Stochastic Mechanics 6 CFU

Part II 28.6.2011
Exercise 1 Let W_{t} be a Brownian motion. Illustrate Ito's formula and use it to calculate
a $d\left(W_{t} e^{W_{t}}\right)$
b $\int_{0}^{T}\left[e^{-W_{t}}+W_{t}\right] d W_{t}$
Exercise 2 Given the non linear SDE

$$
\begin{cases}d X_{t} & =-\alpha e^{-4 X_{t}} d t+2 d W_{t} \\ X_{0} & =1\end{cases}
$$

a find the value of $\alpha, c \in \mathbb{R}$ such that using the substitution $y=h(x)=$ $e^{-c x}$ it becomes a linear SDE;
b find the solution.
Exercise 3 Given the SDE

$$
d X_{t}=X_{t}\left(\beta d t+\gamma d W_{t}\right)
$$

with $X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ independent of and $\sigma, \beta, \gamma \in \mathbb{R}, \sigma, \beta, \gamma \neq 0$.
a find the solution;
b calculate $E\left(X_{t}\right)$ and $\operatorname{Var}\left(X_{t}\right)$ and study their behavior when $t \rightarrow \infty$.
Exercise 4 Given the following PDE with final condition, $x \in \mathbb{R}$ and $t \in[0, T]$,

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}-x \frac{\partial f}{\partial x}+\frac{\partial^{2} f}{\partial x^{2}}=t^{3} f \\
f(x, T)=e^{x+1}
\end{array}\right.
$$

a Write the solution of the associated SDE and calculate its transition density probability.
b Use Feynman-Kac formula to solve it.
Exercise 5 Consider a Brownian motion W_{t}.
a Write its transition probability density.
b Verify it satisfies the Kolmogorov forward equation.

