Stochastic Mechanics 6 CFU

Part II 12.6.2012
Exercise 1 Let W_{t} be a Brownian motion.
a llustrate Ito's formula and use it to calculate $d\left(e^{\sigma W_{t}^{2}}\right)$
b Let $H \in L^{2}(0, T)$ be a step process with partition $P=\left\{0=t_{0}<\right.$ $\left.t_{1}<\cdots<t_{n}=T\right\}$. Define the (Ito) Riemann sums of H with respect to the Brownian motion W_{t} for this partition P, by

$$
S(H, P)=\sum_{i=0}^{n-1} H_{t_{i}}\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

Calculate the mean and the variance of $S(H, P)$.

Exercise 2

a Let $g=g(y)$ be a given function of y, and suppose that $y=f(w)$ is a solution of the ODE

$$
d y=g(y) d w
$$

that is, $f^{\prime}(w)=g(f(w))$. Show that $X_{t}=f\left(W_{t}\right)$ then is a solution of the SDE:

$$
d X_{t}=\frac{1}{2} g\left(X_{t}\right) g^{\prime}\left(X_{t}\right) d t+g\left(X_{t}\right) d W_{t}
$$

b Use point a above to solve the SDE

$$
d X_{t}=\frac{\sigma^{2}}{4} d t+\sigma \sqrt{X_{t}} d W_{t}
$$

with $X_{0} \geq 0$. (Hint: Take $\left.g(x)=\sigma \sqrt{x}\right)$.
Exercise 3 Consider the boundary value problem for the backwards heat equation with a drift term (a being a constant):

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial s}+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+a \frac{\partial u}{\partial x}=0, \quad x \in \mathbb{R}, s<T \\
u(x, T)=e^{2 x}
\end{array}\right.
$$

a Write the solution of the associated SDE and calculate its transition probability density.
b Use Feynman-Kac formula to solve it.
Exercise 4 Given the SDE

$$
\left\{\begin{array}{l}
d X_{t}=\left(2-X_{t}\right) d t+\sqrt{2} d W_{t} \\
X_{0}=1
\end{array}\right.
$$

a Solve the equation and calculate $E\left(X_{t}\right)$ and $\operatorname{Var}\left(X_{t}\right)$.
b Calculate the transition probability density of X_{t}.
c Write the Kolmogorov forward equation for the process and find its stationary solution.

