
ON THE DYNAMICAL BEHAVIOR OF THE ABC MODELLORENZO BERTINI, NICOLETTA CANCRINI, AND GUSTAVO POSTAAbstrat. We onsider the ABC dynamis, with equal density of the threespeies, on the disrete ring with N sites. In this ase, the proess is reversiblewith respet to a Gibbs measure with a mean �eld interation that undergoes aseond order phase transition. We analyze the relaxation time of the dynamisand show that at high temperature it grows at most as N2while it grows atleast as N3at low temperature.1. IntrodutionThe ABC model has been introdued by Evans et al. [12, 13℄, it exhibits thepeuliar feature of being a one-dimensional stohasti onservative dynamis withloal jump rates whose invariant measure undergoes a phase transition. The ABCmodel is a system onsisting of three speies of partiles, traditionally labeled A,B, C, on a disrete ring with N sites. The system evolves by nearest neighborspartiles exhanges with the following asymmetri rates: AB ! BA, BC ! CB,CA ! AC with rate q 2 (0; 1℄ and BA ! AB, CB ! BC, AC ! CA withrate 1=q. In partiular, the total numbers of partiles N�, � 2 fA;B;Cg, of eahspeies are onserved and satisfy NA+NB+NC = N . Observe that the ase q = 1orresponds to a three state version of the symmetri simple exlusion proess.When q 2 (0; 1), Evans et al. [12, 13℄ argued that in the thermodynami limitN ! 1 with N�=N ! r� the system segregates into pure A, B, and C regions,with translationally invariant distribution of the phase boundaries. In the equaldensity ase NA = NB = NC = N=3 the dynamis is reversible and its invariantmeasure an be expliitly omputed.As disussed by Cliny et al. [7℄, the natural saling to investigate the asymp-toti behavior of the ABC model is the weakly asymmetri regime q = exp�� �2N 	,where the parameter � 2 [0;+1) plays the role of an inverse temperature. Withthis hoie the reversible measure of the equal densities ase rA = rB = rC = 1=3beomes a anonial Gibbs measure, that we denote by ��N , with a mean �eld Hamil-tonian. The measure ��N undergoes a seond order phase transition at � = 2�p3 �10:88. This phase transition has been further analyzed in [1℄ and it is desribedin terms of the free energy funtional F� assoiated to ��N . The funtional F� is(apart an additive onstant) the large deviations rate funtion for ��N in the salinglimit in whih the disrete ring with N sites is embedded in the one-dimensionaltorus and the partiles on�guration is desribed in terms of the orresponding den-sities pro�les(�A; �B ; �C). In this limit, F�(�A; �B ; �C) thus gives the asymptotiprobability of observing the density pro�le (�A; �B; �C). In partiular, the mini-mizer of F� desribes the typial behavior of the system as N ! 1. The phase2000 Mathematis Subjet Classi�ation. Primary 60K35, 82C20; Seondary 82C22, 60B15.Key words and phrases. ABC model, Spetral gap, Mean �eld Gibbs measures, Interhangeproess.



2 L. BERTINI, N. CANCRINI, AND G. POSTAtransition of ��N orresponds to the following behavior of the free energy funtional.For � 2 [0; �℄ the minimum of F� is uniquely ahieved at the homogeneous pro�le(1=3; 1=3; 1=3). For � > � the funtional F� has instead a one-parameter familyof minimizers whih desribe the phase segregation. As shown in [2℄, this phasetransition an also be deteted via the two-point orrelation funtions of ��N whihbeome singular when the system approahes the transition.For unequal densities the invariant measure of the ABC dynamis on a ring isnot reversible, that is the stationary state is no longer an equilibrium state, andannot be omputed expliitly. As disussed in [2, 7℄, a stability analysis of thehomogeneous density pro�le shows that for � > 2��1 � 2(r2A + r2B + r2C)��1=2 itbeomes unstable. As stated there, one however expets that the phase transition,at least for partiular values of the parameters rA, rB , rC , beomes of the �rstorder. Again in [2, 7℄, the asymptoti of the two-point orrelation funtions isomputed in the homogeneous phase and the large deviation rate funtion F� hasbeen alulated up to order �2. When the ABC dynamis is onsidered on an openinterval with reeting endpoints, the orresponding invariant measure is reversiblefor all values of the densities [1℄. In partiular, it has the same Gibbs form as theone in the ring for the equal density ase.Main purpose of the present paper is the disussion of the phase transition ofthe ABC model on a ring with N sites from a dynamial viewpoint. More pre-isely, we fous on the asymptoti behavior, as N diverges, of the relaxation time��N whih measures the time the dynamis needs to reah the stationary probabil-ity. Our analysis is restrited to the equal density ase rA = rB = rC = 1=3 inwhih the invariant measure ��N is expliitly known and reversible. As usual, therelaxation time ��N is de�ned as the inverse of the spetral gap of the generator L�Nof the underlying Markov proess. Observe that, in view of the reversibility, L�Nis selfadjoint in L2(d��N ). Our main result implies that the asymptoti behavior ofthe relaxation time ��N reets the phase transition of the orresponding stationarymeasure ��N . We indeed show that for � small enough ��N is at most of order N2while for � > � it is at least of order N3.The di�usive behavior ��N � N2 is harateristi of onservative dynamis inthe high temperature regime, the typial example being the Kawasaki dynamisfor the Ising model. Indeed, this has been proven by di�erent tehniques in severalontexts, see e.g. [3, 5, 17℄. We here follow the approah introdued in [3℄ whihis based upon a perturbative argument in � and an be diretly applied to thease of mean �eld interations. On the other hand, the behavior ��N � N3 in thesuperritial regime is harateristi of the system under onsideration, we brieydisuss the heuristi piture. As stated in [1, 2℄, at time O(N2) the densities pro�lesof the three speies (�A; �B ; �C) evolve aording to the hydrodynami equations�t�A + �r��A(�C � �B)� = ��A�t�B + �r��B(�A � �C)� = ��B�t�C + �r��C(�B � �A)� = ��C (1.1)where r and � denote respetively the gradient and Laplaian on the marosopitorus. As follows from mirosopi reversibility, the evolution (1.1) an be obtainedas a suitable gradient ow of the free energy F�. In partiular, while the homoge-neous pro�le (1=3; 1=3; 1=3) is the unique, globally attrative, stationary solution



DYNAMICAL BEHAVIOR OF THE ABC MODEL 3to (1.1) for � < �, the (one parameter family) minimizers of F� are stationarysolutions to (1.1) when � > �. Aording to the utuating hydrodynami theory,we argue that, for large but �nite N , the hydrodynami equation (1.1) gives anaurate desription of the system provided one adds in (1.1) a suitable noise termO�1=pN�. At time O(N2) the ABC model then behaves as a Brownian motionon the set of minimizers of F� with di�usion oeÆient proportional to 1=N . Thetime to thermalize is thus O(N3).2. Notation and resultsThe ABC proess. Given a positive integer N , we let ZN = f0; � � � ; N � 1gbe the ring of the integers modulo N . The on�guration spae with N sites ise
N := fA;B;CgZN , elements of e
N are denoted by �, for x 2 ZN the speies ofthe partile at the site x is thus �(x) 2 fA;B;Cg. We also let �� : e
N ! f0; 1gZN ,� 2 fA;B;Cg, be the � oupation numbers namely, [��(�)℄(x) := 1f�g(�(x)) inwhih 1E stands for the indiator funtion of the set E. Note that for eah x 2 ZNwe have �A(x) + �B(x) + �C(x) = 1. Whereas � = (�A; �B ; �C) is a funtion of theon�guration � we shall omit to write expliitly the dependene on �.Given x 2 ZN and � 2 e
N we denote by �x;x+1 the on�guration obtained from� by exhanging the partiles at the sites x and x+ 1, i.e.��x;x+1� (y) :=8><>:�(x + 1) if y = x;�(x) if y = x+ 1;�(y) otherwise: (2.1)The ABC proess is the Markov hain on the state spae e
N whose generatorLN = L�N ats on funtions f : e
N ! R asL�Nf(�) = Xx2ZN �x(�)�f(�x;x+1)� f(�)�: (2.2)For � � 0, the jump rates �x = �x;N are given by�x;N(�) := (expf� �2N 	 if (�(x); �(x + 1)) 2 f(A;C); (C;B); (B;A)gexpf �2N 	 otherwise. (2.3)As follows from (2.2), the ABC dynamis onserves the total number of partilesof eah speies. Therefore, given three positive integers N�, � 2 fA;B;Cg suhthat NA + NB + NC = N , we have a well de�ned proess on the linear manifoldPx2ZN ��(x) = N�, � 2 fA;B;Cg. As straightforward to hek, the ABC dy-namis is irreduible when restrited to suh manifold; hene the proess is ergodiand admits a unique invariant measure. In the ase � = 0 this measure is theuniform probability. On the other hand, when � > 0 the expliit expression of theinvariant measure is in general not known. However, as we next disuss, in thease NA = NB = NC the ABC proess satis�es the detailed balane ondition withrespet to a mean �eld Gibbs measure [12, 13℄.Invariant measure in the equal densities ase. We assume thatN is a multipleof 3 and we restrit to the ase in whih NA = NB = NC . We shall then onsider



4 L. BERTINI, N. CANCRINI, AND G. POSTAthe ABC proess on
N := n� 2 e
N : Xx2ZN �A(x) = Xx2ZN �B(x) = Xx2ZN �C(x) = N3 o: (2.4)The Hamiltonian HN : 
N ! R is de�ned byHN (�) := 1N2 X0�x<y�N�1 ��A(x)�C (y) + �B(x)�A(y) + �C(x)�B(y)�: (2.5)In view of the equal densities onstraint, an elementary omputation shows thatthe right hand side above does not depend on the hoie of the origin. Equivalently,HN is a translation invariant funtion on 
N . Given � � 0, we denote by ��N theprobability measure on 
N de�ned by��N (�) := 1Z�N exp�� �NHN (�)	 (2.6)where Z�N , the partition funtion, is the proper normalization onstant. In thesequel, given a funtion f on 
N we denote respetively by ��N (f) and ��N (f; f) theexpetation and variane of f with respet to ��N .As observed in [12, 13℄, the ABC proess is reversible with respet to ��N . Inother worlds, the generator L�N in (2.2) is a self-adjoint operator on L2(
N ; ��N )and in partiular ��N is the invariant measure.Asymptoti of the spetral gap. The spetrum of L�N in (2.2), onsidered asa self-adjoint operator on L2(
N ; ��N ), is a �nite subset of the negative real axesand, in view of the ergodiity of the proess, zero is a simple eigenvalue of L�N . Thespetral gap of L�N , denoted by gap(L�N ), is the absolute value of the seond largesteigenvalue. The spetral gap an be haraterized in variational terms as follows:gap(L�N ) is largest onstant � � 0 suh that the Poinar�e inequality� ��N (f; f) � ���N�fL�Nf� (2.7)holds for any f 2 L2(d��N ). The spetral gap ontrols the speed of onvergene toequilibrium of the assoiated proess in the following sense. For eah f 2 L2(d��N ),��N�etL�Nf ; etL�Nf� � e�2 gap(L�N ) t ��N (f; f):Our main result onerns the asymptoti behavior of gap(L�N ) as N diverges. Inpartiular we show this behavior di�ers in the subritial and superritial regimes.Theorem 2.1.(i) There exist onstants �0; C0 > 0 suh that for any � 2 [0; �0℄ and any Ngap(L�N ) � C0 1N2 �(ii) Let � := 2�p3. For any � > � there exists a onstant C(�) > 0 suh thatfor any N gap(L�N) � C(�) 1N3 �



DYNAMICAL BEHAVIOR OF THE ABC MODEL 5The above statements raise two natural issues. As disussed in the Introdu-tion, the 1=N2 asymptoti of the spetral gap is a ommon feature of onservativestohasti dynamis in the high temperature regime. One then expets that thisbehavior holds for any � 2 [0; �). The methods used in the present paper arebased on a perturbation argument around � = 0 and their extension to the thewhole subritial regime does not appear feasible. In priniple, the tehniques de-veloped in [5, 17℄, whih require as an input a strong spatial mixing of the stationaryprobability, an be applied up to the ritial temperature. Those tehniques havebeen however developed for short range interations and they do not seem, at leastdiretly, appliable to mean �eld Hamiltonians.The seond, somehow more fundamental, issue is whether 1=N3 is the right sal-ing of the spetral gap in the superritial regime. We mention that this behavioris also the one expeted for the Kawasaki dynamis for the low temperature twodimensional Ising model with plus boundary ondition (pure state) [4℄. Indeed,in this ase the heuristi piture presented in the Introdution orresponds to thedi�usion of the Wul� bubble. While the statement (ii) in Theorem 2.1 is provenby exhibiting a suitable slowly varying test funtion, a proof of a mathing lowerbound appears onsiderably harder. The ABC model is however muh simplerthen short range models and it therefore might be a useful starting point towardthe understanding of onservative dynamis in the phase transition region.We next disuss the behavior of the spetral gap of the ABC proess on aninterval with zero ux ondition at the endpoints. As shown in [1℄, in suh aase the proess is reversible with respet to a mean �eld Gibbs probability for allvalues of the densities. In the high temperature regime � � 1, the methods heredeveloped an be diretly applied to get the di�usive behavior 1=N2. As far the lowtemperature regime is onerned, the ase of equal densities is the same as the oneon the ring and we an therefore onlude that the lower bound 1=N3 holds also inthis setting. On the other hand, as proven in [1℄, in the unequal densities ase thefree energy has always a unique minimizer, it seems reasonable to expet that onan interval with unequal densities the spetral gap of the ABC proess behaves as1=N2 for all values of �.3. Asymptoti of the Gibbs measureThe upper bound on the spetral gap in the superritial regime requires the lawof large numbers for the empirial density with respet to the Gibbs measure ��N .This result is proven by ombining the large deviations priniple for ��N with theanalysis of the minimizers of the free energy in [1℄. As ��N is a Gibbs measure witha mean �eld interation, the assoiated large deviations priniple an be proven bystandard tools. As the spei� appliation to the ABC model has not however beendetailed in the literature, we present here the whole argument.Empirial density. We let T := R=Z be the one-dimensional torus of side lengthone; the oordinate onT is denoted by r 2 [0; 1). The inner produt in L2(T; dr;R3)is denoted by h�; �i. We set fM := L1�T; dr; [0; 1℄3� and denote by � = (�A; �B ; �C)its elements. We onsider fM endowed with the weak* topology. Namely, a sequenef�ng onverges to � in M i� h�n; �i ! h�; �i for any funtion � 2 L1(T; dr;R3),equivalently for any smooth funtion � 2 C1(T;R3). Note that fM is a ompatPolish spae, i.e. separable, metrizable, and omplete.



6 L. BERTINI, N. CANCRINI, AND G. POSTAWe introdueM := n� 2 fM : �A + �B + �C = 1 ; Z 10 dr ��(r) = 13 ; � 2 fA;B;Cgo (3.1)notiing it is a losed subset of fM that we onsider equipped with the relativetopology and the assoiated Borel �-algebra. The set of Borel probability measureson M, denoted by P(M), is endowed with the topology indued by the weak on-vergene of probability measures; namely, Pn ! P i� for eah ontinuous funtionF :M! R we have R dPn F ! R dP F . Note that also P(M) is a ompat Polishspae.We de�ne the empirial density as the map �N : 
N !M given by�N (�) (r) := Xx2ZN �(x)1[x=N;(x+1)=N)(r) ; r 2 T; (3.2)reall � = �(�) is the map de�ned at the beginning of Setion 2. We set P�N :=��N Æ��1N namely, P�N is the law of �N when � is distributed aording to ��N . Notethat fP�Ng is a sequene in P(M).Large deviations priniple. The entropy is the onvex lower semiontinuousfuntional S : M! [0;+1) de�ned byS(�) := Z 10 dr h�A(r) log �A(r)1=3 + �B(r) log �B(r)1=3 + �C(r) log �C(r)1=3 i (3.3)and the energy is the ontinuous funtional H : M! R de�ned byH(�) := Z 10 dr Z 1r dr0 h�A(r)�C(r0) + �B(r)�A(r0) + �C(r)�B(r0)i: (3.4)For � � 0 the free energy is �nally the funtional F� : M! R de�ned byF� := S + �H: (3.5)Theorem 3.1. The sequene fP�Ng satis�es a large deviation priniple with ratefuntion I� = F� � inf F�. Namely, for eah losed set C � M and eah open setO �M limN!1 1N logP�N�C� � � inf�2C I�(�)limN!1 1N logP�N�O� � � inf�2O I�(�):Sine the beautiful Lanford's letures [16℄, large deviations priniples for Gibbsmeasures has beome a basi topi in equilibrium statistial mehanis, see in par-tiular [11℄ for the ase of mean �eld interations. On the other hand, the urrentsetting is not ompletely standard as we are looking to large deviations of the em-pirial density for anonial Gibbs measures. We therefore give a detailed proof ofthe above result. The �rst step is the large deviations priniple when � = 0; reallthat P0N = �0N Æ ��1N is the law of �N when � is distributed aording to �0N whihis the uniform probability on 
N .



DYNAMICAL BEHAVIOR OF THE ABC MODEL 7Lemma 3.2. The sequene fP0Ng satis�es a large deviation priniple with ratefuntion S. Namely, for eah losed set C �M and eah open set O �MlimN!1 1N logP0N�C� � � inf�2C S(�) (3.6)limN!1 1N logP0N�O� � � inf�2OS(�): (3.7)Proof. The proof is split is few steps.Step 1. SetA := n� 2 C1(T;R3) : Z 10 dr e��(r)e�A(r) + e�B(r) + e�C(r) = 13 ; � 2 fA;B;Cgo (3.8)and let �: A ! R be the funtional�(�) := Z 10 dr log h13�e�A(r) + e�B(r) + e�C (r)�i: (3.9)We shall prove that for eah � 2 AlimN!1 1N log Z dP0N(�) exp�Nh�; �i	 = �(�): (3.10)We denote by �N (x) the average of � in the interval �x=N; (x + 1)=N�,�N� (x) := N Z x+1NxN dr ��(r) ; x 2 ZN ; � 2 fA;B;Cg :From the very de�nition of the measure P0N ,Z dP0N (�) exp�Nh�; �i	 = X�2
N �0N (�) exp �Nh�; �N (�)i	= X�2
N �0N (�) Yx2ZN expn X�2fA;B;Cg�N� (x)��(x)o (3.11)We denote by ��N the produt measure on e
N = fA;B;CgZN with marginals ��N;xgiven by ��N;x(�) = e�N� (x)e�NA (x) + e�NB (x) + e�NC (x) ; � 2 fA;B;Cg:When � = 0 we drop the supersript � from the notation so that �N is the uniformmeasure on e
N .Set �N (�) := Qx2ZN �e�NA (x) + e�NB (x) + e�NC (x)�. As �0N = �N (� j
N ), from(3.11) we get Z dP0N (�) exp�Nh�; �i	 = �N (�)3N ��N (
N )�N (
N ) :Sine �N is the uniform probability on e
N , limN 1N log�N (
N ) = 0. We laim thatalso limN 1N log��N (
N ) = 0. The proof of this step is then ompleted by observingthat 1N log ��N (�)=3N ℄! �(�).To prove the laim, we write��N�
N� = ��N� 1N Xx2ZN ��(x) = 13 ; � 2 fA;B;Cg�:



8 L. BERTINI, N. CANCRINI, AND G. POSTAIn view of the smoothness of � and the onstraints in (3.8), for eah � 2 fA;B;Cg1N Xx2ZN ��N���(x)� = 1N Xx2ZN e�N� (x)e�NA (x) + e�NB (x) + e�NC (x)= Z 10 dr e��(r)e�A(r) + e�B(r) + e�C(r) +O� 1N � = 13 +O� 1N �The laim now follows from an appliation of the loal entral limit theorem fortriangular arrays, see e.g. [18, Ch. VII℄.Step 2. We here prove the large deviations upper bound (3.6). Given � 2 A letP0;�N be the probability on M de�ned bydP0;�N := exp�N�h�; �i � �N(�)�	 dP0N (3.12)where �N(�) = 1N log Z dP0N (�) eNh�;�iGiven a measurable subset B of M, we then haveP0N (B) = ZBdP0;�N dP0NdP0;�N � sup�2B exp��N�h�; �i � �N (�)�	In view of Step 1, �N(�)! �(�) as N !1. We thus getlimN!1 1N logP0N (B) � � inf�2B �h�; �i � �(�)	 :By optimizing with respet to � 2 A and using a mini-max lemma, see e.g.Lemmata 3.2 and 3.3 in [15, App. 2℄, we dedue that for eah ompat K �MlimN!1 1N logP0N (K) � � inf�2K sup�2A �h�; �i � �(�)	 = � inf�2KS(�):By the ompatness of M this onludes the proof of the upper bound.Step 3. Given two probability measures P and Q, we denote by Ent(QjP ) =R dQ log[dQ=dP ℄ the relative entropy of Q with respet to P . A simple omputationbased on Jensen inequality, see e.g. [14, Prop. 4.1℄, shows that the large deviationslower bound (3.7) an be dedued from the following statement. For eah � 2 Mthere exists a sequene of probability measures fQ�Ng suh thatQ�N ! Æ� and limN!1 1N Ent�Q�N ��P0N� � S(�) (3.13)We here onstrut the sequene fQ�Ng when � is ontinuously di�erentiable. Forsuh a � let � = �(�) be suh that�� = e��e�A + e�B + e�C ; � 2 fA;B;Cg:Observe that � 2 A sine � is ontinuously di�erentiable. Realling (3.12), we laimthat fP0;�(�)N g ful�ls the ondition (3.13). The law of large numbers P0;�(�)N ! Æ�an be indeed heked by the same omputations of Step 1. Furthermore, in viewof suh law of large numbers and Step 1,limN!1 1N Ent�P0;�(�)N ��P0N� = h�; �i � �(�) = S(�)where the last equality follows from the hoie of �.



DYNAMICAL BEHAVIOR OF THE ABC MODEL 9Step 4. The proof of the lower bound an be onluded by an approximationargument. Let MÆ be the subset of M given by the ontinuously di�erentiablepro�les. The ondition that a large deviation rate funtion is lower semiontinuousis not restritive. More preisely, if a sequene of probabilities satis�es the largedeviations lower bound for some rate funtion, then the lower bound still holdswith the lower semiontinuous envelope of suh rate funtion. If we let SÆ be thefuntional equal to S on MÆ and SÆ(�) = +1 otherwise, in view of Step 3, theproof of the lower bound (3.7) is onluded if we show that the lower semiontinuousenvelope of SÆ is S. This amounts to prove thatS(�) = supO3� inf�̂2O\MÆ S(�̂)where the �rst supremum is arried over all the open neighborhoods of �. The previ-ous identity is easily proven by onsidering a sequene of ontinuously di�erentiablepro�les f�ng whih onverges to � a.e. in T. �In view of the ontinuity of the funtional H onM, the large deviations priniplefor the sequene fP�Ng is straightforward onsequene of Lemma 3.2 and Laplae-Varadhan theorem.Proof of Theorem 3.1. Realling de�nitions (2.5), (3.2) and (3.4), we laim that foreah � 2 
N HN (�) = H(�N (�)) : (3.14)It is indeed enough to notie that by writing expliitly the right hand side abovethe diagonal terms vanish sine �A(x) + �B(x) + �C(x) = 1, x 2 ZN .Reall that �0N is the uniform probability on 
N and let B be a measurablesubset ofM. From (3.14) and the de�nitions of the measures P�N and ��N , see (2.6)P�N (B) = X�2
N�N (�)2B ��N (�) = j
N jZ�N X�2
N�N (�)2B �0N (�) e��NHN (�)= j
N jZ�N ZBdP0N e��NH(�N ):In partiular, by taking B =M,Z�Nj
N j = Z dP0N e��NH(�N ):Sine M is ompat and H : M ! R is ontinuous, by using Lemma 3.2 andLaplae-Varadhan theorem, see e.g. [8, Thm. 4.3.1℄, we deduelimN!1 1N log Z�Nj
N j = sup�2M�� �H(�)� S(�)	 = � inf�2MF�(�):Let C and O be respetively a losed and an open subset of M. Again fromLemma 3.2 and Laplae-Varadhan theorem, see e.g. [8, Ex. 4.3.11℄, we deduelimN!1 1N log ZCdP0N e��NH(�N ) � � inf�2CF�(�)limN!1 1N log ZOdP0N e��NH(�N ) � � inf�2OF�(�):The theorem follows readily. �



10 L. BERTINI, N. CANCRINI, AND G. POSTAMinimizers of the free energy. We here reall the results in [1℄ onerningthe minimizers of the free energy F� in (3.5) that are needed in our analysis. Asdisussed in [1℄, the Euler-Lagrange equation ÆF� = 0 an be, equivalently, writtenas the system of ordinary di�erential equation�0A = � �A(�C � �B)�0B = � �B(�A � �C)�0C = � �C(�B � �A): (3.15)Note that the above ondition is equivalent to the statement that � = (�A; �B ; �C)is a stationary solution to the hydrodynami equation (1.1).Let � := 2�p3. In [1℄ it is proven that for � 2 [0; �℄ the unique solution to(3.15) inM is the onstant solution � := � 13 ; 13 ; 13�. On the other hand, when � > �there are non trivial solutions. In partiular, there exists a unique � 2 C1�R;R3�satisfying the following onditions: (i) � solves (3.15), (ii) � is periodi with period1, (iii) � satis�es the onstraints in (3.1) and an therefore by thought as an elementinM, (iv) the enter of mass of the B speies is 1=2, i.e. 3 R 10 dr r�B(r) = 1=2. Weshall denote this solution by �� = ��;� . Note that any translation of ��;� satis�esonditions (i){(iii) above but not (iv). We emphasize that the ondition (ii) requiresthe minimal period to be one; indeed, as disussed in [1℄, when � > n� for someinteger n, there are solutions of (3.15) with period 1=n.Given s 2 T we denote by �s :M!M the translation by s, namely (�s�)(r) =�(r� s). If P is a probability on M, the orresponding translation is P Æ ��1s . Thefollowing statement is a (partial) rewriting of Theorems 4.1 and 5.2 in [1℄.Theorem 3.3.(i) If � 2 [0; �℄ then arg inf F� = ��	;namely, the unique minimizer of F� is �.(ii) If � 2 (�;+1) thenarg inf F� = ��s��;� ; s 2 T	;namely, F� has a one-parameter family of minimizers whih are obtainedby translating ��;�.Law of large numbers for the empirial density. As a orollary of the previousstatements, we here prove the law of large numbers for the sequene fP�Ng. Theorresponding limit point harges the set of minimizers of the free energy only. Inthe superritial ase we show that eah �s��;� , s 2 T, is hosen with uniformprobability.Theorem 3.4.(i) If � 2 [0; �℄ then the sequene fP�Ng onverges to Æ�.(ii) If � 2 (�;+1) then the sequene fP�Ng onverges to R 10 ds Æ�s��;� .Proof. Item (i) follows immediately from the large deviations priniple stated inTheorem 3.1 and the uniqueness of minimizers of F� stated in item (i) of Theo-rem 3.3.To prove item (ii), let # : 
N ! 
N be the mirosopi translation, i.e. #� is theon�guration de�ned by (#�)(x) = �(x � 1), x 2 ZN . As follows from de�nition



DYNAMICAL BEHAVIOR OF THE ABC MODEL 11(2.6), the probability ��N is translation invariant, i.e. ��N Æ #�1 = ��N . This impliesthat the probability P�N is invariant by disrete translations: P�N Æ ��1x=N = P�N ,x 2 ZN . By the ompatness of M, there exists a probability P 2 P(M) and asubsequene fP�Ng suh that P�N ! P . We laim that P is translation invariant.Indeed, �x a ontinuous funtion F on M and s 2 T. Observe that, in view of theompatness of M, F is uniformly ontinuous. Pik now a sequene fxN 2 ZNgsuh that xN=N ! s. The uniform ontinuity of F implies that �xN=NF onvergesuniformly to �sF . Sine R dP�N �xN=NF = R dP�N F , by taking the limit N ! 1we dedue that R dP �sF = R dP F . In view of the arbitrariness of F we onludeP Æ ��1s = P . Moreover, Theorem 3.1 and item (ii) in Theorem 3.3 imply that thesupport of P is a subset of ��s��;� ; s 2 T	 =: T . Let now � : T ! T be thebijetion de�ned by �s��;� 7! s and set � := P Æ��1. Sine P = P Æ ��1s , s 2 T, wededue that � is a translation invariant probability measure on T. As the Lebesguemeasure dr is the unique translation invariant probability measure on T we dedue�(dr) = dr. To proof is now ompleted by observing that for eah ontinuousF : M! R the previous identity imply R dP(�)F (�) = R 10 dsF (�s��). �4. Lower bound on the spetral gap in the subritial aseIn this setion we prove the �rst statement in Theorem 2.1. This result is derivedfrom an analysis of a perturbed interhange proess, that is detailed in Appendix A,and a omparison of the orresponding Dirihlet forms. This method has beenintrodued in [19℄ and applied in di�erent ontexts, see e.g. [3℄.We start by de�ning the ABC proess on the omplete graph with N verties.Given a (unoriented) bond fx; yg � ZN , x 6= y, and a funtion f : 
N ! R, weintrodue the gradient �rx;yf� (�) := f(�x;y)� f(�) (4.1)where, as in (2.1), �x;y denotes the on�guration obtained from � exhanging thepartiles in x and y. The ABC dynamis on the omplete graph is then de�ned bythe Markov generator L�Nf := Xfx;yg�ZN �x;yrx;yf (4.2)where, realling (2.5), the jump rates �x;y = �;Nx;y : 
N ! (0;+1) are given by�;Nx;y := 1N expn� �N2 rx;yHNo: (4.3)In partiular, the above rates satisfy the detailed balane with respet to the prob-ability measure ��N de�ned in (2.6). Realling (2.3) and (2.5), we also observe thatN �;Nx;x+1 = �;Nx .In Appendix A we prove that, provided � is small enough, the spetral gap ofL�N is of order one uniformly in N .Lemma 4.1. There exist reals �0; C1 2 (0;+1) suh that for any � 2 [0; �0℄ andany N � 3 gap �L�N� � 1C1 �



12 L. BERTINI, N. CANCRINI, AND G. POSTAWe denote by D�N and D�N the Dirihlet forms assoiated to the generators L�Nand L�N , respetively. That is, given f : 
N ! R,D�N(f) := ��N�f (�L�N)f� = 12 NXx=1 ��N��x �rx;x+1f�2�; (4.4)D�N (f) := ��N�f (�L�N )f� = 12 Xfx;yg�ZN ��N��x;y �rx;yf�2�: (4.5)Lemma 4.2. The inequalityD�N (f) � 2 e3�N2D�N(f)holds for any � � 0 and any funtion f : 
N ! R.Proof. Given fx; yg � ZN we let Tx;y : 
N ! 
N be the involution de�ned byTx;y� := �x;y. We use the same notation for the orresponding linear map on theset of funtions f : 
N ! R, i.e. �Tx;yf�(�) := f(Tx;y�) = f��x;y�. As it is simpleto hek, the long jump Tx;y an be deomposed in terms of nearest neighborsjumps as followsTx;y = Tx+1;x Tx+2;x+1 � � � Ty�1;y�2 Ty�1;y Ty�2;y�1 � � � Tx+1;x+2 Tx;x+1We then write the telesopi sumTx;yf � f= �Tx;x+1 � � �Ty;y�1 � � �Tx+2;x+1Tx+1;x f � Tx;x+1 � � �Ty;y�1 � � �Tx+2;x+1 f�+ �Tx;x+1 � � �Ty;y�1 � � �Tx+3;x+2Tx+2;x+1 f � Tx;x+1 � � �Ty;y�1 � � �Tx+3;x+2 f�+ � � � + �Tx;x+1 � � �Ty�2;y�1Ty;y�1 f � Tx;x+1 � � �Ty�2;y�1 f�+ � � �+ �Tx;x+1f � f�Whenerx;yf(�) =�rx;x+1f��Tx+1;x � � �Ty�1;y � � �Tx+1;x+2��+ �rx+1;x+2f��Tx+1;x � � �Ty�1;y � � �Tx+2;x+3��+ � � �+ �ry�1;yf��Tx+1;x � � �Ty�2;y�1��+ � � �+ �rx;x+1f�(�) (4.6)In view of (2.5) and (2.6), for any � 2 R+, any z 2 ZN , and any positive funtiong : 
N ! R+ ��N�Tz;z+1g� � exp�N�kHNk1	 ��N (g) = e�=N ��N (g) (4.7)By Shwarz inequality in (4.6) and using reursively the previous estimate we thenget, for 1 � x < y � N��N��rx;yf�2� � 2 [2(y � x) � 1℄ e2� y�1Xz=x ��N��rz;z+1f�2� (4.8)Indeed, in the generi term on the right hand side of (4.6) there is the omposition ofnearest neighbors exhanges Tx+k;x+k+1 whose number is at most 2(y�x)�2 � 2N .In view of (4.7) this yields the fator e2�. As the number of terms on the righthand side of (4.6) is 2(y� x)� 1 and eah bond fz; z+1g, z = x; � � � ; y� 1 is usedat most two times, the bound (4.8) follows.To onlude the proof of the lemma it is now enough to observe that the jumprates in the Dirihlet forms (4.4) and (4.5) respetively satisfy the bounds �x �



DYNAMICAL BEHAVIOR OF THE ABC MODEL 13e��=(2N) and N�x;y � e�=2. In view of (4.8) elementary omputations now yieldthe statement. �Proof of Theorem 2.1, item (i). Reall the Rayleigh-Ritz variational harateriza-tion of the spetral gap (2.7). By Lemmata (4.1) and (4.2) we then dedue thestatement with C0 = 12e�3�C1. �5. Upper bound on the spetral gap in the superritial aseWe disuss here the upper bound on the spetral gap when � > �. In view ofthe Rayleigh-Ritz variational haraterization (2.7), the proof will be ahieved byexhibiting a suitable test funtion. The naive piture is the following. When � > �and N is large, the ABC proess essentially performs a random walk on the set ofminimizers of the free energy F�, whih in the superritial ase is homeomorphi tothe one-dimensional torus. We thus hoose as test funtion the one that orrespondsto the slow mode of suh random walk and onlude the argument.Proof of Theorem 2.1, item (ii). Pik a Lipshitz funtion � : T ! R suh thatR 10 dr �(r) = 0 to be hosen later and let fN : 
N ! R be the funtionfN := 1N NXx=1 �B(x)�� xN �:By the Rayleigh-Ritz priniple,gap(L�N ) � D�N(fN ; fN )��N�fN ; fN� (5.1)where the Dirihlet form D�N has been de�ned in (4.4). We next estimate frombelow the denominator and from above the numerator.To bound the variane of fN , we �rst observe that, sine � has mean zero, wehave limN ��N�fN� = 13 R 10 dr �(r) = 0. Reall (3.1) and let F : M! R be de�nedby F (�) = Z 10 dr �B(r)�(r):The ontinuity of � implieslimN!1 sup�2
N ��fN(�) � F ��N (�)��� = 0;where the empirial density �N : 
N !M has been de�ned in (3.2). By assump-tion, � > � and therefore Theorem 3.4, item (ii) implieslimN!1 ��N�f2N� = limN!1 ��N�F (�N )2� = Z 10 ds h Z 10 dr ��;�B (r � s)�(r)i2:We an hoose � suh that the right hand side above is stritly positive. It isindeed enough to observe that, sine ��;� is not onstant, there exists a Lipshitz,mean zero, funtion � suh that R 10 dr ��;�B (r)�(r) 6= 0. For suh hoie of � wededue there exists a onstant C(�) 2 (0;+1) suh that ��N�fN ; fN� � C(�) forany N � 3.We next bound the Dirihlet form. A straightforward omputation yieldsrx;x+1fN = 1N h��x+1N �� �� xN �i ��B(x) � �B(x+ 1)�:



14 L. BERTINI, N. CANCRINI, AND G. POSTASine x � exp� �2N 	, we then getE�N(fN ; fN ) � exp� �2N 	 12N2 NXx=1 h��x+1N �� �� xN �i2:Therefore, letting C� be the Lipshitz onstant of �,limN!1N3 E�N(fN ; fN ) � 12 C2�whih onludes the proof. �Appendix A. Gap for high temperature exhange proessWe prove here a general result on the spetral gap on suitable Markov hainson the set of permutations of f1; : : : ; Ng. The jumps of this hain are obtained byrandomly hoosing a transposition. As referene proess we onsider the so-alledinterhange proess on f1; : : : ; Ng, see [6, 9℄. This proess an be realized as thesimple random walk on the graph with vertex set given by the symmetri groupSN and edges given by the olletion of transpositions. Aordingly, the refereneinvariant measure is the uniform probability on the symmetri group. We thenperturb this measure aording to the standard Gibbs formalism and onsider anassoiated reversible hain. Under general onditions on the energy, we show that{ at high enough temperature { the relaxation time of perturbed hain behaves,for large N , as the one of the referene random walk. The ABC dynamis on theomplete graph (4.2) an be realized by looking at the previous hain in a olorblindway, that is resolving only 3 out of of the N olors.Let VN := f1; : : : ; Ng and BN := fb � VN : jbj = 2g. The omplete graph onN verties is GN := (VN ; BN) and SN := f� : VN ! VN ; bijetiveg is the set ofpermutations on VN . For any � 2 SN , fx; yg 2 BN de�ne �fx;yg 2 SN as thepermutation obtained from � applying the transposition whih exhanges x and y�fx;yg(z) := 8><>:�(y) if z = x�(x) if z = y�(z) otherwise.Let EN : SN ! R be the energy funtion and � � 0 the inverse of temperature,we de�ne anonial measure�N (�) = ��N (�) := 1ZN exp f��EN (�)g :where ZN = Z�N is the partition funtion. For any f : SN ! R, a 2 BN de�nefa(�) := f(�a), raf := fa � f and the Markov generatorG�Nf = GNf := Xa2BN araf: (A.1)The transition rates are given byb = �b;N := 1N exp�� �2 rbEN	 (A.2)and satisfy the detailed balane ondition with respet to the probability �N , i.e.,�N�ag� = �N�aga�: (A.3)



DYNAMICAL BEHAVIOR OF THE ABC MODEL 15The operator GN is self-adjoint in L2(�N ) and the orresponding Dirihlet formis EN (f; f) = E�N (f; f) := ��N (fGNf) = 12 Xa2BN �N�a (raf)2�:We next show that for � small enough the spetral gap of G�N is stritly positiveuniformly in N .Theorem A.1. Assume supN supb krbENk1 < +1. Then there exist �0; k0 > 0suh that for any � 2 [0; �0℄ and any Nk0 � gap �G�N� � 1k0 : (A.4)Proof of the upper bound. In view of the variational haraterization (2.7) of thespetral gap GN , it is enough to exhibit a suitable test funtion. We next show thatby hoosing f(�) = 1f1g(�(1)), the upper bound in (A.4) follows.The variane of f is learly �N (f; f) = �N [�(1) = 1℄�1 � �N [�(1) = 1℄�. Toompute the Dirihlet form, we �rst observe that(rbfN)2(�) = 1f1;yg(b)�1f1g(�(1)) + 1f1g(�(y))�:Whene, in view of (A.2),EN (f; f) = 12Xy �N�f1;yg�1f1g(�(1)) + 1f1g(�(y))��� expn�2 supN;b krbENk1o�N [�(1) = 1℄:Therefore gap(G�N ) � expn�2 supN;b krbENk1o1� �N [�(1) = 1℄ :It remains to show that the denominator above is bounded away from 0. We laimthat1N expn� � supN;b krbENk1o � �N [�(1) = 1℄ � 1N expn� supN;b krbENk1o: (A.5)Indeed, �x k 2 VN and observe�N [�(1) = 1℄ = 1ZN X� �N (�)1f1g(�(1)) = 1ZN X� �N (�f1;kg)1f1g(�(k))= 1ZN X� �N (�)�N (�f1;kg)�N (�) 1f1g(�(k)) = �Nhe��rf1;kgEN1f1g(�(k))i:This yieldsexpn� � supN;b krbENk1o � �N [�(k) = 1℄�N [�(1) = 1℄ � exp�� supN;b krbENk1o:Summing over k 2 VN and observing that Pk �N [�(k) = 1℄ = 1 we get (A.5). �



16 L. BERTINI, N. CANCRINI, AND G. POSTAProof of the lower bound. An appliation of spetral theorem shows, see e.g., [3℄,that gap(GN ) is the largest onstant k suh that for any f : SN ! R:�N�(GNf)2� � k EN(f; f) = k2 Xa2BN �N �a(raf)2� : (A.6)To prove the lower bound in (A.4) it is therefore enough there exist a onstantk independent of N suh that (A.6) holds. We proeed in two steps. We �rst showthat�N�(GNf)2�� Xa;b2BNa\b 6=; �N�abrafrbf�+ 12 Xa;b2BNa\b=; �Nhab�1� abb �rafrbfi: (A.7)Then we prove there exists a onstant k independent of N suh thatk2 Xa2BN �N�a(raf)2�� Xa;b2BNa\b 6=; �N�abrafrbf�+ 12 Xa;b2BNa\b=; �Nhab�1� abb �rafrbfi: (A.8)While the inequality (A.7) an be obtained as a onsequene of Corollary 2.3 andProposition 2.4 in [3℄, we next give a diret proof in the present setting. Observethat �N �(GNf)2� = Xa;b2BN �N �abrafrbf�= Xa\b 6=;�N�abrafrbf�+ Xa\b=;�N �abrafrbf�: (A.9)We rewrite last term asXa\b=;�N�abrafrbf�= 12 Xa\b=;�Nhab�1� abb �rafrbfi+ 12 Xa\b=;�Nhab�1 + abb �rafrbfi:We laim that last term on the right hand side above is positive. This statementtogether with (A.9) trivially implies (A.7). To prove the previous laim, �x a; b 2BN , with a\ b = ; and observe that in this ase (raf)a(rbf)a = �rafrbfa. Thedetailed balane ondition (A.3) now implies�Nhab�1 + abb �rafrbfi = �Nha�b + ab�rafrbfi= �N�a�ab + b�(raf)a(rbf)a� = ��N�a�ab + b�rafrbfa�:Then�Nhab�1 + abb �rafrbfi = 12 �Nha�b + ab��rafrbf �rafrbfa�i= �12 �N �a�b + ab�rafrarbf�; (A.10)



DYNAMICAL BEHAVIOR OF THE ABC MODEL 17Furthermore, by diret omputation,a�b + ab� = b�a + ba�: (A.11)By using (A.10), (A.11), detailed balane (A.3), and (A.11) again we obtain�Nhab�1 + abb �rafrbfi= �12 �N�a�b + ab�rafrarbf� = �12 �N�b�a + ba�rafrarbf�= 12 �N�b�a + ba�raf brarbf� = 12 �N�a�b + ab�raf brarbf�:Averaging the previous equation and (A.10) we obtain�Nhab�1 + abb �rafrbfi = 14 �N �a�b + ab��raf b �raf�rarbf�= 14 �N �a�b + ab�(rarbf)2� � 0whih onludes the proof of the laim.In order to prove (A.8) we observe thatXa\b 6=;�N�abrafrbf� =Xa �N �2a(raf)2�+ Xa\b 6=;a6=b �N�abrafrbf�: (A.12)Furthermore, given a; b 2 BN suh that a \ b 6= ; and a 6= b there exists a uniquetriangle T suh that a; b 2 T . A triangle here is an element ofTN := �fa; b; g � BN : jfa; b; gj = 3; a \ b 6= ;; a \  6= ;; b \  6= ;	:Therefore Xa\b 6=;a6=b �N�abrafrbf� = XT2TN Xa;b2Ta6=b �N�abrafrbf�:Note thatXT2TN Xa;b2Ta6=b �N�abrafrbf�= XT2TN Xa;b2T �N�abrafrbf�� XT2TN Xa2T �N�2a(raf)2�= XT2TN Xa;b2T �N�abrafrbf��Xa ��fT 2 TN : T 3 ag���N�2a(raf)2�= XT2TN Xa;b2T �N�abrafrbf�� (N � 2)Xa �N �2a(raf)2�:By plugging this result in (A.12) we getXa\b 6=;�N �abrafrbf� = XT2TN Xa;b2T �N �abrafrbf��(N�3)Xa �N�2a(raf)2�:For any T 2 TN de�ne the set of vertexes of T as eT := Sa2T a. ThenXa;b2T �N�abrafrbf� = �Nh Xa;b2T �N �abrafrbf ���(z) : z 62 eT �i: (A.13)



18 L. BERTINI, N. CANCRINI, AND G. POSTAWe prove in Lemma A.2 below that there exists a onstant C1(�) > 0 satisfyinglim�#0 C1(�) = 1 suh that for any N � 3, any f : SN ! R, and any � 2 SNN3 Xa;b2T �N�abrafrbf ���(z) : z 62 eT � � C1(�)2 Xa2T �N�a(raf)2 ���(z) : z 62 eT �:By plugging this bound into (A.13), we dedueXa\b 6=;�N�abrafrbf�� 3C1(�)2N XT2TN Xa2T �N�a(raf)2�� (N � 3)Xa �N�2a(raf)2�= 3C1(�)(N � 2)2N Xa �N�a(raf)2�� (N � 3)Xa �N�2a(raf)2�� �3C1(�)(N � 2)2N � (N � 3) supa kak1�Xa �N�a(raf)2�: (A.14)
In view of (A.2), supa kak1 � 1N expn�2 supN;a kraENk1o: (A.15)Realling the hypotheses supN supb krbENk1 < +1, from (A.14) we then deduethere exists a onstant C2(�) > 0 satisfying lim�#0 C2(�) = 1 suh thatXa\b 6=;�N �abrafrbf� � C2(�)2 Xa �N�a(raf)2�: (A.16)To onlude the proof of (A.8) we show that the seond term on its right handside is, for � small enough, of order �. By Shwarz inequality and (A.11)���12 Xa;b2BNa\b=; �Nhab�1� abb �rafrbfi��� � 12 Xa\b=;�Nhab���1� abb ��� jraf j jrbf ji� 14n Xa\b=;�Nhab���1� abb ���(raf)2i+ Xa\b=;�Nhab���1� abb ���(rbf)2io= 12 Xa\b=;�Nhab���1� abb ���(raf)2i = 12Xa �Nha(raf)2 Xb : b\a=; b���1� abb ���i:The hypotheses of the theorem implies supN supa;b krarbENk1 < +1. Re-alling (A.15), for � small enough we then haveXb : b\a=; b���1� abb ��� � supa kak1 Xb : b\a=; ��1� e��2rarbEN ��� � supa kak1 Xb : b\a=; ��rarbEN �� � C3�for some onstant C3 independent of N . Therefore12 Xa;b2BNa\b=; �Nhab�1� abb �rafrbf� � �C3�2 Xa �N�a(raf)2�;



DYNAMICAL BEHAVIOR OF THE ABC MODEL 19whih together with (A.16) ompletes the proof of (A.8). �Lemma A.2. Assume supN supb krbENk1 < +1. Then there exists a onstantC1(�) satisfying lim�#0C1(�) = 1 suh that for any N � 3, any T 2 TN , anyf : SN ! R, and any � 2 SNN3 Xa;b2T �N�abrafrbf ���(z) : z 62 eT � � C1(�)2 Xa2T �N �a(raf)2 ���(z) : z 62 eT �where we reall eT := Sa2T a.Proof. The argument relies on two ingredients. The �rst is that, given a triangleT 2 TN , the onditional probability ��N [� j�(z) : 62 eT ℄ is, for � small enough, loseto the uniform measure. Namely, there exist C4(�) satisfying lim�#0 C4(�) = 1independent of N , T 2 TN , and � 2 SN , suh that1C4(�) � ��N�� ���(z) : z 62 eT ��0N�� ���(z) : z 62 eT � � C4(�): (A.17)The seond ingredient is that the spetral gap of the interhange proess on a graphwith 3 verties is equal to 1. This proess an be realized as the random walk onS3 in whih the allowed transition our, with transition probability 1=3, alongtranspositions. This statement readily implies�0N�f; f ���(z) : z 62 eT ℄� � 16 Xa2T �0N �(raf)2 ���(z) : z 62 eT �: (A.18)We �rst show how the lemma follows from these ingredients. Sine �0N [� j�(z) :z 62 eT ℄ is the uniform measure on a set of ardinality 6, in view of (A.18)��N�f; f ���(z) : z 62 eT � � C4(�)2�0N�f; f ���(z) : z 62 eT �� C4(�)26 Xa2T �0N�(raf)2 ���(z) : z 62 eT �� 13C4(�)3Ne �2 supN;a kraENk1 12 Xa2T ��N �a(raf)2 ���(z) : z 62 eT �:WheneXa;b2T ��N�abrafrbf ���(z) : z 62 eT �� 3C4(�)3N exp�� �2 supN;a kraENk1	 12 Xa2T ��N �a(raf)2 ���(z) : z 62 eT �whih, for a suitable C1(�), is the thesis of the lemma.The estimate (A.17) follows from assumption and standard arguments. Firstlynote that for any a 2 T��N��a ���(z) : z 62 eT ���N�� ���(z) : z 62 eT � = exp�� �raEN (�)	;Therefore, by observing that any two given permutations in S3 an be onnetedat most by two transpositions, a telesopi argument yields that for any �; �0 2 SN



20 L. BERTINI, N. CANCRINI, AND G. POSTAsuh that �(z) = �0(z) for z 62 eTexp�� 2� supN;a kraENk1	 � ��N��0 ���0(z) : z 62 eT ���N �� ���(z) : z 62 eT � � exp�2� supN;a kraENk1	:By averaging the above inequality over �0 the bound (A.17) follows.The spetral gap of the interhange proess on f1; 2; 3g an be obtained fromthe general results in [6, 9℄. An elementary proof an however also be obtainedby writing out the 6� 6 matrix orresponding to the generator and omputing itseigenvalues, as in the example at page 50 of [10℄. We order the 6 permutations ofS3 as �123123�, �123132�, �123231�, �123213�, �123312�, and �123321�. With this hoie, the generator ofthe interhange proess is written as the matrix0BBBBBB��1 13 0 13 0 1313 �1 13 0 13 00 13 �1 13 0 1313 0 13 �1 13 00 13 0 13 �1 1313 0 13 0 13 �1
1CCCCCCAwhose eigenvalues are 0 (simple), �1 (with multipliity four), and �2 (simple). �We �nally show, as a orollary of the previous result, that the spetral gap ofthe ABC dynamis on the omplete graph is of order one.Proof of Lemma 4.1. Fix N multiple of three and let �N : SN ! 
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