


Comparison of finite volume canonical and grand
canonical Gibbs measures: the continuous case.

Nicoletta Cancrini *, Christel Tremoulet '

Abstract

We consider a continuous gas with finite range positive pair poten-
tial and we assume that the cluster expansion convergence condition
holds. We prove a sharp bound on the difference between the finite
volume grand canonical and canonical expectation of local observable.
The bound is given in terms of the support of the observable, of its
grand canonical variance and of the volume on which the system is
confined.
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1 Introduction

The equivalence of ensembles is one of the central problems of statistical
mechanics and traces back to Gibbs (1902). As far as the thermodynamic
functions is concerned under suitable conditions on the interaction, this
question is already well understood, [R, L]. The equivalence of ensembles as
been studied also at the level of measures and important results have been
obtained. Classical results state that the difference between the canonical
and grand canonical expectation of a local observable vanishes when the
volume goes to infinity and the support of the observable is kept fixed (see
e.g. |G, DT, A] and references therein). Recently the possibility to obtain
sharper estimates has been widely investigated and the main motivations
come from:

(i) the theory of stochastic spin exchange dynamics reversible w.r.t. the
canonical Gibbs measure of finite volume, [CM2], [Y]
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(ii) the theory of Renormalization group pathologies [BCO],
(iii) the theory of random matrices [D].

In order to improve over classical results different methods have been envi-
saged, mostly for lattice compact spins models (see e.g. [Y, BCO, CM1)). In
particular, in [CM1] the case of a general lattice discrete spin model satisfy-
ing a suitable mixing property has been analyzed and optimal estimates has
been established. Contrary to the methods developed in [Y] or [BCO], the
techniques of [CM1] completely avoid proving a local central limit theorem
and pose negligible restrictions on the size of the support of the observable.
In the present paper, motivated by a rigorous analysis of the so-called
Boltzmann-Gibbs principle for the equilibrium fluctuations of interacting
Brownian and Ornstein-Uhlenbeck particles processes [T, OT], we extend
the approach of [CM1] to a continuous system of particles interacting through
a finite range positive pair potential. In particular we prove that, under a
suitable smallness condition on the activity z (see condition (CE) before
theorem 2.1),

) = ()] < Cutgpp BEETVERL

where v and p are respectively the canonical and grand canonical Gibbs
measure in the region A, z is the activity and it is such that the mean grand
canonical number of particles coincides with the (fixed) canonical value, |A|
is the support of the observable f and C is a positive constant independent
of f.

In the case of the continuous gas, the main difficulty comes from the fact
that the number of particles that can be contained in any fixed and finite
volume is not bounded. This problem is essentially bypassed assuming the
(CE) condition. This condition plays an important role not only because
it assures a strong mixing property (decay of correlations) of the grand
canonical measure, crucial in the proof of (1.1), but also because it gives a
tight control on the large deviations of the local number of particles.

Our result improves over the one obtained by Spohn in 1986. Indeed, in
lemma 13 in [Sp|, it is proven that, if z satisfies (CE) and if /i denotes the
unique infinite volume Gibbs measure, then

. N 2]
Jm, AL [() = w(D)*] =0 (12)
where f is a C*°-function with compact support, which depends on the

number of particles on finite regions and such that g(f) = 0.

The paper is organized as follows. In the section 2, we introduce the nota-
tions and give the main theorem. In section 3, we prove the theorem using
the technical results contained in section 4.



2 Notations and Results

Let B(R?) the collection of finite (measurable) subsets of R¢. For A € B(R?),
we denote by |A| the Lebesgue measure of A. The configuration space is the
set Q of all locally finite subsets of R9:

Q={wcCR:card(wn A) < oo VA € B(RY) }

where card(A) stands for the cardinality of A. We define the counting
variables N4 : w — card(w N A) where A € B(R?). Given n,w € €, we let
nAw be the symmetric difference of 7 and w, i.e. NAw = (nUw) \ (nNw).
For A € B(R?%), we consider the finite volume configuration space

Qp ={w C A : w is finite}

A function f is called a local function if there exists a set A € B(R?) such
that f depends only on the configuration inside A, i.e. on wN A, and A will
be its support.

For z,y € R?, the Euclid distance is denoted by d(z,y) and we write |z| for
d(z,0). Finally, by Q; we denote the cube of all z = (z1,...,z4) € R? such
that z; € [0,1]. If z € R, Q;(z) stands for Q; + .

*Regular sets: a finite subset A of R? is said to be a [-regular, | € R, if there
exists z € R? such that A is the union of a finite number of cubes Q;(z* + z)
where z* € [Z%. This means that there exists a set of indexes Iy such that
A = Ujer, @Qi(z* + 7). We denote the class of all such sets by F,. The I-
support of a function f of support A is the smallest [-regular set A such
that A C A. Given a set A € F;, we define 0, A = {z € A | d(z,A°) <r}
for some positive real r.

*The Hamiltonian: let ¢ : R — R be a measurable function. We
assume the following on the pair potential ¢:

1. ¢ is an even function on R? and it has a finite range: take R > 0 such
that ¢(z) =0 if [z| > R.

2. ¢ is positive.
For A a finite measurable subset of R¢, the Hamiltonian Hy : @ — R is
given by
Hyw)= Y, dlz-y).
{z,y}Cw
{z,y}NAA£D

For w and 7 in Q, we define H} (w) = Hp(wanac) where
wanae = (wNA) U (p N A°). A° is the complement of A and 7 is called the
boundary condition.



*The Gibbs measures: We denote by uZ,A(f) the expectation of f w.r.t. the
grand canonical Gibbs measure ug’ A With activity z, boundary condition 7,
volume A, while i, A(f) denotes the function w — p% ,(f). Explicitly, for
all measurable functions f on 2, we have ,

1 I 2k _ -
WD) = g3 5 [, ) o
zA =g " /A

where we have identified the functions on Q5 with the symmetric functions
on U (A", ZZ  is the appropriate normalization factor. Moreover, we write
,ugy A(f,9) to denote the covariance of f and g w.r.t. the measure uz, A (when
it exists). We denote by vy v (f) := u] \( f | N = N) the expectation of f
w.r.t. the canonical Gibbs measure with N particles, on the volume A, and
with 7 as boundary condition. Explicitly

! / e PHR@) f(1) du |
AN

where Z] . is the appropriate normalization factor.

We omit for simplicity here and in almost all the paper the dependence on
B.

For a subset X € Q, we set p, A(X) = p,a(1x) where 1x is the indica-
tor function on X. The grand canonical Gibbs measure satisfies the DLR
compatibility conditions

pialpey (X)) =plA(X) VX eF VVAEBR), VCA. (21)

*Cluster expansion and strong mizing condition: in order to prove our main
result, we need some kind of mixing property of the grand canonical Gibbs
measure, which can be proved under the hypothesis of a convergent cluster
expansion. An explicit condition which guarantees this convergence is the
following: let 20(8,¢) = (e [ra(1l — e—PH0) dq)_l. Then assume that

0<2<m< %20(5,@ (CE)

Under hypothesis of positive interaction and (CE), there exists a unique
grand canonical Gibbs measure, see [R].

Here is our main theorem.

Theorem 2.1 Assume (CE). Let § > 0 and N be a possible value of
the number of particles. For a fized A € Fop,s5, we assume that, given a
boundary condition n € 2, the grand canonical Gibbs measure is such that
/JQ,A(NA) = N and set I/X’N(') = ,uQ’A(- | N = N). Then, for any function



fe L2(MZ,A) whose 2R + §—support A satisfies |A| < |A|17*, ¢ € (0,1),
there exist C = C(z9, R,e,0) > 0 and v = v(z0, R,€,8) > 0 such that for all
A such that |A| > v

max{z|A[,v/z|A|} '

z|A|

Wi (F) = WA (F)| < Cul o (f, )7

If the function f has bounded uniform norm ||f|| the result is the same
as the discrete case: IuZ’A(f,f) < 4]|fl|% min{z|A|,1}, see [CM1]. The
estimates we use to prove the above result are quite similar to those of
the discrete case in [CM1]. We give here all the details for completeness
and because to obtain the L?-norm we had to refine some of them. The
L?-norm is more suitable in the continuous case because many observables,
as for example the number of particles in a finite volume, have unbounded
uniform norm.

Remark 2.2 As stated above we assume that p’! ,(Nx) = N, this means
that the activity is conveniently chosen from the,beginm'ng as function of
N,A and n. This has no consequences on the DLR property of the Gibbs
measure since A and n are kept fized once and for all.

Remark 2.3 It will be clear from the proof that, if z > z1 > 0 uniformly in
|Al, the condition |A] < |A]'™* can be relazed to |A| = o|A]) (see definition
(3.3) of A).

Remark 2.4 To prove the result (1.2), Spohn needed more than the condi-
tion (CE). Indeed, he took 0 < z < 0.28 29(53, ¢) (see [Sp]).

In order to prove the theorem we need, as we stressed above, a mixing
condition for the grand canonical Gibbs measure. One can show that the
following strong mixing condition holds (see corollary 2.4 in [BCC] or lemma
4 in [Sp] for a proof):

Proposition 2.5 (Property (SMC)) Let z and 3 such that (CE) holds.
There ezxist two constants o = a(R,z,5) and m = m(R, z,) such that ¥V
A, Af, Ay € B(R?) such that Af C A, Ay C A, d(Af,Ay) > 2R and
mz’n(|A?|, |AE]) < exp(md(Ay, A,)), we have for f € Fn; and g € Fa,

[l A (Fr9)| < apl (IF)ul A(lg]) o—md(Af,Ag)

where Ay and Ay are respectively the supports of f and g and
AR = [z € R? d(z,A) < R} for A C R%.

Remark 2.6 The constants a and m are respectively increasing and de-
creasing as functions of the activity z, 0 < z < %éo, and for small z the
constant m is proportional to —log z (see lemma 4 in [Sp]).



This result has an immediate consequence, which will be useful for our
purpose, see [BCC] for the proof.

Corollary 2.7 If (CE) holds, there exist two constants & = (R, z, ) and
m = m(R, z, ) such that for all A, A € B(R?), Ay CA,

DA = A S Gul p(1f]) e ™ ABrnA)

for all w,m € Q, for all f € Fa, such that d(Af,nAw) > 3R, and
|AF] < exp[m (d(Ap,nAw) — R)].

3 Proof of theorem 2.1

Through all the section c,c’ will denote positive constants which do not
depend on f, A, N and can change from line to line.

Fix A € Fop, s for some § > 0.

To simplify the notations, we use

Bo= oA

v o= vk,

o = pu(Np,Nyp),

h = h—u(h) Yh p-integrable.

Let xn be the indicator function of the event { Ny (w) = N}. Then we write

that (o)
BU\Js XN
v(f) — =0 3.1
(N - u(p) = £ (3.)
Using the Fourier transform, we can express xn as
1 o . _
xn(w) = — dt ete VAW
2o J_1q
Therefore, (3.1) becomes
o t ~
J72 dtu (5™, p)
v(f) —u(f) = (3.2)

TRy,
fj’;a dtu (eZaNA)

The proof consists on a separated study of the numerator (Step 1) and the
denominator of (3.2) (Step 2). We conclude the proof of theorem 2.1 in Step
3.

e Step 1: study of ["7 dt u(eiﬁNA,f).

We start by proving an upper bound for a rather special class of functions:
the ones which have, roughly speaking, almost zero covariance with Ny. In



step 3, using the conservation law Ny = N, we shall extend the result to
more general functions.

Let lp = 2R+ 6, and {Q;}ic1, the partition of A € Fj,. Given ¢ € (0,1) and
V eF,, V CA, we define, for any positive large number M, the set

. {{ Qi,i€lIn|d(Qi, V)< Mlog|Al} ifz> A

Let g be a local function of lp-support A and define f = g — @y Na,. The
set Ay C A, A; € Fy,, has the following properties: (i) it can be written as
A =U I/AII/} where for all ¢ € T IAI’ there exist positive numerical constants
¢i, k; such that |V;| = ¢ lg, |8£VZ| =k; lg and ¢; ki_l > 22p lg e3z013; and (i1)
there exists a positive numerical constant » such that k71|A| < |A]| < K |A]
The ly-support of f is Ay = AU A;. To simplify the notation, we use
&f = A. Let us define

oy = MONE) (3.4)

N(NAUNA)

By proposition 4.4, the above properties of A; and remark 4.8, oy is well
defined and satisfies

#(9,9)
< . 3.5
|a!]| S C Z‘All ( )
Then, the following lemma holds

Lemma 3.1 There exists a positive constant C; = C1(zg, R,€,0) such that,
if [ =9—agNa,,

/71'0 max{z|A|, V Z‘A|} .

iﬁNA < 3
dt [u(e'=™, f)] < Crulg, )2 A

—To

e Step 2: study of the denominator 77 ;z(eiilV A) dt. We have the following
lemma:

Lemma 3.2 There exists a constant Co = C2(z0, R, §) such that

/ p(etsNn) dt > Cy.

e Step 3: we conclude the proof of theorem 2.1.

By lemma 3.1 and lemma 3.2, we have that for any function f = g — agNa,
with g an arbitrary function in L?(p), with compact lp-support A and A;
and a4 defined as in step 1,

max{z|A|,/z|Al} .

|v(f) = u(f)| < culg, 9)2 2




max{z|Al,\/z|Al}

[1(9) ~ nl9)] < cnlg,9)? A + lag| [V(Nay) = p(Nay)|

using (3.5). To complete the proof, we need to prove the result for the
special function Nj, .

Let Ay =U IIAIV,' verifying (i) and (ii) as before.

To simplify the notation, define N; = Ny,. Also define A; ; = V; UV} and

fij = Ni — o jNj, ;5 = HNa Z; By proposition 4.4, inequality (4.16),

WNg, N,
(SMC) and the properties of the sets Vi there exists a positive constant
ap = op(R, 2, 6) such that oy ; > ag , Vi, j € IAl-
Define

Rij = v(Ni) — p(Ni) — a5 [v(Ng) — p(N;)] -
Applying lemma 3.1 and lemma 3.2 to the function
fi,j =N, — Ozi,ij we have that

max{1, 1/zl3}
sup |R;j| < czli —————

ij€l), z|A|
By conservation law, Zz’eI’A [V(N;) — u(N;)] = 0. Then,
1
—{ > i} (V) — (N = Y Rij.
i€ly, i€ly,

Thus,
() e
U(N,) — — -~
1 ZEI’ ' T ao 1 z|A
and, by (3.5), we obtain

max{z|A|,/z|A| }

1
|ag||V(NA1)_:u’(NA1)| S C,u(gag)Q Z‘A'

The proof of the theorem is finished.

3.1 Proof of lemma 3.1 and lemma 3.2
3.1.1 Proof of lemma 3.1
Define the sets

E = {zeA°|dz A <R},
F = A\(AUE)



and let

Hi) = eV,
—it ",.
Kin) = ¢ s

By Markov property, we can write that

p(f, e ™) = u(f, s ™) = p (HGiKups, 5 (F, €7 Vs #5V8))) + Ry

where By = u (HiGoKip, 5(¢'778) |, 5(F) = (D) )-
By proposition 4.6 and the fact that |A| << V;—‘, we have

1Gt]oo < 7. (3.6)

Thus we can prove the bound

o
o Al

o=

(3.7)

provided that the constant M appearing in the definition of A verify M >
max{Z,2}. Indeed, if z > |A|~¢, we can write

Rl < ||Gt|\oou(sup () u%'(f)‘)

nm EQ
< Giloo @ p(g, ) —mMlog Al by corollary 2.7

_ _opplg,9)?
< ae® A2

by (3.6)

provided that M > 2. If z < |A| ¢, the constant m in property (SMC) is

proportional to — log z (see lemma 4 in [Sp]) and then, using again corollary
2.7 and (3.6),

o=

—c t2 MG, 9
R < [Gillo (o) e < e £

and (3.7) follows provided M > 2

N

We thus have to study u(‘uz,ﬁ(f, eigﬁg)‘), where J/\fg = Nx — X)-

Ho &
We distinguish two cases: z > |A|~¢ and z < |[A|7¢.

10



Case z > |A|7¢. By a Taylor expansion up to the second order

il (F.%5)) < X (|, 56, V5) - g, x (V8 NR)[) (88)
+ s (I, 50, N2) + leglli, 5 (Vo B2)) - (39)
+ 03

where

t3 _ ~
b5 < =511 (|, 58 N5 )| + lagl |, 5 (N, IN5)]) -

Let us start by (3.8), remembering the definition (3.4) of «y, it can be
bounded by

,UIZZ(Q,NA)
’ Na,,N N, N ‘
{‘“(NAUNZ)HH( a0 N5) = p 5 (Nas Ng)
HZ,A(NAUNA) _
u(Nap N3) ‘uz,g(g,Ng) —M(Q,Ng)‘}-

Let {Qi}icr; the 2R + d-cubes of the partition of A. Then

|MZ,Z(Q7NQ1) - ,U(g,NQv,H

log [A[,

¢ Jugx(ahus 3 (No)) + ulghu(Ng,)  if d(A, Qi) =
< G log|Al,

V4
T A |k (191N, + g 5 (19Dk? 5 (No,) i d(A, Q)

’

M
2

M
2

where we obtained the first inequality by the (SMC) property and the
second one by corollary 2.7. Thus,

p(|u, x(3, N3) — agn, x(Na, Nx)|)
< :u’( ‘,Uz’g(flaNg) - u(gaNZM ) + |ag| ,LI,( ‘Mz,Z(NAl’NZ) - /‘(NAUNZ)‘ )

1

R - )b
< o8 [u(g) + lo,0)} (lAH] < o L09°
k3 g

(3.10)

Concerning (3.9), by points 5 and 6 of proposition 4.4 and inequality (4.16),
we have,

2 max{z|A1l],/z|A1] }

2 \/ T2
oozt (11, 5@ N3]+ legllin, 5 (Nay, R3)I) < epg,0)7 ¢ o
(3.11)

42
20

11



For 03, we have by Schwarz inequality, points 2 and 3 of proposition 4.4,
(3.5) and (4.16)

3 N ] N
“n ({m. 508185 ) + 1, 5(3)n, 5 (N5 )

+ logH{p, 5 0Na N5 P) + 1, 5 (1N i, 5 (N )

03

IN

———

1 max{z|A1], (z|A1])3 >
< culg, gyt TN R g0 )2
(z|A])>
1 |A
< culg,9)2 |‘A1| (3.12)

where we used that z > |A|7¢ in the last inequality.
Combining (3.10), (3.11) and (3.12) and using the fact that |A;| < k|A],
we finally get

max{z|A|,/z|Al}

z|A|

-t AT 1
wllu, x(Fr €= ™)) < culg, 9)7 ([t + £+ [¢)

provided that M > 4/m. Using (3.6) and integrating in d¢ the result of
lemma 3.1 follows for z > |A|7°.

Case z < |A|7¢. By Taylor expansion up to the first order

~

— 'LAN t e _
pllin, s(Fes5)) < (|, 36 85) — o, 3 (Vo B3))
+ 0y (3.13)

where

2 P -
b2 < ot (1, 5@ N5 )] + Lo e, 5 (Nans N5 P) )

The first order term (3.13) can be estimated as in the case z > |A|7¢ (see
(3.10)). For d2, by Schwarz inequality, points 1 and 2 of proposition 4.4,
using (4.16) and that now |A| is proportional to |A| we have

max{#|Al, y/Z[A]}

8y < ct?u(g, g)?
25 C H(gg) Z|A|

Therefore

max{zAl, v/Z[A]}

z|A|

ull, 5 (f, €M) < eplg, 9)F (18] +¢2)

Using (3.6) and integrating in dt we obtain lemma 3.1.

12



3.1.2 Proof of lemma 3.2

Fix a real number M; >> 1. We distinguish two cases. Case 1: ¢ > M{HE’.
We write that
o
/ u(ele™r) dt = I + I
—To

where

and

I :/ ,u(ezrrNA) dt .
M <|t|<mo

By proposition 4.6 and remark 4.8, we have that |I3] < e
D(R, zp,6). So we have to study I;.

Let V a lp = 2R + d-regular subset of A with the properties: (%) it can be
written as the union of [p-regular subsets Vj, i.e. V = Ujer, Vi, and (i)

‘A‘;‘V‘ < MY d(V \ V;,V;) > 2R + 6; diam|V;| < Myly and |A|/|V] > 1/2.

To simplify the notation let J/\}V = Ny — p,,v(Ny). We write

DM} D =

M(GZUNA) =u (6i§{NA\V+”Z’V(NV)}'u, V(eZUNV))
= p (Mz,v(eiiﬁvﬁ +u (uz,v(eigﬁv) (e"E{NA\VJF“Z’V(NV)} - 1))(3.14)

Since the measure p, - factorize, we have that

~

by it Nv, —pz,v; (V)
FV(;) = NZ,V(GZUNV) = HjEIsz,‘/j( d v —He,v; (N ) H FV]
Jelv

By Taylor expansion up to the second order we get

t t°
Fy(2) =1 = 5gpzy; (Nv;, Nv;) + Ry

where
lt? It °
R < gy (INv; = oy (N;)1%) < 255 (Malo)” oz, (N, N ) -
(using the (SMC) property).
By point 1 of proposition 4.4 and (4.8) we have
Ljery Pevi N, Nvi) - A 3;AVil A V]

A
< — < 2—
02 D1 2:|A| Dy |A| - Dy

where we used Al > 1 in the last inequality.
V=2

13



Therefore, for any t € [— My, M),

M3—|—d
Z |Rj| < Dy—— < ¢ M;? because o > M5,
j€ly g

We then deduce that for M; large enough,
t 1? 9
‘,U FV(;) —w | I 1= ﬁ/‘tzav}'(NVJWNV}) ‘ < 3Z|Rj| <3cM*.
J
Thus, for M; large enough, we obtain that

M, i My t2 .

Ml ! 12
> / e dt—3cM; ' >c . (3.15)
— M,

Notice that we can estimate 1 — %pz,vj (Ny;, Ny;) in terms of a negative
exponential because we have the following upper bound (using point 2 of
proposition 4.4):

12 A - 9 9(d+5
Sy, (N, Ny) < 5 MYy <

: zA 14 a1 (@9

2 0 '
Up to this point, in order to have the result, we need to bound the integral

of the second term of (3.14). By Taylor expansion up to the first order and
using proposition 4.6 and (4.8), we get

to, itin . t t _
(B @ e ) 1)y < B () 180+ b 1)
t

< . e’ [#(|NA\VD + N('NZ,V(NV)D] :
(3.16)

By Schwarz inequality and point 1 of proposition 4.4 we have

|t 1 A

o :
D Nal) < AT\ V)E < 5

7
because |/‘\‘\/‘|/| < M;! and by (4.16) o2 > Dy 2|V|.

We now bound the second term in r.h.s. of inequality (3.16). By Schwarz
inequality we have

IU/(|MZ’V(NV)|) S H(/JZ,V(NV)auz,V(NV))%

14



so that we can use Poincaré inequality given by theorem 4.1 for the function
f(n) = pl (Nv). As

0 ifzeV

D} f =Dfu! ,(Ny) = .
»v plF(Ny) —pl J(Ny) if o€ A\V

and by corollary 2.7 and V € [, we have

Wl (Nv) = 1l (Nv)| < ezl

so that by Poincaré inequality, i.e. theorem 4.1

f (b, (NV), 2,y (NV)) < ¢ & p (2, (NV), gz, v (Nv)) < ez [A\ V] .
Finally, using also (4.16), we have

B e () < = leina,

We thus get
‘H (Nz,V(ez%NV) (el%{NA\V'Hbz,V(NV)}) - 1) ‘ < C, |t| M;% e—ct2 , (3.17)

combining (3.15) and (3.17), we obtain

M, M, 2 1
/ p(ets NA) dt >c—dM,? / [tle™ >c—M; 2 >c
—M —My

for M7 large enough.

Case 2: o < Md+5. Due to point 1 of proposition 4.4 if |A|% is large
compared to M ats this corresponds to extremely low particles density: by
(4.8), M > o > D! +/N, with D} = D! (zy, R, ). We have

o
| nleis™) dt = 2mou(Ny = N) > eu(Va = N).
—To

Therefore, we have to estimate u(Ny = N). As N < M24T1%/ D! we can find
subsets {V;})¥, of A such that d(V;,V;) > 2R, i # j, |Vi| > a|A| D} /MZ%+10]
0 < a <1 a suitable numerical constant. Therefore

L 2% [ s
u(Ny=N) = 07— — e PHEAT) dg
N

>
ZZAN! ZQAN'H

1 2NAPN D;
Z . ]‘\/w' (e )"
z,A : M1
D NN
> 1 N ¢

1
- - >
(a M0 ) NIZD,

where we used point 1 of proposition 4.4.
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4  Technical results

Through all the section ¢ will denote a positive constant which does not
depend on f, A, N and can change from line to line.

We first recall the Poincaré inequality proved in [BCC] for a continuous gas.
Then, we give bounds on various kind of covariance for the finite volume
grand canonical Gibbs measure when (CE) is assumed. Finally, we give a
Gaussian upper bound on the characteristic function of the variable Ny .

4.1 The Poincaré inequality
For a given function f on €2, we let
Dif(w):=flwUz) - flw) weQ zeR.
We define
E1A1) = = [ doul (DI D 4P

and D(E] ) :={f : €] \(f) < oo}
The following theorem is proven in [BCC] (Theorem 2).

Theorem 4.1 Assume (CE). There ezists a finite constant G = G(R, z, 8)
such that for alln € Q, A C R¢ the following inequality holds

WA ) < GETL(f) -

Remark 4.2 In fact, £ is the Dirichlet form of a Glauber type dynamics

¥4

of a continuous gas (see ’[BCC’]).

Remark 4.3 The Poincaré constant is such that G(R,z,8) < G(R, zo, ),
(see the proof of theorem 2 in [BCC], see also corollary 5.1 in [KL] ).

4.2 Bounds on covariance

The following proposition has been widely used in the proof of the main
result.

Proposition 4.4 Assume (CE). Fiz § > 0 and take A € Fopis5. Then, for
all n € Q and any function f € L2(M2,A) with 2R + §-support A C A, there

exists a positive constant A = A(R, zy,0) such that the following statements
hold

1. A7'2|A] < p(Ny) < Az|A].
2. i A(NR) < Az|Al.

3. u] A(N}) < A max{z|Al, (z]A])*}.
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4 py A(NR) < A max{z|Al, (z]A])°}.
5. [l A(fi Na)| < A/‘Z,A(faf)% VAl
6. |l \(F,N3)] < Apl \(f, f)7 max{z|Al,/2[A]}.
7. |l A(Na, NR)| < Az[A]
where Ny = N — pi] \(Ny).

To prove proposition 4.4, we need the following key estimates:

Lemma 4.5 Fiz § > 0. Let Q = Q;(z), = € RY. Then, for all n € Q,

il o(Ng) < €192 ]Q), (4.1)
Wl o (N3) < €19 max{2|Q), (2/Q))} (4.2)
Wl o (N) < €19 max{2|Q, (2Q))*}. (4.3)
Wl o (N§) < €19 max{2|Q], (21Q))*}. (4.4)

Furthermore if | > 2R + 0, there exists a numerical positive constant ¢ such
that
Wl o(Ng) > eI 51q. (4.5)

Proof of lemma 4.5. By definition, we have

+§OO: 2" BH{(z)
n — T
ZZ,Q = H . d.'L' e Q .
k=0 Q

Since the pair potential ¢ > 0, we easily deduce the following bound

1< Z}g<et?. (4.6)
Furthermore,
- xz
k=1 7Q =1 v Y@

Using that ¢ is positive and (4.6), we get

< Z|Q|ez|Q|

Wl g(Ng) < I — < 21Qle” @ .
z,Q
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Moreover,

1 _8H"
VL qlNe) 2 M glMig =) = 71 [ do e
zi

As [ is strictly bigger than 2R, one can construct a cube @ C @ such that
Ve € Q, H}, o(z) = 0 (because there is only one particle in the cube Q).

Therefore, y1] 5(Ng) > Z‘Q‘ . Thus

z|Q| e—z'Q' < pl o(Ng) < z|Qle?l9l. (4.7)

As there exists a numerical positive constant ¢ such that |Q| > ¢ !|Q| the
bound (4.5) follows.
Inequality (4.2) can be obtained by

1 KR QL
“z,Q NQ Zk MZQ (Ng=k) < Z"QZ k!
_ @ k=1

= — L 21Qle 91+ 21Q))
2.0

< Z|QIe"? (1 +2Q))

where we used again that ¢ is positive and (4.6).
The proofs of (4.3) and of (4.4) are analogous.
O

Proof of proposition (4.4) To simplify the notations, we write y = :U’Z,A’
f = f —p(f) for any observable f, and Iy = 2R+ 0. As A € Fy, let {Q;}ier,
be the partition of cubes of side Iy of A. We also use |Q;| = |Q| =g Vi € I
and define B = B(R, 2y, ) = e*I?l.

1 - Using the partition of A, (4.1) and (4.5), the result follows.
2 - Using the partition of A we can write

M(NX) < Z M(NQi’NQj)—i_ZM(N%i)
GIEINSIA] 1€lp
and by (SMC), (4.1) and (4.2), we obtain that
p(N?) < a Y u(Ng)pu(INg,)e ™M) 43" u(ND)
i jEInsit] iel,

aB’ z2|Q\2"Q'| B %maﬂzmz%czﬁ).

IN

The result follows.
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3 - We can write

p(ND) < > |uWg, Ng,, No, No,,)| - (4.8)

11,82,83,84 €1 A

So, using lemma 4.5 and the (SMC), we can bound

|“(NQi1 NQiQNQigNQi4)|

(i). B max{z|Q|, (Z|Q|)4} if ’il = ’iQ = ’i3 = ’i4.
(ii). B max{z|Q|, (2|Q|)?}? if i1 = iy # i3 = i4.

(i), B max{z|Q], (+Q])?} [e (@1 Qi) 4 e (@2 @in)| if iy = iy =
1,43 = 7 and 44 = k with ¢ # j, 1 # k.

(iv). B max{z|Q|, (z|Q|)*}z|Q|e ™HQi:Qi) if i) = iy = i3 = i, iy = j with
L7

(v). B max{(z|Q|)?, (z |Q|)*}e ™dirs28:04) if d(iy, iy, i5,44) > SR and all
cubes are different where d(i1,42,13,%4) = Zizl d(Qiy,, Uj2kQi;)- -

and the result follows.
4 - The proof is the same as point 3.

5 - Forj =1, 2 et Ay ={Qi, i € In | jlo < d(Qi,A) < (j+1)lp}. Call
N; =3, e, We wrlte

(£, Na)| <27 |ulf, Nj)| + |u(f, Na)l - (4.9)

j>1

By (SMC), (4.1) and Schwarz inequality, we have

(. N))| < an(FDu(N;) ™ < a Bu(f, 1)t =|A;]e™!

and also

u(f,N)| = |u(f, N)| < ap(f))(w(N;, Nj))z e ™!
< aVBul(f, )%\/me mjl (4.10)

Therefore, as there exists a numerical constant ¢ such that |[A;| < ¢(j +
1)4|A|, we have

|u(f, Nj)| < ¢ u(f, )? min{z|A|,/z[A]}e ™. (4.11)
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with ¢ = amin{B, \/E}
On other hand, by Schwarz inequality,

1
|u(f, No)| < VBu(f, )7 VZIA]. (4.12)
Finally, by (4.9), (4.11) and (4.12), we get the result.

6 - Let the A; be defined as in point 5. We write that

|u(f, NR)| = |s(FNR)| <2 |u(fN;Ny)| . (4.13)
i<k

Using (SMC), Schwarz inequality and 2 -, we find

|u(fN;N)| <

V2| A min{z|Ag|\/2[Ag[} e ™*DEif > 1 and k > 25,
2|0/ Ak e”™ if j >1andk <25,
V2[A] min{z|Ag|, \/z|Ag]}e ™ ifj=0and k> 1,
max{z|Al,/2z|A[} ifj=0and k=0.

N

cu(f, f)

Using again the bound |Ag| < ¢ (k + 1)¢|Al, the result comes from (4.13).

7 - As above one has

u(Na, NR)| < Y [n(N,NR)| . (4.14)
1€IA

Applying 6 - to each term in the sum the result follows.

4.3 Gaussian upper bound

Here, we prove a Gaussian upper bound for the characteristic function of
the random variable N,.

Proposition 4.6 Let A € Fogis, 6 > 0. For any t € [—m, 7|, there exists a
positive numerical constant ¢ such that

\ MZA(eit[NA*NZ,A(NA)]) | < exp{—cze_z(2R+‘5)d A2} (4.15)
Remark 4.7 Estimate (4.15) is called Gaussian upper bound. As in the

discrete case (see [CM1] and [BCO]), it is proven by assuming only finite
range and bounded interaction.
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Remark 4.8 From inequality (4.15), it follows that

AN, Ny) > D z|A]. (4.16)

where D; = 2ce—?(2R+0)?

Proof. As A € Fy,, lo = 2R+ 6, let {Qi}ier, be the collection of cubes of
the partition of A. To simplify, we write u = u! ,, |Q| =|Qil, i € Ia.

Let Ap = {Q; i € Ip | d(Q4,Q;) > 2R}. There exists a numerical positive
constant ¢; > 1 such that |Ag| > %|A|

We write
¢itVA) | | p(eitzje’AR Ng, ¢itNaAR) |

itNo . 3
= |M(HjEIARuZ,Qj(eZ Q’)MA\AR(GZWA\AR)) |

|

J,w

n
itNQ .
< [sup\ 15, (e"9%) |]

where we used DLR equations (2.1) and n = |I,]|.
. 22_
Set g (t) = u‘;’Qj (eltNQJ') . Using that Vz > 0, z < eTl, we have

1
gi(t) <exp [5 (g?(t) - 1)] . (4.17)
By an explicit computation, we obtain
Gt —1=— [Vang (cos(tNg,)) + Vars, (sin(tNg,))

where Vargj stands for the variance w.r.t. M‘ZQ],.
But, as t € [-m, 7],

Vargj (cos(tNg;,)) + Varc‘*éj (sin(tNg;))

1
= 52 {nq, (N, = K)o, (Ng, =)

k,n
2 . . 2
X [(cos(tk) —cos(tn))” + (sin(tk) — sin(tn)) ] }

1 .
> S, (Ng; = 0)usq;(Ng, =1) [(cost — 1) + sin ¢]

1
2 EMZJ,Q] (NQ] = O)M;J,Q] (NQJ = ]‘) Ct2 .

w 1 —2|Qj|

By (4.6), uZq;(Ng; =0) = 5— 2 e 7.
ZaQ]

On the other hand, proceeding as in the proof of lemma 4.5, we have
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w B cz|Q|
Haq;(Ng; =1) 2 o2lQl

Thus c
(0 ~1< ~L e Qe

and then by (4.17),

c _
i(t) < exp{~Se 22| QI¢* )

SO
(™) < exp{~E2 e 2| Ag| £}

The result follows using that [Ag| > ¢ *|Al.
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