Stochastic Mechanics 6 CFU

Part I 14.6.2011

Exercise 1

Let \mathcal{F} be a σ-algebra.
a Give the definition of the atoms of \mathcal{F}.
b Show that different atoms must be disjoint.

Exercise 2

a Let X be the number of tosses of a fair coin up to and including the first toss showing heads. Find $P(X \in 2 \mathbb{N})$, where $2 \mathbb{N}=\{2 n$: $n=$ $1,2, \cdots\}$ is the set of even integers. (Hint: $\sum_{n=0}^{\infty} a^{n}=(1-a)^{-1}$ for $0<a<1$).
b Find the smallest σ-algebra on $\Omega=\{-3,-2,-1,0,1,2,3\}$ such that the following function are random variables: $X(\omega)=|\omega|, Y(\omega)=2 \omega$.

Exercise 3

a Show that if $A=B$ and A, B are independent (that is A is independent of itself), then $P(A)=0$ or 1 .
b A coin is tossed three times behind a curtain and you win an amount X equal to the number of heads shown. If, peeping behind the curtain, you could see the result Y of the first toss, how would you asses your expected winning?

Exercise 4

Let $X_{j} \sim \mathcal{N}\left(m_{j}, \sigma_{j}^{2}\right) j=1, \cdots, n$ be independent gaussian random variables. Show that $Y_{n}=\sum_{j=1}^{n} X_{j}$ is a gaussian random variable and calculate its expected value and its variance.

Exercise 5

a Give the definition of a 1 dimensional Brownian motion.
b Let W_{t} a standard Brownian motion and define $X_{t}=W_{t+s}-W_{s}$ for $s>0$. Prove that X_{t} is a Brownian motion.

Exercise 6

Let W_{t} be a Wiener process.
a Give the definition of Ito stochastic integral.
b Calculate

$$
E\left(\int_{0}^{T} 2 d W_{s} \int_{0}^{T} s d W_{s}\right)
$$

(Hint: use the definition of the stochastic integral and the properties of Brownian motion)

