Stochastic Mechanics 6 CFU Part I 27.4.2009

Exercise 1

a Let $\Omega = \{1, 2, 3\}$. Complete $\{\{2\}, \{3\}\}$ to obtain a σ -algebra. Add as few sets as possible.

b What are the atoms in the following σ -algebra:

 $F_1 = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3,4\}, \{2,3,4\}, \{1,3,4\}, \{1,2,3,4\}\}$

Exercise 2

a Give the definition of random variable.

b Find the smallest σ -algebras on $\Omega = \{-2, -1, 0, 1, 2\}$ such that the following function is a random variable:

$$X(\omega) = |\omega|$$

c What is the smallest number of elements of a σ -algebra if a function $X : \Omega \to \mathbb{R}$ taking exactly *n* different values is to be a random variable with respect to this σ -field?

Exercise 3

a Let $\Omega = \{1, 2, 3, 4\}$ with uniform probability and let $A = \{1, 2\}$. List all $B \subset \Omega$ such that A and B are independent.

b A die is rolled twice; if the sum of outcomes is even, you win 1 euro, and if it is odd, you lose 1 euro; X is the amount won or lost and Y is the outcome of the first roll. Find an explicit formula for E(X|Y). Find and compare the σ -algebras generated by the random variables Y and E(X|Y).

Exercise 4

Let X be a Bernoulli variable of parameter $p = \frac{1}{3}$, (P(X = 1) = p and P(X = 0) = 1 - p) and Y a normal random variable $Y \sim N(0, 1)$. X and Y are independent. Calculate the characteristic function of Z = 2X + Y.

Exercise 5

a Give the definition of Brownian motion.

b Let W_t and W_t be two independent Brownian motions, define $X_t = aW_t + b\hat{W}_t$. Find $a, b \in \mathbb{R}$ such that X_t is a Brownian motion.

Exercise 6

Give the definition of Ito integral for a step function.