Published Papers
Nicoletta Cancrini
(click here to see a list of preprints available on line)


  1. N. Cancrini, S. Caprara, C. Castellani, C. Di Castro, M. Grilli, R. Raimondi: Phase Separation and Superconductivity in the Kondo-like spin-hole coupled model , Europhys. Lett. 14, 597 (1991). (Web of Science)
  2. N. Cancrini: Solution of the Cauchy problem for the stochastic Burgers equation in one spatial dimension , PhD Thesis, Dip. Fisica, La Sapienza Rome University, in Italian (1994).
  3. L. Bertini, N. Cancrini and G. Jona-Lasinio: The Stochastic Burgers Equation, Commun. Math. Phys. 165, 211-232 (1994). (Web of Science and Mathscinet)
  4. L. Bertini, N. Cancrini and G. Jona-Lasinio: Stochastically Forced Burgers Equation, On Three Levels. Micro-, Meso-, and Macro Approaches in Physics, M. Fannes, C. Maes, A. Verbeure eds NATO ASI Series Vol. B 324 pp. 265-269. \par New York : Plenum Press 1994. (Web of Science)
  5. L. Bertini, N. Cancrini and G. Jona-Lasinio: Burgers equation forced by conservative or nonconservative noise, Stochastic Analysis and Applications in Physics, A.I. Cardoso et. al., eds. NATO ASI Series Vol. C 449, pp. 35--44. Dordrecht: Kluwer Academic Publishers 1994. (Mathscinet)
  6. L. Bertini and N. Cancrini: The stochastic heat equation: Feynman-Kac formula and intermittence, J. Stat. Phys. 78, 1377-1401 (1995). (Web of Science and Mathscinet)
  7. N. Cancrini and A. Galves: Approach to equilibrium in the symmetric simple exclusion process, Markov Proc. Relat. Fields 1, 175-174 (1995). (Mathscinet)
  8. L. Bertini and N. Cancrini: Reduction Formula for Moments of Stochastic Integrals, J. Math. Phys. 38, 4763-4770 (1997). (Web of Science and Mathscinet)
  9. L. Bertini and N. Cancrini: The two--dimensional stochastic heat equation: renormalizing a multiplicative noise, J. Phys. A: Math. Gen. 31, 615-622 (1998). (Web of Science and Mathscinet)
  10. N. Cancrini, F. Cesi and F. Martinelli: The spectral gap for the Kawasaki dynamics at low temperature, J. Stat. Phys. 95, Nos 1/2, 219-175 (1999). (Web of Science and Mathscinet)
  11. N. Cancrini and F. Martinelli: Comparison of finite volume canonical and grand canonical Gibbs measures under a mixing condition, Markov Proc. Rel. Fields 6, 1-49 (2000). (Mathscinet)
  12. N. Cancrini and F. Martinelli: On the spectral gap of Kawasaki dynamics under a mixing condition revisited, J. Math. Phys. 41, N.3 1391-1423 (2000). (Web of Science and Mathscinet)
  13. N. Cancrini and F. Martinelli: Diffusive scaling of the spectral gap for the dilute Ising lattice gar dynamics below the percolation threshold, Probab. Theory and Relat. Fields 120 4, 497-534 (2001). (Web of Science and Mathscinet)
  14. N. Cancrini and F. Martinelli: Stochastic dynamics for the dilute Ising lattice gas: results and open problems, Markov. Proc. Rel. Fields 7, 39-50 (2001). (Mathscinet)
  15. N. Cancrini, F. Martinelli and C. Roberto: The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited, Ann. I. H. Poincare -- Probab. Stat. PR 38 4, 385-436 (2002). (Web of Science and Mathscinet)
  16. L. Bertini, N. Cancrini and F. Cesi: The spectral gap for a Glauber--type dynamics in a continuous gas, Ann. I. H. Poincare -- Probab. Stat. PR 38 1, 91-108 (2002). (Web of Science and Mathscinet)
  17. N. Cancrini, F. Martinelli and C. Roberto: Spectral gap and logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited, In and Out of Equilibrium: Probability with a Physics Flavor editor Vladas Sidoravicius, Birkhauser Boston (2002). (Web of Science and Mathscinet)
  18. N. Cancrini: Relaxation to equilibrium of spin exchange dynamics for lattice gases, Markov. Proc. Rel. Fields 8, 251-270 (2002). (Mathscinet)
  19. N. Cancrini and C. Roberto: Logarithmic Sobolev constant for the dilute Ising lattice gas dynamics below the percolation threshold, Stochastic Process. Appl. 102, 159-205 (2002) . (Web of Science and Mathscinet)
  20. N. Cancrini and C. Tremoulet: Comparison of finite volume canonical and grand canonical Gibbs measures: the continuous case, J. Stat. Phys. 117, 1023-1046 (2004) . (Web of Science and Mathscinet)
  21. N. Cancrini, F. Cesi, C. Roberto: Diffusive long time behavior of Kawasaki dynamics, Electron. J. Probab. 10 , n.7, 216-249 (2005) (electronic) . (Web of Science and Mathscinet)
  22. N. Cancrini, P. Caputo and F. Martinelli: Relaxation time of L-Reversal chains and other chromosome shuffles, Ann. Appl. Probab. 16, n.3, 1506-1527 (2006) . (Web of Science and Mathscinet)
  23. N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Relaxation times of kinetically constrained spin models with glassy dynamics, J. Stat. Mech. (letter) (2007). (Web of Science and Mathscinet)
  24. N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Kinetically constrained spin models, Probab. Theory. Relat. Fields 140, n.3-4, 459-504 (2008). (Web of Science and Mathscinet)
  25. N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Facilitated spin models: recent and new results, in Methods of Contemporary Mathematical Statistical Physics , Biskup, M., Bovier, A. (et al) Kotecky, R. (Ed.), Lecture Notes in Mathematics , Springer Vol. 1970, (2009). (Web of Science and Mathscinet)
  26. N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Kinetically Constrained Models New Trends in Mathematical Physics. p.741-752, Springer Netherlands (2009). (Web of Science)
  27. N. Cancrini, F. Martinelli, R. Schonman and C. Toninelli: Facilitated oriented spin models: some non equilibrium results., J. Stat. Phys., vol.138; p. 1109-1123 (2010). (Web of Science and Mathscinet)
  28. N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Kinetically Constrained Lattice Gases. Comm. Math. Phys., vol. 297, n.2, p. 299-344 (2010). (Web of Science and Mathscinet)
  29. L. Bertini, N. Cancrini, G. Posta: On the Dynamical Behavior of the ABC Model. J. Stat. Phys. , vol. 144, p. 1284-1307 (2011). (Web of Science)
  30. O. Blondel, N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Fredrickson-Andersen one spin facilitated model out of equilibrium. Markov Proc. Rel. Fields. 19, 383-406 (2013). (Mathscinet)
  31. N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli: Mixing time of a kinetically constrained spin model on trees: power law scaling at criticality Probab. Theory. Rel. Fields. 161 n. 1-2, 247-266 (2015). (Web of Science and Mathscinet)

Back Home