Published Papers
Nicoletta Cancrini
(click here to see a list of
preprints available on line)
- N. Cancrini, S. Caprara, C. Castellani, C. Di Castro, M. Grilli, R. Raimondi:
Phase Separation and Superconductivity in the
Kondo-like spin-hole coupled model ,
Europhys. Lett. 14, 597 (1991). (Web of Science)
- N. Cancrini:
Solution of the Cauchy problem for the stochastic Burgers equation in one spatial dimension
, PhD Thesis,
Dip. Fisica, La Sapienza Rome University, in Italian (1994).
- L. Bertini, N. Cancrini and G. Jona-Lasinio:
The Stochastic Burgers Equation,
Commun. Math. Phys. 165, 211-232 (1994). (Web of Science and Mathscinet)
- L. Bertini, N. Cancrini and G. Jona-Lasinio:
Stochastically Forced Burgers Equation,
On Three Levels. Micro-, Meso-, and Macro Approaches in Physics,
M. Fannes, C. Maes, A. Verbeure eds NATO ASI Series Vol. B 324
pp. 265-269. \par New York : Plenum Press 1994. (Web of Science)
- L. Bertini, N. Cancrini and G. Jona-Lasinio:
Burgers equation forced by conservative or nonconservative noise,
Stochastic Analysis and Applications in Physics,
A.I. Cardoso et. al., eds. NATO ASI Series Vol. C 449, pp. 35--44.
Dordrecht: Kluwer Academic Publishers 1994. (Mathscinet)
- L. Bertini and N. Cancrini:
The stochastic heat equation: Feynman-Kac formula and intermittence,
J. Stat. Phys. 78, 1377-1401 (1995). (Web of Science and Mathscinet)
- N. Cancrini and A. Galves:
Approach to equilibrium in the symmetric simple exclusion process,
Markov Proc. Relat. Fields 1, 175-174 (1995). (Mathscinet)
- L. Bertini and N. Cancrini:
Reduction Formula for Moments of Stochastic Integrals,
J. Math. Phys. 38, 4763-4770 (1997). (Web of Science and Mathscinet)
- L. Bertini and N. Cancrini:
The two--dimensional stochastic heat equation: renormalizing a multiplicative noise,
J. Phys. A: Math. Gen. 31, 615-622 (1998). (Web of Science and Mathscinet)
- N. Cancrini, F. Cesi and F. Martinelli:
The spectral gap for the Kawasaki dynamics at low temperature,
J. Stat. Phys. 95, Nos 1/2, 219-175 (1999). (Web of Science and Mathscinet)
- N. Cancrini and F. Martinelli:
Comparison of finite volume canonical and grand canonical
Gibbs measures under a mixing condition,
Markov Proc. Rel. Fields 6, 1-49 (2000). (Mathscinet)
- N. Cancrini and F. Martinelli:
On the spectral gap of Kawasaki dynamics under a mixing condition revisited,
J. Math. Phys. 41, N.3 1391-1423 (2000). (Web of Science and Mathscinet)
- N. Cancrini and F. Martinelli:
Diffusive scaling of the spectral gap for the dilute Ising lattice
gar dynamics below the percolation threshold,
Probab. Theory and Relat. Fields 120 4, 497-534 (2001). (Web of Science and Mathscinet)
- N. Cancrini and F. Martinelli:
Stochastic dynamics for the dilute Ising lattice gas: results and open
problems,
Markov. Proc. Rel. Fields 7, 39-50 (2001). (Mathscinet)
- N. Cancrini, F. Martinelli and C. Roberto:
The logarithmic Sobolev constant of Kawasaki dynamics under a mixing
condition revisited,
Ann. I. H. Poincare -- Probab. Stat. PR 38 4, 385-436 (2002). (Web of Science and Mathscinet)
- L. Bertini, N. Cancrini and F. Cesi:
The spectral gap for a Glauber--type dynamics in a continuous gas,
Ann. I. H. Poincare -- Probab. Stat. PR 38 1, 91-108 (2002). (Web of Science and Mathscinet)
- N. Cancrini, F. Martinelli and C. Roberto:
Spectral gap and logarithmic Sobolev constant of Kawasaki
dynamics under a mixing condition revisited,
In and Out of Equilibrium: Probability with a Physics Flavor
editor Vladas Sidoravicius, Birkhauser Boston (2002). (Web of Science and Mathscinet)
- N. Cancrini:
Relaxation to equilibrium of spin exchange dynamics for lattice gases,
Markov. Proc. Rel. Fields 8, 251-270 (2002). (Mathscinet)
- N. Cancrini and C. Roberto:
Logarithmic Sobolev constant for the dilute Ising lattice gas dynamics below the percolation threshold,
Stochastic Process. Appl. 102, 159-205 (2002) . (Web of Science and Mathscinet)
- N. Cancrini and C. Tremoulet:
Comparison of finite volume canonical and grand canonical Gibbs measures: the continuous case,
J. Stat. Phys. 117, 1023-1046 (2004) . (Web of Science and Mathscinet)
- N. Cancrini, F. Cesi, C. Roberto:
Diffusive long time behavior of Kawasaki dynamics,
Electron. J. Probab. 10 , n.7, 216-249 (2005) (electronic) . (Web of Science and Mathscinet)
- N. Cancrini, P. Caputo and F. Martinelli:
Relaxation time of L-Reversal chains and other chromosome
shuffles, Ann. Appl. Probab. 16, n.3, 1506-1527 (2006) . (Web of Science and Mathscinet)
- N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Relaxation times of kinetically constrained spin models with glassy
dynamics, J. Stat. Mech. (letter) (2007). (Web of Science and Mathscinet)
- N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Kinetically constrained spin models, Probab. Theory. Relat. Fields 140, n.3-4, 459-504 (2008). (Web of Science and Mathscinet)
- N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Facilitated spin models: recent and new results, in
Methods of Contemporary Mathematical Statistical Physics ,
Biskup, M., Bovier, A. (et al) Kotecky, R. (Ed.), Lecture
Notes in Mathematics , Springer Vol. 1970, (2009). (Web of Science and Mathscinet)
- N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Kinetically Constrained Models
New Trends in Mathematical Physics. p.741-752,
Springer Netherlands (2009). (Web of Science)
- N. Cancrini, F. Martinelli, R. Schonman and C. Toninelli:
Facilitated oriented spin models: some non equilibrium results.,
J. Stat. Phys., vol.138; p. 1109-1123 (2010). (Web of Science and Mathscinet)
- N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Kinetically Constrained Lattice Gases.
Comm. Math. Phys., vol. 297, n.2, p. 299-344 (2010). (Web of Science and Mathscinet)
- L. Bertini, N. Cancrini, G. Posta:
On the Dynamical Behavior of the ABC Model.
J. Stat. Phys. , vol. 144, p. 1284-1307 (2011). (Web of Science)
- O. Blondel, N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Fredrickson-Andersen one spin facilitated model out of equilibrium.
Markov Proc. Rel. Fields. 19, 383-406 (2013). (Mathscinet)
- N. Cancrini, F. Martinelli, C. Roberto and C. Toninelli:
Mixing time of a kinetically constrained spin model on trees: power law scaling at criticality
Probab. Theory. Rel. Fields. 161 n. 1-2, 247-266 (2015). (Web of Science and Mathscinet)