Stochastic Mechanics 6 CFU Part I 26.6.2009

Exercise 1

a Let $\Omega = [0, 1]$. Tell if any of the following families is a σ -algebra (explain your answer):

$$\mathcal{F}_{1} = \{\emptyset, (0, 1), (0, \frac{1}{2}), (\frac{1}{2}, 1)\}$$

$$\mathcal{F}_{2} = \{\emptyset, (0, 1), (0, \frac{1}{2}), [\frac{1}{2}, 1), (0, \frac{2}{3}], (\frac{2}{3}, 1)\}$$

$$\mathcal{F}_{3} = \{\emptyset, (0, 1), (0, \frac{2}{3}), [\frac{2}{3}, 1)\}$$

b What are the atoms in the following σ -algebra: $\mathcal{F} = \{\emptyset, (0, 1), (0, \frac{1}{3}), [\frac{1}{3}, 1)\}$

Exercise 2

a Let $\Omega = \{-1, -2, -3, -4\}$ and $\mathcal{F} = \{\emptyset, \Omega, \{-2\}, \{-1, -3, -4\}\}$. Is $X(\omega) = 3 - 2\omega$ a random variable with respect to the σ -field \mathcal{F} ? If not give an example of a non-costant function which is a random variable with respect to \mathcal{F} .

b Find the smallest σ -algebras on $\Omega = \{-3, -1, 0, 1, 3\}$ such that the following functions are a random variables: $X_1(\omega) = \omega^3$, $X_2(\omega) = 2\omega^2$

Exercise 3

a Show that for any events A and B, the following conditions are equivalent: (i) A and B are independent, (ii) $\Omega \setminus A$ and $\Omega \setminus B$ are independent,

b A bag contains 3 coins, but one has heads on both sides. Two coins are drawn and tossed. Find E(X|Y) if X is the number of heads and and Y is the number of genuine coins among the drawn ones.

Exercise 4

Consider *n* independent random variables X_1, \dots, X_n , all having the same normal distribution with mean μ and variance σ^2 , then calculate the characteristic function of the random variable $X = X_1 + \dots + X_n$.

Exercise 5

a Give the definition of Ito integral and discuss an example.

b Let W_t be a Brownian motion, define $X_t = \frac{a}{\sqrt{b}}W_{b^2t}$. Find $a, b \in \mathbb{R}$, b > 0 such that X_t is a Brownian motion.

Exercise 6

Let W_t be a Wiener process. Apply the property of Ito itegral that $E(\int_0^T G dW_s)^2 = \int_0^T E(G^2) ds$ for any function $G \in L^2(o, T)$ to calculate

$$E(\int_0^T W_s dW_s)^2$$