Stochastic Mechanics 6 CFU Part I 2.4.2012

Exercise 1

Let \mathcal{F} be a σ algebra on Ω and let $A \subset \Omega$. Show that

a If \mathcal{F} is a σ -algebra on Ω then $\tilde{\mathcal{F}} = \{A \cap B \colon B \in \mathcal{F}\}$ is a σ -algebra on A.

 $\mathbf{b} \ B \to P(B|A)$ is a probability measure on $\tilde{\mathcal{F}}$

Exercise 2

a Show that if X is a random variable with respect to a σ -algebra \mathcal{F} and $\mathcal{F} \subset \mathcal{G}$ for some σ -algebra \mathcal{G} , then X is a random variable with respect to \mathcal{G} .

b Let $\Omega = \{1, 2, 3, 4, 5\}$ and $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$. Is $X(\omega) = 2\omega$ a random variable with respect to the σ -algebra \mathcal{F} ? If not give an example of a non-costant function which is a random variable w.r.t. \mathcal{F} .

Exercise 3

a A fair coin is tossed three times and the following events are considered:

- A = toss 1 and toss 2 produce different outcomes
- B = toss 2 and toss 3 produce different outcomes
- C = toss 3 and toss 1 produce different outcomes

Show that P(A) = P(A|B) = P(A|C) but $P(A) \neq P(A|B \cap C)$. Comment the result.

b Let Y be a discrete random variable. Show that E(E(X|Y)) = E(X).

Exercise 4

Find the characteristic function $\phi_X(t)$ of a random variable X with Poisson distribution $(P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, \cdots)$. Calculate $E(X^2)$ (facultative).

Exercise 5

a Give the definition of a 1 dimensional Brownian motion.

b Let W_t and W_t be two independent Brownian motions and define $X_t = a(W_{t+s} - W_s) + b(\hat{W}_{t+s} - \hat{W}_s)$ for s > 0. Find $a, b \in \mathbb{R}$ such that X_t is a Brownian motion.

Exercise 6

Let W_t be a Wiener process. Calculate

$$E(\int_0^T s \, dW_s \int_0^T W_s dW_s)$$