Stochastic Mechanics 6 CFU

Part II 26.6.2009

Exercise 1 Let W_t be a Brownian motion. Illustrate Ito's formula and use it to calculate

a
$$d(X_t^{2n})$$
 for $n \ge 1$, where $dX_t = 2dt + 3t^2dW_t$

b
$$dX_t$$
 where $X_t = e^{4W_t}$

c
$$\int_0^T (W_t^3 + W_t^2) dW_t$$

Exercise 2 Solve the following stochastic differential equation

$$dX_t = \left[-X_t^3 + 3X_t \right] dt + 2X_t dW_t$$

$$X_{t=0} = X_0$$

hint: use the substitution $y = h(x) = x^{-2}$.

Exercise 3 Given the SDE

$$dX_t = (1 + \beta X_t)dt + \sigma dW_t$$

with $X_{t=0} = X_0 \sim \mathcal{N}(0,4)$ and $\beta, \sigma \in \mathbb{R}$, find β, σ such that $E(X_t) \rightarrow$ 2 and $\sigma^2(X_t) \to 4$ when $t \to \infty$

Exercise 4 Given the process X_t find the SDE that it solves in the following cases a $X_t = \frac{W_t}{2+t}$

$$\mathbf{a} X_t = \frac{W_t}{2+t}$$

$$\mathbf{b} \ X_t = e^{2W_t}$$

Exercise 5 Verify the Chapman-Kolmogorov equation for Brownian Motion.