Stochastic Mechanics 6 CFU Part I 12.6.2012

Exercise 1

a Is $\mathcal{F} = \{A \subset \Omega : A \text{ is a finite set}\}$ always a σ -algebra? **b** Verify the inequality $P(A \triangle C) \leq P(A \triangle B) + P(B \triangle C)$. Remember that $A \triangle B := A \cup B \setminus A \cap B$.

Exercise 2

a What is the smallest number of elements of a σ -algebra if a function $X: \Omega \to \mathbb{R}$ taking exactly *n* different values is to be a random variable with respect to this σ -algebra?

b Let $\Omega = [0, 1]$ with Borel sets and Lebesgue measure. Find $P(X \in [0, \frac{1}{2}))$ if $X(x) = x^2$.

Exercise 3

a Let A be an event. Prove that the following conditions are equivalent:

i) A, B are independent for any event B,

ii) P(A) = 0 or 1.

b Show that if X and Y are independent random variables and Y is discrete, then E(X | Y) = E(X).

Exercise 4

Calculate the characteristic function of a normal random variable X with mean 0 and variance 1.

Exercise 5

a Give the definition of a 1 dimensional Brownian motion. **b** Let $\sigma > 0$ and s < t. Show that

$$E(e^{-\frac{1}{2}\sigma^2 t + \sigma W_t} \mid W_s) = e^{-\frac{1}{2}\sigma^2 s + \sigma W_s}$$

Exercise 6

Let W_t be a Wiener process. Calculate

$$E(\int_0^T s \, dW_s \int_0^T W_s^2 dW_s)$$