Stochastic Mechanics 6 CFU Part I 14.6.2011

Exercise 1

Let \mathcal{F} be a σ -algebra.

a Give the definition of the *atoms* of \mathcal{F} .

b Show that different atoms must be disjoint.

Exercise 2

a Let X be the number of tosses of a fair coin up to and including the first toss showing heads. Find $P(X \in 2\mathbb{N})$, where $2\mathbb{N} = \{2n : n = 1, 2, \dots\}$ is the set of even integers. (*Hint*: $\sum_{n=0}^{\infty} a^n = (1-a)^{-1}$ for 0 < a < 1).

b Find the smallest σ -algebra on $\Omega = \{-3, -2, -1, 0, 1, 2, 3\}$ such that the following function are random variables: $X(\omega) = |\omega|, Y(\omega) = 2\omega$.

Exercise 3

a Show that if A = B and A, B are independent (that is A is independent of itself), then P(A) = 0 or 1.

b A coin is tossed three times behind a curtain and you win an amount X equal to the number of heads shown. If, peeping behind the curtain, you could see the result Y of the first toss, how would you asses your expected winning?

Exercise 4

Let $X_j \sim \mathcal{N}(m_j, \sigma_j^2)$ $j = 1, \dots, n$ be independent gaussian random variables. Show that $Y_n = \sum_{j=1}^n X_j$ is a gaussian random variable and calculate its expected value and its variance.

Exercise 5

a Give the definition of a 1 dimensional Brownian motion. **b** Let W_t a standard Brownian motion and define $X_t = W_{t+s} - W_s$ for s > 0. Prove that X_t is a Brownian motion.

Exercise 6

Let W_t be a Wiener process. **a** Give the definition of Ito stochastic integral. **b** Calculate

$$E(\int_0^T 2\,dW_s\int_0^T s\,dW_s)$$

(*Hint*: use the definition of the stochastic integral and the properties of Brownian motion)