Stochastic Mechanics 6 CFU Part II 9.7.2010

Exercise 1 Let W_t be a Brownian motion. Illustrate Ito's formula and use it to calculate **a** $d(X_t^{2n})$ for $n \ge 1$, where $dX_t = dt + (t+1)dW_t$

 $\mathbf{b} \ dW_t^{2n} + dW_t^{2n+1} \text{ for } n \ge 1$ $\mathbf{c} \ \int_0^T [W_t^2 + W_t] \ dW_t$

Exercise 2 Given the non linear SDE

$$\begin{cases} dX_t &= [-\frac{1}{2}e^{2X_t} + 2]dt + dW_t \\ X_0 &= 1 \end{cases}$$

a find the value of $c \in \mathbb{R}$ such that using the substitution $y = h(x) = e^{-cx}$ it becomes a linear SDE; **b** find the solution.

Exercise 3 Given the SDE

$$dX_t = (1 + \beta X_t)dt + \gamma dW_t$$

with $X_{t=0} = X_0 \sim \mathcal{N}(0, \sigma^2)$ and $\sigma, \beta, \gamma \in \mathbb{R}, \sigma, \beta, \gamma \neq 0$. **a** find the solution;

b calculate $E(X_t)$ and $Var(X_t)$ and study their behavior when $t \to \infty$. **c** find a condition on the parameters which assures that the $Var(X_t)$ is independent of time.

Exercise 4 Use Feynman-Kac formula to solve the following PDE with final condition, $x \in \mathbb{R}$ and $t \in [0, T]$,

$$\begin{cases} \frac{\partial f}{\partial t} - x \frac{\partial f}{\partial x} + \frac{\partial^2 f}{\partial x^2} = t^2 f \\ f(x,T) = e^x \end{cases}$$

Exercise 5 Illustrate and discuss the Chapman-Kolmogorov equation.