Stochastic Mechanics 6 CFU

I Part 29.10.2007

Exercise 1 Let X_1 and X_2 two Gaussian random variables with mean m_1 , m_2 and variance σ_1^2 and σ_2^2 respectively. Prove that $Y = aX_1 + bX_2$ $(a, b \in R)$ is a Gaussian random variable and calculate its mean value and its variance. (hint: use characteristic functions).

Exercise 2 Three coins are tossed 5c, 10c, 20c, let X be random variable which indicates the total amount shown and Y the number of tails, give the definition of E(X|Y) and calculate its possible values.

Exercise 3 Give the definition of Brownian motion for a process W_t and verify that

$$\hat{W}_t = \sqrt{c}W_{\frac{t}{a}} \quad c > 0, \ t \ge 0$$

is a Brownian motion.

Exercise 4 Let $g = t(1 - t), t \in [0, 1]$ calculate

 $\mathbf{a} \int_0^t g dW_t$ (give the formula)

 $\mathbf{b} \ E(\int_0^t g dW_t)$ $\mathbf{c} \ E(\int_0^t g dW_t)^2$

Exercise 5 Give the definition of Ito Stochastic integral for a step function and prove its properties.