Stochastic Mechanics 6 CFU Part I 15.7.2009

Exercise 1

a Which of the following families of sets is a field:

$$\begin{aligned} \mathcal{F}_1 &= \{ \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b, c\} \} \\ \mathcal{F}_2 &= \{ \emptyset, [0, 1], (\frac{1}{4}, 1], [0, \frac{1}{4}], [0, \frac{1}{4}), \{\frac{1}{4}\}, [\frac{1}{4}, 1], [0, 1] \setminus \{\frac{1}{4}\} \} \\ \mathcal{F}_3 &= \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{2, 3, 4\} \{1, 2, 3\} \} \end{aligned}$$

b What are the atoms in the following σ -algebra:

$$\mathcal{F} = \{\emptyset, \{3\}, \{4\}, \{1, 2\}, \{3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 3, 4\}\}$$

Exercise 2

Let $\Omega = [0, 1]$ with the σ -algebra \mathcal{F} of Borel sets B contained in [0, 1]. **a** Is X(x) = x a random variable on Ω with respect to \mathcal{F} ? **b** Is $Y(x) = |x - \frac{1}{3}|$ a random variable on Ω with respect to \mathcal{F} ?

Exercise 3

a Let $\Omega = H_1 \cup H_2$ and $H_1 \cap H_2 = \emptyset$. Assuming that $P(A|H_1), P(A|H_2), P(H_1), P(H_2) \neq 0$ are known, find an expression for P(A)

b From a bag containing four balls numbered 1, 2, 3, 4 you draw two. If at least one of the numbers drawn is greater than 2, you win 1 euro, otherwise you lose 1 euro. Let X be the amount won or lost and let Y the first number drawn. Find an explicit formula for E(X|Y).

Exercise 4

Let X and Y be random variables such that Y = aX + b where $a, b \in \mathbb{R}$. Show that

$$\phi_Y(t) = e^{itb}\phi_X(at)$$

Exercise 5

a Give the definition of Ito integral and discuss an example. **b** Let W_t^1 and W_t^2 be two independent Brownian motions, define $X_t = aW_t^1 + bW_{2t}^2$. Find $a, b \in \mathbb{R}$ such that X_t is a Brownian motion.

Exercise 6

Let W_t be a Wiener process. Apply the property of Ito itegral that $E(\int_0^T G dW_s)^2 = \int_0^T E(G^2) ds$ for any function $G \in L^2(0,T)$ to calculate

$$E(\int_0^T e^{W_s - s} dW_s)^2$$