:Therefore Xa\b 6=;a6=b �N�
a
brafrbf� = XT2TN Xa;b2Ta6=b �N�
a
brafrbf�:Note thatXT2TN Xa;b2Ta6=b �N�
a
brafrbf�= XT2TN Xa;b2T �N�
a
brafrbf�� XT2TN Xa2T �N�
2a(raf)2�= XT2TN Xa;b2T �N�
a
brafrbf��Xa ��fT 2 TN : T 3 ag���N�
2a(raf)2�= XT2TN Xa;b2T �N�
a
brafrbf�� (N � 2)Xa �N �
2a(raf)2�:By plugging this result in (A.12) we getXa\b 6=;�N �
a
brafrbf� = XT2TN Xa;b2T �N �
a
brafrbf��(N�3)Xa �N�
2a(raf)2�:For any T 2 TN de�ne the set of vertexes of T as eT := Sa2T a. ThenXa;b2T �N�
a
brafrbf� = �Nh Xa;b2T �N �
a
brafrbf ���(z) : z 62 eT �i: (A.13)



18 L. BERTINI, N. CANCRINI, AND G. POSTAWe prove in Lemma A.2 below that there exists a 
onstant C1(�) > 0 satisfyinglim�#0 C1(�) = 1 su
h that for any N � 3, any f : SN ! R, and any � 2 SNN3 Xa;b2T �N�
a
brafrbf ���(z) : z 62 eT � � C1(�)2 Xa2T �N�
a(raf)2 ���(z) : z 62 eT �:By plugging this bound into (A.13), we dedu
eXa\b 6=;�N�
a
brafrbf�� 3C1(�)2N XT2TN Xa2T �N�
a(raf)2�� (N � 3)Xa �N�
2a(raf)2�= 3C1(�)(N � 2)2N Xa �N�
a(raf)2�� (N � 3)Xa �N�
2a(raf)2�� �3C1(�)(N � 2)2N � (N � 3) supa k
ak1�Xa �N�
a(raf)2�: (A.14)
In view of (A.2), supa k
ak1 � 1N expn�2 supN;a kraENk1o: (A.15)Re
alling the hypotheses supN supb krbENk1 < +1, from (A.14) we then dedu
ethere exists a 
onstant C2(�) > 0 satisfying lim�#0 C2(�) = 1 su
h thatXa\b 6=;�N �
a
brafrbf� � C2(�)2 Xa �N�
a(raf)2�: (A.16)To 
on
lude the proof of (A.8) we show that the se
ond term on its right handside is, for � small enough, of order �. By S
hwarz inequality and (A.11)���12 Xa;b2BNa\b=; �Nh
a
b�1� 
ab
b �rafrbfi��� � 12 Xa\b=;�Nh
a
b���1� 
ab
b ��� jraf j jrbf ji� 14n Xa\b=;�Nh
a
b���1� 
ab
b ���(raf)2i+ Xa\b=;�Nh
a
b���1� 
ab
b ���(rbf)2io= 12 Xa\b=;�Nh
a
b���1� 
ab
b ���(raf)2i = 12Xa �Nh
a(raf)2 Xb : b\a=; 
b���1� 
ab
b ���i:The hypotheses of the theorem implies supN supa;b krarbENk1 < +1. Re-
alling (A.15), for � small enough we then haveXb : b\a=; 
b���1� 
ab
b ��� � supa k
ak1 Xb : b\a=; ��1� e��2rarbEN ��� � supa k
ak1 Xb : b\a=; ��rarbEN �� � C3�for some 
onstant C3 independent of N . Therefore12 Xa;b2BNa\b=; �Nh
a
b�1� 
ab
b �rafrbf� � �C3�2 Xa �N�
a(raf)2�;
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h together with (A.16) 
ompletes the proof of (A.8). �Lemma A.2. Assume supN supb krbENk1 < +1. Then there exists a 
onstantC1(�) satisfying lim�#0C1(�) = 1 su
h that for any N � 3, any T 2 TN , anyf : SN ! R, and any � 2 SNN3 Xa;b2T �N�
a
brafrbf ���(z) : z 62 eT � � C1(�)2 Xa2T �N �
a(raf)2 ���(z) : z 62 eT �where we re
all eT := Sa2T a.Proof. The argument relies on two ingredients. The �rst is that, given a triangleT 2 TN , the 
onditional probability ��N [� j�(z) : 62 eT ℄ is, for � small enough, 
loseto the uniform measure. Namely, there exist C4(�) satisfying lim�#0 C4(�) = 1independent of N , T 2 TN , and � 2 SN , su
h that1C4(�) � ��N�� ���(z) : z 62 eT ��0N�� ���(z) : z 62 eT � � C4(�): (A.17)The se
ond ingredient is that the spe
tral gap of the inter
hange pro
ess on a graphwith 3 verti
es is equal to 1. This pro
ess 
an be realized as the random walk onS3 in whi
h the allowed transition o

ur, with transition probability 1=3, alongtranspositions. This statement readily implies�0N�f; f ���(z) : z 62 eT ℄� � 16 Xa2T �0N �(raf)2 ���(z) : z 62 eT �: (A.18)We �rst show how the lemma follows from these ingredients. Sin
e �0N [� j�(z) :z 62 eT ℄ is the uniform measure on a set of 
ardinality 6, in view of (A.18)��N�f; f ���(z) : z 62 eT � � C4(�)2�0N�f; f ���(z) : z 62 eT �� C4(�)26 Xa2T �0N�(raf)2 ���(z) : z 62 eT �� 13C4(�)3Ne �2 supN;a kraENk1 12 Xa2T ��N �
a(raf)2 ���(z) : z 62 eT �:When
eXa;b2T ��N�
a
brafrbf ���(z) : z 62 eT �� 3C4(�)3N exp�� �2 supN;a kraENk1	 12 Xa2T ��N �
a(raf)2 ���(z) : z 62 eT �whi
h, for a suitable C1(�), is the thesis of the lemma.The estimate (A.17) follows from assumption and standard arguments. Firstlynote that for any a 2 T��N��a ���(z) : z 62 eT ���N�� ���(z) : z 62 eT � = exp�� �raEN (�)	;Therefore, by observing that any two given permutations in S3 
an be 
onne
tedat most by two transpositions, a teles
opi
 argument yields that for any �; �0 2 SN
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h that �(z) = �0(z) for z 62 eTexp�� 2� supN;a kraENk1	 � ��N��0 ���0(z) : z 62 eT ���N �� ���(z) : z 62 eT � � exp�2� supN;a kraENk1	:By averaging the above inequality over �0 the bound (A.17) follows.The spe
tral gap of the inter
hange pro
ess on f1; 2; 3g 
an be obtained fromthe general results in [6, 9℄. An elementary proof 
an however also be obtainedby writing out the 6� 6 matrix 
orresponding to the generator and 
omputing itseigenvalues, as in the example at page 50 of [10℄. We order the 6 permutations ofS3 as �123123�, �123132�, �123231�, �123213�, �123312�, and �123321�. With this 
hoi
e, the generator ofthe inter
hange pro
ess is written as the matrix0BBBBBB��1 13 0 13 0 1313 �1 13 0 13 00 13 �1 13 0 1313 0 13 �1 13 00 13 0 13 �1 1313 0 13 0 13 �1
1CCCCCCAwhose eigenvalues are 0 (simple), �1 (with multipli
ity four), and �2 (simple). �We �nally show, as a 
orollary of the previous result, that the spe
tral gap ofthe ABC dynami
s on the 
omplete graph is of order one.Proof of Lemma 4.1. Fix N multiple of three and let �N : SN ! 
N be the pro-je
tion de�ned by �N� (x) := 8><>:A if �(x) = 1 mod 3;B if �(x) = 2 mod 3;C if �(x) = 3 mod 3:Namely, �N resolves only three out of the original N 
olors. Re
alling (2.5), letEN : SN ! R be de�ned by EN := HN Æ �N . For this 
hoi
e the ABC dynami
swith long jumps , i.e. the pro
ess with the generator (4.2), 
an be realized as the�N -proje
tion of the pro
ess with generator (A.1). In parti
ular, ��N = ��N Æ ��1Nand gap �L�N� � gap �G�N�. Sin
e HN Æ�N satis�es the hypotheses in Theorem A.1,the statement follows. �Referen
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