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ABSTRACT. We consider the ABC dynamics, with equal density of the three
species, on the discrete ring with N sites. In this case, the process is reversible
with respect to a Gibbs measure with a mean field interaction that undergoes a
second order phase transition. We analyze the relaxation time of the dynamics
and show that at high temperature it grows at most as N4 while it grows at
least as N2 at low temperature.

1. INTRODUCTION

The ABC model has been introduced by Evans et al. [12, 13], it exhibits the
peculiar feature of being a one-dimensional stochastic conservative dynamics with
local jump rates whose invariant measure undergoes a phase transition. The ABC
model is a system consisting of three species of particles, traditionally labeled A,
B, C, on a discrete ring with N sites. The system evolves by nearest neighbors
particles exchanges with the following asymmetric rates: AB — BA, BC — CB,
CA — AC with rate ¢ € (0,1] and BA — AB, CB — BC, AC — CA with
rate 1/¢. In particular, the total numbers of particles N,, a € {A, B,C}, of each
species are conserved and satisfy N4+ Ng+ Neo = N. Observe that the case g = 1
corresponds to a three state version of the symmetric simple exclusion process.
When ¢ € (0,1), Evans et al. [12, 13] argued that in the thermodynamic limit
N — oo with N,/N — r, the system segregates into pure A, B, and C regions,
with translationally invariant distribution of the phase boundaries. In the equal
density case Ny = Ng = N = N/3 the dynamics is reversible and its invariant
measure can be explicitly computed.

As discussed by Clincy et al. [7], the natural scaling to investigate the asymp-
totic behavior of the ABC model is the weakly asymmetric regime ¢ = exp { — %},
where the parameter § € [0, 4+0c) plays the role of an inverse temperature. With
this choice the reversible measure of the equal densities case r4 = rg =rc =1/3
becomes a canonical Gibbs measure, that we denote by Vﬁ, with a mean field Hamil-

tonian. The measure uﬁ, undergoes a second order phase transition at 8, = 27v/3 &
10.88. This phase transition has been further analyzed in [1] and it is described

in terms of the free energy functional F3 associated to UBN. The functional F3 is

(apart an additive constant) the large deviations rate function for I/g in the scaling

limit in which the discrete ring with N sites is embedded in the one-dimensional
torus and the particles configuration is described in terms of the corresponding den-
sities profiles(pa, pr, pc). In this limit, Fs(pa, ps, pc) thus gives the asymptotic
probability of observing the density profile (pa, ps, pc). In particular, the mini-
mizer of F3 describes the typical behavior of the system as N — oc. The phase
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transition of 1/1% corresponds to the following behavior of the free energy functional.
For f € [0, 8] the minimum of F3 is uniquely achieved at the homogeneous profile
(1/3,1/3,1/3). For § > B the functional F3 has instead a one-parameter family
of minimizers which describe the phase segregation. As shown in [2], this phase
transition can also be detected via the two-point correlation functions of 1/1% which
become singular when the system approaches the transition.

For unequal densities the invariant measure of the ABC dynamics on a ring is
not reversible, that is the stationary state is no longer an equilibrium state, and
cannot be computed explicitly. As discussed in [2, 7], a stability analysis of the

homogeneous density profile shows that for 8 > 2x[1 — 2(r% + 1% + 1%)]71/2 it
becomes unstable. As stated there, one however expects that the phase transition,
at least for particular values of the parameters r4, rg, rc, becomes of the first
order. Again in [2, 7], the asymptotic of the two-point correlation functions is
computed in the homogeneous phase and the large deviation rate function Fz has
been calculated up to order 32. When the ABC dynamics is considered on an open
interval with reflecting endpoints, the corresponding invariant measure is reversible
for all values of the densities [1]. In particular, it has the same Gibbs form as the
one in the ring for the equal density case.

Main purpose of the present paper is the discussion of the phase transition of

the ABC model on a ring with N sites from a dynamical viewpoint. More pre-
cisely, we focus on the asymptotic behavior, as N diverges, of the relazation time
T,% which measures the time the dynamics needs to reach the stationary probabil-
ity. Our analysis is restricted to the equal density case r4 = rg = r¢ = 1/3 in
which the invariant measure uﬁ, is explicitly known and reversible. As usual, the
relaxation time T,% is defined as the inverse of the spectral gap of the generator L?\r
of the underlying Markov process. Observe that, in view of the reversibility, L’?\,
is selfadjoint in LQ(dl/BN). Our main result implies that the asymptotic behavior of
the relaxation time 7'1’[3, reflects the phase transition of the corresponding stationary
measure UBN. We indeed show that for 8 small enough T,% is at most of order N2
while for 8 > f3. it is at least of order N?.
The diffusive behavior Tﬁ, ~ N? is characteristic of conservative dynamics in
the high temperature regime, the typical example being the Kawasaki dynamics
for the Ising model. Indeed, this has been proven by different techniques in several
contexts, see e.g. [3, 5, 17]. We here follow the approach introduced in [3] which
is based upon a perturbative argument in § and can be directly applied to the
case of mean field interactions. On the other hand, the behavior T,% ~ N3 in the
supercritical regime is characteristic of the system under consideration, we briefly
discuss the heuristic picture. As stated in [1, 2], at time O(N?) the densities profiles
of the three species (pa, pB, pc) evolve according to the hydrodynamic equations

Oipa+ BV [palpc — pB)] = Apa
dipp + BV [pB(pa — po)] = App (1.1)
dpc + BV [polps — pa)] = Apc

where V and A denote respectively the gradient and Laplacian on the macroscopic
torus. As follows from microscopic reversibility, the evolution (1.1) can be obtained
as a suitable gradient flow of the free energy F3. In particular, while the homoge-
neous profile (1/3,1/3,1/3) is the unique, globally attractive, stationary solution
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to (1.1) for f < fe, the (one parameter family) minimizers of Fj3 are stationary
solutions to (1.1) when 8 > (.. According to the fluctuating hydrodynamic theory,
we argue that, for large but finite N, the hydrodynamic equation (1.1) gives an
accurate description of the system provided one adds in (1.1) a suitable noise term
O(1/V/N). At time O(N?) the ABC model then behaves as a Brownian motion
on the set of minimizers of Fz with diffusion coefficient proportional to 1/N. The
time to thermalize is thus O(N?).

2. NOTATION AND RESULTS

The ABC process. Given a positive integer N, we let Zy = {0,--- ,N — 1}
be the ring of the integers modulo N. The configuration space with N sites is
Oy = {A,B,C}Z’V, elements of Qy are denoted by (, for x € Zn the species of
the particle at the site z is thus ((z) € {4, B,C}. We also let 7, : On — {0, I}Z’V,
a € {A,B,C}, be the a occupation numbers namely, [, (¢)](z) := 141 (¢(x)) in
which 1g stands for the indicator function of the set E. Note that for each z € Zx
we have n4(z) + np(x) + no(x) = 1. Whereas n = (n4,nB,1c) is a function of the
configuration ¢ we shall omit to write explicitly the dependence on (.

Given x € Zy and ( € Qn we denote by ¢#%+! the configuration obtained from
¢ by exchanging the particles at the sites z and = + 1, i.e.

C(x+1) if y=u,
(€™ (y) = 4 C(=) if y=z+1, (2.1)
C(y) otherwise.

The ABC process is the Markov chain on the state space Qn whose generator
Ly = L’?V acts on functions f: Qxy — R as

L3O =Y AQOFCm) ~ F(Q] (2.2)

mEZN

For 3 > 0, the jump rates ¢ = C,f,N are given by

5 0 {exp{—% i (@)l +1) € {(4.0).(C.B), (B A}y o

c
wN exp{s } otherwise.

As follows from (2.2), the ABC dynamics conserves the total number of particles
of each species. Therefore, given three positive integers N,, a € {4, B,C} such
that Ny + Ng + No = N, we have a well defined process on the linear manifold
Y weZy Ma(r) = No, a € {A,B,C}. As straightforward to check, the ABC dy-
namics is irreducible when restricted to such manifold; hence the process is ergodic
and admits a unique invariant measure. In the case § = 0 this measure is the
uniform probability. On the other hand, when g > 0 the explicit expression of the
invariant measure is in general not known. However, as we next discuss, in the
case Ng4 = N = N¢ the ABC process satisfies the detailed balance condition with
respect to a mean field Gibbs measure [12, 13].

Invariant measure in the equal densities case. We assume that N is a multiple
of 3 and we restrict to the case in which N4 = N = No. We shall then consider
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the ABC process on

avi={cetn s 3 m = Yo=Y me@=2) @4

zEZN zEZN zEZN
The Hamiltonian Hy: Qn — R is defined by

Hy@ =5 Y [aGme) +ns@nal) +ne@nsw).  (235)

In view of the equal densities constraint, an elementary computation shows that
the right hand side above does not depend on the choice of the origin. Equivalently,

Hy is a translation invariant function on Qy. Given § > 0, we denote by Vﬁ the
probability measure on Qn defined by

(O =z exp{ - ANHN(O) (2.6)
N
where Zz, the partition function, is the proper normalization constant. In the
sequel, given a function f on Qn we denote respectively by ufz,(f) and I/%(f, f) the
expectation and variance of f with respect to UBN.
As observed in [12, 13], the ABC process is reversible with respect to 1/%. In
other worlds, the generator L?\r in (2.2) is a self-adjoint operator on L2(QN,yg)

and in particular 1/% is the invariant measure.

Asymptotic of the spectral gap. The spectrum of L?V in (2.2), considered as
a self-adjoint operator on L2(Qy, 1/%), is a finite subset of the negative real axes
and, in view of the ergodicity of the process, zero is a simple eigenvalue of L?V. The

spectral gap of L’?V, denoted by gap(L’?\,), is the absolute value of the second largest
eigenvalue. The spectral gap can be characterized in variational terms as follows:
gap(L’?V) is largest constant A > 0 such that the Poincaré inequality

A (F ) < V3 (FL5 f) (2.7)

holds for any f € L2(dV§,). The spectral gap controls the speed of convergence to
equilibrium of the associated process in the following sense. For each f € L2(d1/’8N),

l/% (ethﬁif7 et[‘llavf) < e 2 gap(f/?v)t V]%(fv f)

Our main result concerns the asymptotic behavior of gap(L’?V) as N diverges. In
particular we show this behavior differs in the subcritical and supercritical regimes.
Theorem 2.1.

(i) There exist constants By, Co > 0 such that for any B € [0, By] and any N
1
N7
(ii) Let B. := 2mn/3. For any > B. there exists a constant C(B) > 0 such that
for any N

gap(Ly) > Co

1

gan(L%) < O(6) 1
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The above statements raise two natural issues. As discussed in the Introduc-
tion, the 1/N? asymptotic of the spectral gap is a common feature of conservative
stochastic dynamics in the high temperature regime. One then expects that this
behavior holds for any 8 € [0,8.). The methods used in the present paper are
based on a perturbation argument around g = 0 and their extension to the the
whole subcritical regime does not appear feasible. In principle, the techniques de-
veloped in [5, 17], which require as an input a strong spatial mixing of the stationary
probability, can be applied up to the critical temperature. Those techniques have
been however developed for short range interactions and they do not seem, at least
directly, applicable to mean field Hamiltonians.

The second, somehow more fundamental, issue is whether 1/N? is the right scal-
ing of the spectral gap in the supercritical regime. We mention that this behavior
is also the one expected for the Kawasaki dynamics for the low temperature two
dimensional Ising model with plus boundary condition (pure state) [4]. Indeed,
in this case the heuristic picture presented in the Introduction corresponds to the
diffusion of the Wulff bubble. While the statement (ii) in Theorem 2.1 is proven
by exhibiting a suitable slowly varying test function, a proof of a matching lower
bound appears considerably harder. The ABC model is however much simpler
then short range models and it therefore might be a useful starting point toward
the understanding of conservative dynamics in the phase transition region.

We next discuss the behavior of the spectral gap of the ABC process on an
interval with zero flux condition at the endpoints. As shown in [1], in such a
case the process is reversible with respect to a mean field Gibbs probability for all
values of the densities. In the high temperature regime 5 < 1, the methods here
developed can be directly applied to get the diffusive behavior 1/N2. As far the low
temperature regime is concerned, the case of equal densities is the same as the one
on the ring and we can therefore conclude that the lower bound 1/N?3 holds also in
this setting. On the other hand, as proven in [1], in the unequal densities case the
free energy has always a unique minimizer, it seems reasonable to expect that on
an interval with unequal densities the spectral gap of the ABC process behaves as
1/N? for all values of £3.

3. ASYMPTOTIC OF THE GIBBS MEASURE

The upper bound on the spectral gap in the supercritical regime requires the law
8

of large numbers for the empirical density with respect to the Gibbs measure vy.
This result is proven by combining the large deviations principle for I/g with the
analysis of the minimizers of the free energy in [1]. As I/g is a Gibbs measure with
a mean field interaction, the associated large deviations principle can be proven by
standard tools. As the specific application to the ABC model has not however been
detailed in the literature, we present here the whole argument.

Empirical density. We let T := R/Z be the one-dimensional torus of side length
one; the coordinate on T is denoted by € [0,1). The inner product in L?(T, dr; R?)

is denoted by (-,-). We set M := L (T,dr;[0,1]*) and denote by p = (pa, pB, pc)
its elements. We consider M endowed with the weak* topology. Namely, a sequence
{p"} converges to p in M iff (p", ¢) — (p,¢) for any function ¢ € L'(T,dr;R?),
equivalently for any smooth function ¢ € C*(T;R?). Note that M is a compact
Polish space, i.e. separable, metrizable, and complete.
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We introduce
— 1 1
M = {p EM: pa+pp+pc=1, / dr pa(r) = 3 @ € {A,B,C}} (3.1)
0

noticing it is a closed subset of M that we consider equipped with the relative
topology and the associated Borel o-algebra. The set of Borel probability measures
on M, denoted by P(M), is endowed with the topology induced by the weak con-
vergence of probability measures; namely, P,, — P iff for each continuous function
F: M — R we have [dP, F — [dP F. Note that also P(M) is a compact Polish
space.

We define the empirical density as the map wn: Qn — M given by

71'N(C) (T) = EZ: TI(T) 1[z/N,(z+l)/N) (T) , TE Ta (32)

recall n = n(¢) is the map defined at the beginning of Section 2. We set 73,/3, =

I/g o n,}l namely, Pﬁ is the law of mx when ( is distributed according to Vﬁ. Note

that {Px} is a sequence in P(M).

Large deviations principle. The entropy is the convex lower semicontinuous
functional §: M — [0, +oc) defined by

S0 = [ ar [patyion pf/(;) T pr(r)log pf/(;) T po(r)log p{’%} (3.3)

and the energy is the continuous functional H: M — R defined by

1 1
Hp)i= [ dr [ [patripct) + puripate) + perpn)]. @30)
0 T
For # > 0 the free energy is finally the functional Fg: M — R defined by
Fg =S+ [H. (3.5)

Theorem 3.1. The sequence {”Pﬁ} satisfies a large deviation principle with rate
function Zg = Fg — inf Fz. Namely, for each closed set C C M and each open set
0OcM

T 1 B .
Nim S logPy(C) < — inf Z5(p)

1
lim logPy(0) > — inf Zs(p).

Since the beautiful Lanford’s lectures [16], large deviations principles for Gibbs
measures has become a basic topic in equilibrium statistical mechanics, see in par-
ticular [11] for the case of mean field interactions. On the other hand, the current
setting is not completely standard as we are looking to large deviations of the em-
pirical density for canonical Gibbs measures. We therefore give a detailed proof of
the above result. The first step is the large deviations principle when § = 0; recall
that PR, = v}, o my' is the law of mn when ( is distributed according to % which
is the uniform probability on Qn.
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Lemma 3.2. The sequence {P%} satisfies a large deviation principle with rate
function S. Namely, for each closed set C C M and each open set O C M

T 1 0 .
Nim T log Py (C) < — inf S(p) (3.6)
. 1 0 .
Jlim Flog Py (0) > — inf S(p). (3.7)

Proof. The proof is split is few steps.

Step 1. Set
1 Aa (1) 1
— 1. R3) - € _ =
A= {xe ' (TRY) /0 I S o T e — 3 @ € (A B0} (38)
and let A: A — R be the functional
1 L(pa) L rs) 4 el
A(A)::/drlog—e“’”—}-eEr—l—eC’" . (3.9)
, artog [ )
We shall prove that for each A € A
. 1
Jim 1o [4PR(p) exp (N(Ap)} =AY (3.10)
We denote by AV (z) the average of A in the interval [z/N, (z + 1)/N),
z+1
AN (2) ::N/ Y draa(r), w€Zn, ac{AB.C}.
~

From the very definition of the measure PY,,

/ 4P%(p) exp (N )} = 3 08O exp {N (L7 (0))}

CeEQN

= Z v (0) H exp{ Z Ag(T)TM(T)}

CEQN e’y a€{A,B,C}

(3.11)

We denote by p) the product measure on Qy = {A, B, C}Z’V with marginals ,uf‘VT
given by
era ()

e}\g(z) + e}\g(z) + e)\g(z) ) a € {A,B,C}

pin (@) =

When A = 0 we drop the superscript A from the notation so that uy is the uniform
measure on ).

Set En(A) == [l,ezy (e)‘]fy(z) +erp@) 4 e)‘g(z)). As V8 = pn(- ), from
(3.11) we get
En(A) px(2n)

[Pl exp (NG )}y = S IR,

Since v is the uniform probability on (~2N, limy ]ﬁ log un (Qn) = 0. We claim that

also limy % log 17 (2x) = 0. The proof of this step is then completed by observing
that + log [En(X)/3V] = A(N).
To prove the claim, we write

py(On) =i (5 3 male) = 3.0 € {4.B.0}).
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In view of the smoothness of A and the constraints in (3.8), for each a € {A, B,C}

1 A 1
NzezZ:N ,UN(%(J?)) = ﬁgz: AN (@) 4 AR (2) 4 AT (2)
! Aa(r) 1 1 1
e
= /0 dT e)\A('f’) n e)\B(T) T e>\(7(7‘) + O(ﬁ) = 5 + O(N)
The claim now follows from an application of the local central limit theorem for
triangular arrays, see e.g. [18, Ch. VII].

AN ()

Step 2. We here prove the large deviations upper bound (3.6). Given A\ € A let
732;)‘ be the probability on M defined by

AP = exp {N[(\,") — An(N)] } dPY (3.12)
where

1
An(Y) = 1 log / dPY,(p) N

Given a measurable subset B of M, we then have

PL(B) = /13de A j;joNk < 21€1p exp{ N[ N\ p) — AN()\)]}
A(X

In view of Step 1, Axy(A) — ) as N — oo. We thus get

— 1 0
im — < - - .
Nim 7 log Px(B) < — inf {(A,p) = AV}
By optimizing with respect to A € A and using a mini-max lemma, see e.g.
Lemmata 3.2 and 3.3 in [15, App. 2], we deduce that for each compact X C M

A}E)noo—log’PN(lC)<fpu€1]fc :1613{ I\ p) }—fgrellfcs p).

By the compactness of M this concludes the proof of the upper bound.

Step 3. Given two probability measures P and @, we denote by Ent(Q|P) =
[dQ logldQ/dP] the relative entropy of ) with respect to P. A simple computation
based on Jensen inequality, see e.g. [14, Prop. 4.1], shows that the large deviations
lower bound (3.7) can be deduced from the following statement. For each p € M
there exists a sequence of probability measures {94} such that

1
Q% =46, and Jim ﬁEnt( NPR) < S(p) (3.13)

We here construct the sequence { Q% } when p is continuously differentiable. For
such a p let A = A(p) be such that

e)‘“

eM +ers ere’
Observe that A € A since p is continuously differentiable. Recalling (3.12), we claim

that {732;)‘(’))} fulfils the condition (3.13). The law of large numbers 732;)‘(’)) — J,
can be indeed checked by the same computations of Step 1. Furthermore, in view
of such law of large numbers and Step 1,

Po = a€{A, B, C}.

lim %Ent ‘PN (A p) — A(N) = S(p)

N —o00

where the last equality follows from the choice of .



DYNAMICAL BEHAVIOR OF THE ABC MODEL 9

Step 4. The proof of the lower bound can be concluded by an approximation
argument. Let M, be the subset of M given by the continuously differentiable
profiles. The condition that a large deviation rate function is lower semicontinuous
is not restrictive. More precisely, if a sequence of probabilities satisfies the large
deviations lower bound for some rate function, then the lower bound still holds
with the lower semicontinuous envelope of such rate function. If we let S° be the
functional equal to S on M, and S°(p) = +oo otherwise, in view of Step 3, the
proof of the lower bound (3.7) is concluded if we show that the lower semicontinuous
envelope of §° is §. This amounts to prove that
S(p) = sup senf S(p)

where the first supremum is carried over all the open neighborhoods of p. The previ-
ous identity is easily proven by considering a sequence of continuously differentiable
profiles {p"} which converges to p a.e. in T. O

In view of the continuity of the functional H on M, the large deviations principle
for the sequence {’P}%} is straightforward consequence of Lemma 3.2 and Laplace-
Varadhan theorem.

Proof of Theorem 3.1. Recalling definitions (2.5), (3.2) and (3.4), we claim that for
each ( € Qn

Hy(Q) = H(xN(0) (3.14)

It is indeed enough to notice that by writing explicitly the right hand side above
the diagonal terms vanish since na(z) + ng(z) + no(z) =1, v € Zn.

Recall that % is the uniform probability on Qy and let B be a measurable

subset of M. From (3.14) and the definitions of the measures Pﬁ and UBN, see (2.6)
P = Y A0 = S e e

B
(eQn ZN CeEQN
=N (¢)eB =N (¢)eB
ZyN B
In particular, by taking B = M,
B
Nl

Since M is compact and H: M — R is continuous, by using Lemma 3.2 and
Laplace-Varadhan theorem, see e.g. [8, Thm. 4.3.1], we deduce
tim L 1og 2N = qup {— gH(p) - S(0)} = nf Fa(o)
im —log—"- = sup { — — = — in .
N—ooo N g‘QN‘ pE/& p p pEM P
Let C and O be respectively a closed and an open subset of M. Again from
Lemma 3.2 and Laplace-Varadhan theorem, see e.g. [8, Ex. 4.3.11], we deduce

7 1 0 —BNH(xN) :
- A > < —
T e [ 4P e < s

Y

— inf Fz(p).

1 N
li —1 d 0 /7,8N'H(7r )
lim —log /O Pye iy

N—oo

The theorem follows readily. O
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Minimizers of the free energy. We here recall the results in [1] concerning
the minimizers of the free energy Fs in (3.5) that are needed in our analysis. As
discussed in [1], the Euler-Lagrange equation 63 = 0 can be, equivalently, written
as the system of ordinary differential equation

pa=Bpalpc — pB)

P = Bps(pa — pc) (3.15)

pc = Bpc(ps — pa).
Note that the above condition is equivalent to the statement that p = (pa, pB, pc)
is a stationary solution to the hydrodynamic equation (1.1).

Let . := 2m/3. In [1] it is proven that for 3 € [0, 8] the unique solution to
(3.15) in M is the constant solution p := (% % %) On the other hand, when g > §.
there are non trivial solutions. In particular, there exists a unique p € C* (R; R3)
satisfying the following conditions: (i) p solves (3.15), (ii) p is periodic with period
1, (iii) p satisfies the constraints in (3.1) and can therefore by thought as an element
in M, (iv) the center of mass of the B species is 1/2, i.e. 3 fol drrpp(r) =1/2. We
shall denote this solution by p* = p*#. Note that any translation of p*# satisfies
conditions (i) (iii) above but not (iv). We emphasize that the condition (ii) requires
the minimal period to be one; indeed, as discussed in [1], when 5 > nf. for some
integer n, there are solutions of (3.15) with period 1/n.

Given s € T we denote by 75 : M — M the translation by s, namely (75p)(r) =
p(r —s). If P is a probability on M, the corresponding translation is P o, . The
following statement is a (partial) rewriting of Theorems 4.1 and 5.2 in [1].

Theorem 3.3.
(i) If B € [0, Bc] then
arginf Fs = {7}
namely, the unique minimizer of Fg is p.
(ii) If B € (Bc,+o0) then

arginf 73 = {Tsp*”ﬁ, s €T};

namely, Fg has a one-parameter family of minimizers which are obtained
by translating p*°.

Law of large numbers for the empirical density. As a corollary of the previous
statements, we here prove the law of large numbers for the sequence {771/3,} The
corresponding limit point charges the set of minimizers of the free energy only. In
the supercritical case we show that each 7,p*#, s € T, is chosen with uniform
probability.

Theorem 3.4.
(i) If B €0, B.] then the sequence {Pﬁ,} converges to 0.
(ii) If B € (B, +00) then the sequence {”Pﬁ} converges to folds 07 peib-

Proof. Ttem (i) follows immediately from the large deviations principle stated in
Theorem 3.1 and the uniqueness of minimizers of Fj3 stated in item (i) of Theo-
rem 3.3.

To prove item (ii), let ¥ : Qn — Qn be the microscopic translation, i.e. ¥¢ is the
configuration defined by (9¢)(z) = ((z — 1), z € Zn. As follows from definition
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(2.6), the probability 1/1% is translation invariant, i.e. l/g 0! = 1/1%. This implies
that the probability ’P}% is invariant by discrete translations: 73]/3, o TJ/]N = 731’{\3,,
x € Zy. By the compactness of M, there exists a probability P € P(M) and a
subsequence {77,['\3,} such that 77,['\5, — P. We claim that P is translation invariant.
Indeed, fix a continuous function F on M and s € T. Observe that, in view of the
compactness of M, F' is uniformly continuous. Pick now a sequence {zx € Zy}
such that x5 /N — s. The uniform continuity of F' implies that 7, . /n F' converges
uniformly to 7,F. Since [dPh Tan /N = [dP5 F, by taking the limit N — oo
we deduce that [dP7,F = [dP F. In view of the arbitrariness of F' we conclude
P o1, =P. Moreover, Theorem 3.1 and item (ii) in Theorem 3.3 imply that the
support of P is a subset of {r;p*?, s € T} =: T. Let now ¢: T — T be the
bijection defined by 7,p*% + s and set A := Po¢~'. Since P = Por; !, s € T, we
deduce that A is a translation invariant probability measure on T. As the Lebesgue
measure dr is the unique translation invariant probability measure on T we deduce
A(dr) = dr. To proof is now completed by observing that for each continuous
F: M — R the previous identity imply [dP(p) F(p) = fo] ds F(1sp*). O

4. LOWER BOUND ON THE SPECTRAL GAP IN THE SUBCRITICAL CASE

In this section we prove the first statement in Theorem 2.1. This result is derived
from an analysis of a perturbed interchange process, that is detailed in Appendix A,
and a comparison of the corresponding Dirichlet forms. This method has been
introduced in [19] and applied in different contexts, see e.g. [3].

We start by defining the ABC process on the complete graph with N vertices.
Given a (unoriented) bond {z,y} C Zn, = # y, and a function f: Qny — R, we
introduce the gradient

(Vauf) (©) = F(C"") = £(Q) (4.1)

where, as in (2.1), (**¥ denotes the configuration obtained from ( exchanging the
particles in z and y. The ABC dynamics on the complete graph is then defined by
the Markov generator

LB f = > Vet (4.2)
{z.y}CZn

where, recalling (2.5), the jump rates (‘fu = c'f;év: Qn — (0,400) are given by

1 N
cf;;V = —exp{ — BT Vz,yHN}. (4.3)

In particular, the above rates satisfy the detailed balance with respect to the prob-
ability measure 1/1% defined in (2.6). Recalling (2.3) and (2.5), we also observe that

B,N _ B,N
N(:m“H_1 =cp.

In Appendix A we prove that, provided § is small enough, the spectral gap of
L,B\, is of order one uniformly in N.

Lemma 4.1. There exist reals $y,C1 € (0,400) such that for any 8 € [0, Bo] and
any N >3
1

gap (L3) > &
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We denote by D?\, and DIBV the Dirichlet forms associated to the generators L?\,
and L'?V, respectively. That is, given f: Qn — R,

DAY = R (F (~T3F) = 5 S vR (e [Vewnns]7). (14)
DA =R (P BN =5 X AL, [Veuf]) (@)
{z.y}Cln

Lemma 4.2. The inequality
DY (f) < 26% N DX (f)
holds for any 8 > 0 and any function f: Qny — R.
Proof. Given {z,y} C Zn we let T, ,: Qn — Qn be the involution defined by
Ty ¢ = ("Y. We use the same notation for the corresponding linear map on the
set of functions f: Qn — R, i.e. (Tm,yf)(C) = f(TayC) = f(Cm*y). As it is simple
to check, the long jump 7}, , can be decomposed in terms of nearest neighbors
jumps as follows
Toy=Tot1,0Tot2041 - Ty1y2Ty1,yTy2y-1 - Tov1,042Toatr
We then write the telescopic sum
Tz,yf - f
= [Tz,z+l e Ty,y71 e Tz+2,z+sz+17z f - Tz7z+] e Ty7y7] e Tz+27z+] f]
+ [Tz,z+l e Ty,y71 e Tz+37z+2Tz+27z+1 f - Tz7z+1 o Ty7y71 o Tz+37z+2 f]
+ oot [TI7I+] Ty sy aTyy1f = Toagr Ty—zy— f]
4ot [TI7I+]f_f]
Whence
VT,yf(C) :(VT,T+1f) (Tr+1,m e Tyfl,y e Tr+1,m+2<)
+ (vm+1,m+2f) (Tm+1,m e Tyfl,y e Tm+2,m+3<) (46)
ot (Vyryf) (Tewre - Ty2y1Q) + -+ (Vezs1 £)(C)
In view of (2.5) and (2.6), for any 5 € R4, any z € Zy, and any positive function
g: Oy = Ry
vx Tz 19) < exp {NB||Hyllo} vio(g) = €N v (9) (4.7)

By Schwarz inequality in (4.6) and using recursively the previous estimate we then
get, for 1<z <y <N

Vo ([Tant]?) <2020 - 2) = 116 S V(12 £17) (48)

Indeed, in the generic term on the right hand side of (4.6) there is the composition of
nearest neighbors exchanges T’ 1 ¢ » 4+ 1-+1 Whose number is at most 2(y —2) —2 < 2N.
In view of (4.7) this yields the factor e2®. As the number of terms on the right
hand side of (4.6) is 2(y — ) — 1 and each bond {z,z+ 1}, z = z,--- ,y — 1 is used
at most two times, the bound (4.8) follows.

To conclude the proof of the lemma it is now enough to observe that the jump
rates in the Dirichlet forms (4.4) and (4.5) respectively satisfy the bounds ¢ >
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e B/CN) and ch’y < B2 In view of (4.8) elementary computations now yield
the statement. O

Proof of Theorem 2.1, item (i). Recall the Rayleigh-Ritz variational characteriza-
tion of the spectral gap (2.7). By Lemmata (4.1) and (4.2) we then deduce the

statement with Cy = %6’3501. O

5. UPPER BOUND ON THE SPECTRAT GAP IN THE SUPERCRITICAL CASE

We discuss here the upper bound on the spectral gap when g > (.. In view of
the Rayleigh-Ritz variational characterization (2.7), the proof will be achieved by
exhibiting a suitable test function. The naive picture is the following. When 8 > j.
and N is large, the ABC process essentially performs a random walk on the set of
minimizers of the free energy F3, which in the supercritical case is homeomorphic to
the one-dimensional torus. We thus choose as test function the one that corresponds
to the slow mode of such random walk and conclude the argument.

Proof of Theorem 2.1, item (ii). Pick a Lipschitz function ¢: T — R such that
fo] dr ¢(r) = 0 to be chosen later and let fn: Qn — R be the function

N
1 T
In= ;WB(HJW(ﬁ)-
By the Rayleigh-Ritz principle,

D/Bv(fN, n)
v (s fn)

where the Dirichlet form D’fv has been defined in (4.4). We next estimate from
below the denominator and from above the numerator.

To bound the variance of fy, we first observe that, since ¢ has mean zero, we
have limy vy (fv) = L [ dr ¢(r) = 0. Recall (3.1) and let F: M — R be defined
by

gap(Ly) < (5.1)

1
F(p) = [ drontr) (o).
The continuity of ¢ implies
lim sup | f(¢) — F(nn())| = 0.

N —oo CeQn

where the empirical density 7y : Qx — M has been defined in (3.2). By assump-
tion, 8 > 3. and therefore Theorem 3.4, item (ii) implies
1 1 9
lim uz(f?\,) = A}im I/'BN(F(ﬂ'N)2) = / ds {/ dr p‘,;”g(r - 9)(;5(1“)] .
— 00 Jo

N—oo Jo
We can choose ¢ such that the right hand side above is strictly positive. It is
indeed enough to observe that, since p*#? is not constant, there exists a Lipschitz,
mean zero, function ¢ such that [0] dr p3P (r)é(r) # 0. For such choice of ¢ we
deduce there exists a constant C(3) € (0,+oc) such that uf,(fN, fn) > C(B) for
any N > 3.
We next bound the Dirichlet form. A straightforward computation yields

Vo =5 [6(5) = 6(3)] [n(a) — nata + ],
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Since ¢, < exp { %} we then get
N

£ 1) < o () g 32 [o(5) ~ 9(7)]

Therefore, letting Cy be the Lipschitz constant of ¢,
_ 1
Jim NEX(fr, fn) < 505
which concludes the proof. O

APPENDIX A. GAP FOR HIGH TEMPERATURE EXCHANGE PROCESS

We prove here a general result on the spectral gap on suitable Markov chains
on the set of permutations of {1,..., N}. The jumps of this chain are obtained by
randomly choosing a transposition. As reference process we consider the so-called
interchange process on {1,..., N}, see [6, 9]. This process can be realized as the
simple random walk on the graph with vertex set given by the symmetric group
Sy and edges given by the collection of transpositions. Accordingly, the reference
invariant measure is the uniform probability on the symmetric group. We then
perturb this measure according to the standard Gibbs formalism and consider an
associated reversible chain. Under general conditions on the energy, we show that

at high enough temperature the relaxation time of perturbed chain behaves,
for large N, as the one of the reference random walk. The ABC dynamics on the
complete graph (4.2) can be realized by looking at the previous chain in a colorblind
way, that is resolving only 3 out of of the NV colors.

Let Vv :={1,...,N} and By := {b C Vn : |b] = 2}. The complete graph on
N vertices is Gy := (Vn,By) and Sy := {0 : Vi — Vy,bijective} is the set of
permutations on Vy. For any o € Sy, {z,y} € By define o1"¥} € Sy as the
permutation obtained from o applying the transposition which exchanges = and y

oly) ifz==x
U{m’y}(z) =qo(x) ifz=y

o(z) otherwise.

Let En : Sy — R be the energy function and 8 > 0 the inverse of temperature,
we define canonical measure

mn(o) = WBN(U) = Z—lNexp{—BEN(U)}.

where Zn = Zg is the partition function. For any f: Sy — R, a € By define
f%o) := f(6"), Vaof := f* — f and the Markov generator

GRf=GnF =) caVaf. (A1)

a€EBN

The transition rates are given by
1
cp = c’f’N = Nexp{ — g VbEN} (A.2)

and satisfy the detailed balance condition with respect to the probability 7'V, i.e.,

WN(cag) = WN(cag”’). (A.3)
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The operator Gy is self-adjoint in L?(7x) and the corresponding Dirichlet form
is
1
EN(S. ) = ER(F.0) = —an(fGnf) = 5 D anlea (Vaf)?].
a€EBN
We next show that for 8 small enough the spectral gap of QBN is strictly positive
uniformly in N.
Theorem A.1. Assume supy supy ||VyEn||leo < +00. Then there exist o, ko > 0
such that for any B € [0, Bo] and any N
1

ko < gap (G1) < 7 (A4)

Proof of the upper bound. In view of the variational characterization (2.7) of the
spectral gap Gy, it is enough to exhibit a suitable test function. We next show that
by choosing f(o) = 1;13(0(1)), the upper bound in (A.4) follows.

The variance of f is clearly mn(f, f) = nn[o(1) = 1](1 — wn[o(1) = 1]). To
compute the Dirichlet form, we first observe that

(Vofn)*(0) = 1113 (0) [113 (0 (1) + L1y (o (y))].
Whence, in view of (A.2),

= % ZW’V (C{Ly} [1{1}(0(1)) + 1{1}(0(1/))])

< exp {5 sup [ VaBwlc} mvlo(1) = 11

Therefore
oo exp{Zsupy, IV Enlo }
(Gn) 1—7nn[o(1) =1]

It remains to show that the denominator above is bounded away from 0. We claim
that

gap

1 1
—ex — Bsup||[VpEN]|leo ¢ < Tnlo(1 1] < —e
p{ - Boup VBl } <mvlo() =1 < 5

sup |VoEnllao ¢- (A5
~ xp {55up V1Bl | (4.5)

Indeed, fix k € Vy and observe

nlo(1) zm )1y (o (1)) = % S an (o 1y (o(k))
,,{1 k}
Z N ) )1{]}( (k‘)) =TN [eiﬁv{lvk}ENl{]}((T(k?))}.

This yields

mn[o(k) = 1]
mnlo(1) = 1]

Summing over k € Vi and observing that >, my[o(k) =1] =1 we get (A.5). O

exp{ fﬂsupHVbENHoo} < < exp {BqupHVbENHOO}
N.b
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Proof of the lower bound. An application of spectral theorem shows, see e.g., [3],
that gap(Gn) is the largest constant k such that for any f: Sy — R:

wn (O D)) > KE(f £ = 5 3w [eal V)], (A.6)

a€BN

To prove the lower bound in (A.4) it is therefore enough there exist a constant
k independent of N such that (A.6) holds. We proceed in two steps. We first show
that

™ [(Gn £)?]
1 l(ly
> Y anlaanVafVafl+5 D an|ean(1- L)VafVif]. (AT)
a,bE BN a,bE BN Co
anb#0 anb=0

Then we prove there exists a constant k independent of N such that

g Z WN[Ca(vaf)Z]

a€BN
a A8
< Y nleava il 5 Y anfen (1 )V A
a,bE BN a,bEBn Co
anb#0 anb=>0

While the inequality (A.7) can be obtained as a consequence of Corollary 2.3 and
Proposition 2.4 in [3], we next give a direct proof in the present setting. Observe
that

N [(Gnf)?] = Z TN [cathVafVif]

a,bEBn (A 9)
= Y wn[catsVafVif] + D wn[catsVafVif]. .
anb#0 anb=0
We rewrite last term as
> an[cacsVafVif]
anb=0
1 cd 1 c?
=5 ar%;@ TN [cacb (1 - ;’;)vafv,,f] + 3 a%;(bmv [Cacb (1 + i)vafvbf] )

We claim that last term on the right hand side above is positive. This statement
together with (A.9) trivially implies (A.7). To prove the previous claim, fix a,b €
By, with anb = () and observe that in this case (V. f)*(Vpf)* = =V fVyf® The
detailed balance condition (A.3) now implies

™ [Cn,(fb(l + %)Vn,fvbf] =7N [Cn, (Cb + Cg)vafvbf]
=7 [calc) + ) (Vo) (Vo )] = —mncalch + ) Vaf Vo f"].
Then

N [caa; (1 + Z—;’;)Vabef} = %:N [c“ (c” + Cg) (VafVof - V“fv”fn’)] (A.10)
= —g v [ca(er + ) VafVaVif],
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Furthermore, by direct computation,
calcs +¢f) =cp(ca +cb). (A.11)
By using (A.10), (A.11), detailed balance (A.3), and (A.11) again we obtain

™ [Cacb (1 + Z—E)Vn,fvbf}

= —%TFN [Ca (Cb + cZ’)VafVabe] = —%TFN [Cb (Ca +c )V fV be]

= %WN[(’,,((’,,+(‘ )V fV be] = 171'1\;[(=,,((‘;,+(’,))V fV be]

Averaging the previous equation and (A.10) we obtain
o 1
m [cacn (14 L) Vafuf| = 3w [ealen + ) (Vaf* = Vaf) VaVif]
Cp 4

= i’n’N [(Ea (Cb + (’Z)(vavbf)2] > 0

which concludes the proof of the claim.

In order to prove (A.8) we observe that

E TN [Cacbvafvbf] = E TN [Ci(vaf)Q] + E TN [Cacbvafvbf]. (A.IQ)
anb#£0 a anb£0
a#b

Furthermore, given a,b € By such that aNb # § and a # b there exists a unique
triangle T such that a,b € T. A triangle here is an element of

Tn == {{a,b,c} C By : |{a,b.c}|=3,anb#B,anc#0,bnc#0}.

Therefore

Z TN [catsVa Vb f] = Z Z TN [cacsVafVaf].

anb#0 TeTn a,beT
a#b a#h
Note that
> > an(cacsVafVif]
TeTN a,beT
a#b
= > > an[catsVafVof] = > D an[cA(V
TeETN a,beT TeTn aceT
= > > an[cacsVafVof] - ZHTGTN T3 a}| 7y [ea(Vaf)’]
TeTN a,beT
= Z Z TN [cacsVafVif] — (N —2) Zﬂ'N
TeTN a,beT

By plugging this result in (A.12) we get

> wnlcatsVafVof] = D Y anlcacsVafVif] - Zﬂ'N

anb#0 TeTn a,beT

For any T € Ty define the set of vertexes of T as T := U,er a- Then

Z N [c,,,cbv,,,fvbf] = 7TN[ Z TN [cacbv,,,fvbf ‘ o(z): 2 ¢ T]} (A.13)

a,beT a,beT
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We prove in Lemma A.2 below that there exists a constant C4(8) > 0 satisfying
limg o C1(B) = 1 such that for any N > 3, any f: Sy = R, and any 0 € Sy

NS wnleaarVarvif o) 2 ¢ ) > P S [ (9,02 o) 2 ¢ T,

a,beT aceT

By plugging this bound into (A.13), we deduce
> wn[eatsVaf Vi f]

anb#0
> 30 S S eV - (N - 3) DN
TeTn a€T
(A.14)
3C N -2
_ 3600 ); N ea (Vo f)? »Y el

> (- o ||ca||oo) 3 mvlen (Vs

In view of (A.2),
1 g
sup||ca||oo < NEXP{asA?PHVaENHoo}- (A.15)

Recalling the hypotheses supy sup;, ||Vo En oo < 400, from (A.14) we then deduce
there exists a constant C(f) > 0 satisfying limg g C2(3) = 1 such that

S o leenVafuf] > S Sy fen(va ). (A.16)

anb#0 a

To conclude the proof of (A.8) we show that the second term on its right hand
side is, for § small enough, of order 3. By Schwarz inequality and (A.11)

™ [Ca,cb(l - Z_E)v"'fvbf” < % Z TN [Ca,cb 1- %‘ IVafl \beq

E

a&?ﬁ;ffj] anb=
= 411{ Z TN [cacb‘l - i—z‘(Vaf)z} + Z TN [cacb‘l _ ﬂ‘(vbf)z]}

anb=0 b anb=0 Ch
- % 2; [(‘a(‘b ‘(V f) } ;zﬂ:m\z [C”’(v”’f)Qb%;_@ (c’,; }

The hypotheses of the theorem implies supy sup, ; [|[VaViEn|loe < +00. Re-
calling (A.15), for  small enough we then have

C(l,
Z cb‘l—(‘—b‘gsupﬂcaﬂm Z |1 e 2 Ve VhEN|
b:bna=0 b “ b:bna=0
<Bsuplealloe D |[VaViEn| < Csf
@ b:bNa=0

for some constant C5 independent of N. Therefore

% Z WN[CaCb(l——)v bef > —%Z’NN Ca V f
a,beE By
anb=0
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which together with (A.16) completes the proof of (A.8). O

Lemma A.2. Assume supy sup, ||ViEn|looc < +00. Then there exists a constant
C1(B) satisfying limgo C1 () = 1 such that for any N > 3, any T € Ty, any
f: Sy =R, and any 0 € Sy

N ~ _ Ci(B) 2 =
E Z TN [Cn,cbvn,fvbf | (T(Z) ‘2 € T] > 9 Z TN [Ca(vnf) |0(2) ‘2 g T]

a,beT aeT

where we recall T := Upera-

Proof. The argument relies on two ingredients. The first is that, given a triangle
T € Ty, the conditional probability WBN[ |o(z) :¢ T] is, for 8 small enough, close
to the uniform measure. Namely, there exist C4(f) satisfying limgjo Cs(f) = 1
independent of N, T € Ty, and o € Sy, such that

1 <ﬂ'§,[ﬂ|0(2):2€f]
Ca(B) = 7% [o |o(z): 2 ¢ JN“] -
The second ingredient is that the spectral gap of the interchange process on a graph
with 3 vertices is equal to 1. This process can be realized as the random walk on

S3 in which the allowed transition occur, with transition probability 1/3, along
transpositions. This statement readily implies

ﬂ'[,)v[f,f ‘ o(z):2¢ T]] < é ZF[])\[[(vaf)2 ‘ o(z):z ng] (A.18)

acT

Ca(B). (A.17)

We first show how the lemma follows from these ingredients. Since %[ | o(2) :
z ¢ T is the uniform measure on a set of cardinality 6, in view of (A.18)

o f|o(z) 2 €T < Ca(B)?7%[f, flo(z): 2 ¢ T]

2 -
< GO S (V) o(2) 2 2 £ T
a€T
< 504(6)3]\[658@1\7@ IVa Enlloo %{;Wﬁr [ca(Vaf)?|0(2) 12 ¢ T]
Whence
> wR[catsVafVof |o(2) 1 2 ¢ T]
a,beT

3 i 1 5 —
> CiAF N exp { — E%IEHV{;ENHOO} igﬂw [ca(Vaf)?|o(2) 1 2 ¢ T]

which, for a suitable C(f3), is the thesis of the lemma.
The estimate (A.17) follows from assumption and standard arguments. Firstly
note that for any a € T

ﬂ',% [0 |o(2) : 2 €~f]
n%[a|a(z) 12 ¢ T]

= exp{ -~ BVa.En(0)},

Therefore, by observing that any two given permutations in S3 can be connected
at most by two transpositions, a telescopic argument yields that for any o,0’' € Sy



20 L. BERTINI, N. CANCRINI, AND G. POSTA

such that o(z) = o'(z) for z ¢ T
Bt 4t . T
exp{ — 23 sup ||VQEN||OO} < Wj\;[g ‘U (2) :2 ¢?] < exp {26 sup||VaEN||oo}.
N,a Ty [0 ‘ o(2):2¢T| N,
By averaging the above inequality over ¢’ the bound (A.17) follows.

The spectral gap of the interchange process on {1,2,3} can be obtained from
the general results in [6, 9]. An elementary proof can however also be obtained
by writing out the 6 x 6 matrix corresponding to the generator and computing its
eigenvalues, as in the example at page 50 of [10]. We order the 6 permutations of
Ss as (};g), (};g) (;g?) (;?g), (;?g) and (;;?) With this choice, the generator of
the interchange process is written as the matrix

SLoE 0y 0
-1 L 0 1 0
o 1+ -1 +£ 0 1
0 L -1 1 0
o 1+ 0 + -1 1
0 £ 0 1 -1

whose eigenvalues are 0 (simple), —1 (with multiplicity four), and —2 (simple). O

We finally show, as a corollary of the previous result, that the spectral gap of
the ABC dynamics on the complete graph is of order one.

Proof of Lemma 4.1. Fix N multiple of three and let xn: Sy — Qn be the pro-
jection defined by
A ifo(z) =1 mod 3,
xno (z) =4 B ifo(r) =2 mod 3,
C ifo(x)=3 mod 3.
Namely, xn resolves only three out of the original N colors. Recalling (2.5), let

En: Sy — R be defined by En := Hy o xn. For this choice the ABC dynamics
with long jumps , i.e. the process with the generator (4.2), can be realized as the

X n~n-projection of the process with generator (A.1). In particular, 1/]% = w% o XR,I

and gap (L'?v) > gap (gﬁ) Since Hy oy satisfies the hypotheses in Theorem A.1,

the statement follows. O
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