Stochastic Mechanics 6 CFU Part I 22.6.2010

Exercise 1

Find two σ -algebra such that their union is not a σ algebra.

Exercise 2

a Give the definition of a simple function.

b Give an example of a simple function X and construct the σ -algebra generated by X.

c Let $\Omega = \{-4, -2, 0, 1, 2, 3\}$ find the smallest σ -algebra such that $X = 16 - \omega^2$ is a random variable.

Exercise 3

a Let A, B, C be independent events. Show that B and $A \cap C$ are independent;

b Three coins, 5, 10 and 20 cents, are tossed and you can take those showing heads; X is the total amount you take and Y is the number of heads. Find E(X|Y), find and compare the σ -algebra generated by Y and by E(X|Y). How many elements do these σ -algebras have?

Exercise 4

Find the characteristic function $\phi_X(t)$ of a random variable X having distribution with density

$$f_X(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1\\ 0 & \text{otherwise} \end{cases}$$

Exercise 5

a Give the definition of a 2 dimensional Brownian motion. **b** Let W_t and \hat{W}_t be two independent Brownian motions, define $X_t = \frac{a}{b}W_{b^2t} + \frac{1}{c}\hat{W}_{c^2t}$. Find $a, b, c \in \mathbb{R}$ and $b, c \neq 0$, such that X_t is a Brownian motion.

Exercise 6

Let W_t be a Wiener process. Apply the property of Ito itegral that $E(\int_0^T G dW_s)^2 = \int_0^T E(G^2) ds$ for any function $G \in L^2(o, T)$ to calculate

$$E(\int_0^T [W_s^{\frac{3}{2}} + W_s^{\frac{1}{2}}] dW_s)^2$$