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Introduction

Introduction
In the near future large flexible structures will be used in the space for
various uses (ISS, Earth observation, communication, etc.)

Pointing precision, shape control and integrity of the structures are prior
mission requirements

Large platforms, antennas, solar arrays, etc., of dimensions ranging from
some meters possibly up to various kilometers

To put in orbit these space structures at reasonable costs, their wieght has
to be minimized

It must be possible to compactly store these structures to diminish the costs
to put them in orbit (weight and payload space are crucial issues)

Their dynamic behavior can be difficult to predict analytically (main
problems arise from the unreliability or impracticality of structural tests on
Earth) and the performances of controls designed on the basis of perfect
model knowledge can be deteriorated leading to on–orbit behaviors which
can be substantially different from preflight ground test measures or analytic
predictions
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Introduction

When the structure dimensions increase, the frequencies of the first
natural modes decrease

The elastic modes of these light structures may be poorly damped,
and problem arise if their spectrum overlaps the controller bandwidth

For these reasons the controller design may be critic and important
is to ensure stability and performance
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Introduction

Important control problems

1. Fine alignment with prescribed attitude and precision (payload –
sensors, antennas, etc. – precise pointing)

2. Shape control and integrity of the structures (vibration damping)

3. Great angular displacements for re–orienting the structure (minimum
time with minimum fuel consumption)

The control requirements for both the problems are highly
demanding

In attitude control the structure translation is not considered

1. Center of mass translation influence only the spacecraft orbit

2. The spacecraft must stay in a “box”

3. Orbit corrections are performed periodically and when they occur the
normal pointing operations are interrupted
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Introduction

The required high control performance can be obtained only
considering the rigid–elastic dynamic coupling (nonlinear model)

Quick review of application of nonlinear control techniques to
attitude control

RIGID : [Dwyer, IEEE TAC 1984], [Monaco, Stornelli, 1985], [Monaco,
Normand-Cyrot, Stornelli, CDC 1986], [Dwyer, CDC 1987], [Wen,
Kreutz-Delgado IEEE TAC 1991], [Crouch, IEEE TAC 1984], [Aeyels,
S&CL 1985], [Lizarralde, IEEE TAC 1996], [Di Gennaro, Monaco,
Normand-Cyrot, Pignatelli, 1997]

FLEXIBLE : [Balas, AIAA JG&C 1979], [Joshi, 1989], [Vadali, 1990], [Di Gennaro, CDC
1996], [Di Gennaro, AIAA JGCD 1998], [Di Gennaro, JOTA 1998], etc.

Important aspect when applying nonlinear controls: state
measurement

Attitude position and velocity (rigid main body)

Modal position and velocity variables (elastic deflection of the flexible
appendages)
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Introduction

Modal position and velocity variables are important for fine pointing
and vibration damping – when they are not measured (no
appropriate sensors can be used) the control ensuring the
performance can not be implemented

Dynamic nonlinear controllers can reconstruct the modal variables

Dynamic controllers can also reconstruct main body angular velocity
(in case of sensor failure)
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Kinematics

Mathematical Model of a Flexible Spacecraft
In the derivation of the model we consider first the kinematic
equations and then the dynamic ones

Kinematics

Inertial frame RC = {O, x , y , z} and non–inertial frame
RΓ = {Ω, ξ, η, ζ} (body–fixed frame)

R¡

³

´

»
RC
x

y

z

It is usual to consider Ω ≡ O ≡ main body center of mass, and
RC ≡ RΓ at t = 0
RΓ determines the spacecraft attitude (i.e. its position in the space)
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Kinematics

When discussing a rotation, there are two possible conventions:

Rotation of vectors (the frame remains fixed!)

RC
z

y
x

Á

²rz0

r

r0

²rz

ry0 ry

r ′ = R̄(φ)r , R̄(φ) =

0

@

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

1

A

Rotation of a frame RΓ up to coincide with a frame RΓr (the vector
remains fixed!)

R¡
R¡r ³

´

´r

³ r

» » r

Á

´

²

´

³

Á
Á

³
r ´r

Á

r r ′ = R(φ)r , R(φ) =

0

@

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

1

A

Note that R̄T = R
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Kinematics

Considering rotations of RΓ of a positive (conterclockwise) angle φ
About the x–axis: The rotation matrix is

R1(φ) =

0

@

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

1

A

About the y–axis:

R2(φ) =

0

@

cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

1

A

About the z–axis:

R3(φ) =

0

@

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

1

A
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Kinematics

Observation: a matrix R(φ) is a linear transformation of vectors (i.e.
of the point pointed by r ), and can be interpreted as

1. operator which transforms a vector of RΓ into a vector of another frame
rotated w.r.t. RΓ.

This vector is rotated and we still want to express it in RΓ.

The angles are positive if clockwise (in fact, it is equivalent to rotate the
reference frame counterclockwise or rotate the vector clockwise)

2. operator which transforms vectors of RΓ into vectors of another frame
rotated w.r.t. RΓ. The vectors does not rotate, RΓ rotates (positively if
counterclockwise)

In the following we are interested in the first interpretation. Hence
the rotation will be positive if clockwise
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Outline Introduction Kinematics Dynamics The Control Problem Simulation Results Conclusions

Kinematics

Note that Ri (φ), i = 1, 2, 3 are

Orthogonal (R−1 = RT )

With eigenvalues λ1 = 1, λ2,3 = e±jφ = cosφ± j sinφ

With determinant equal to 1 (proper orthogonal matrix)

Transformations represented by such matrices (with unitary
eigenvalue) are rotation transformations of an angle φ about an axis
determined by the corresponding eigenvalue

Rv = v , λ = 1, v eigenvector

i.e. the axis is the subspace V generated by v , which is transformed
into itself during the rotation (namely V is invariant under rotations)

Euler Theorem Every rotation sequence leaving fixed a point in the
space is equivalent to a (certain) rotation of an angle Φ about a
(certain) axis passing through this point. The axis is called Euler
axis, and is determined by the unit vector ǫ, and Φ is called Euler
angle
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Kinematics – The Euler Angles

Euler angles
There exist various parameterizations of a rigid body kinematics

A minimal set of of parameters allowing the determination of the
attitude of a rigid body (spacecraft main body) in the space is that of
the Euler angles

Advantages of Euler angles:

have simple geometrical interpretation (rotations about the coordinate
axes)

can be used to determine the closed form solution of the kinematic
equations

can be used for spacecraft stabilized about the coordinate axes (small
angle maneuvers)

Disadvantages:

kinematics present singularities

transcendent functions appear in the kinematics and numeric
disadvantages

do not allow minimum time/optimal fuel consumption maneuversAttitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009
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Kinematics – The Euler Angles

To define the attitude matrix describing the rotation from (inertial)
frame RC to the spacecraft attitude, i.e. to the (non–inertial) frame
RΓ, one considers a sequence of 3 rotation (each about a
coordinate axis) bringing RC to superpose on RΓ

r1 = Ri(ϕ)r

r2 = Rj(ϑ)r1 = Rj(ϑ)Ri(ϕ)r

r ′ = r3 = Rk (ψ)r2 = Rk (ψ)Rj(ϑ)Ri(ϕ)r

Hence Rijk (ϕ, ϑ,ψ) = Rk (ψ)Rj(ϑ)Ri(ϕ)

i, j, k is the sequence of coordinate axes, about which the rotations
are performed

In total, there are 24 possible sequences

Attitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009
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Kinematics – The Euler Angles

A very used sequence is the 3–1–3 sequence

R313(ϕ, ϑ, ψ) = R3(ψ)R1(ϑ)R3(ϕ)

=
(

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

)(

1 0 0
0 cosϑ sin ϑ
0 − sinϑ cosϑ

)(

cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

)

=
(

cosψ cosϕ − cosϑ sinψ sinϕ cosψ cosϕ + cosϑ sinψ sinϕ sin ϑ sinψ
− sinψ cosϕ− cosϑ cosψ sinϕ − sinψ sinϕ + cosϑ cosψ cosϕ sinϑ cosψ

sinϑ sinϕ − sin ϑ cosϕ cosϑ

)

If R313(ϕ, ϑ, ψ) is known (from measurements, etc.) it is possible to
calculate the Euler angles (rij are the elements of R313)

ϑ = arccos r33, ϕ = − arctan
r31

r32
, ψ = arctan

r13

r23

Indetermination in ϑ: ϑ ∈ [−π, 0) or ϑ ∈ [0, π)

Once solved, ϕ, ψ are uniquely determined

If ϑ multiple of π: only ϕ+ ψ (ϑ even multiple), or ϕ− ψ (ϑ odd
multiple) are determined (usually sinϑ ≥ 0 or 0 ≤ ϑ < π is
considered)

Attitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009



Outline Introduction Kinematics Dynamics The Control Problem Simulation Results Conclusions

Kinematics – The Euler Angles

Another popular sequence is the 3–1–2 sequence (“yaw, roll, pitch”)

R312(ϕ, ϑ, ψ) =
(

cosψ cosϕ− sinϑ sinψ sinϕ cosψ sinϕ + sinϑ sinψ cosϕ − cosϑ sinψ
− cosϑ sinϕ cosϑ cosϕ sinϑ

sinψ cosϕ + sinϑ cosψ sinϕ sinψ sinϕ− sinϑ cosψ cosϕ cosϑ cosψ

)

In this case ϑ = arcsin r23, ϕ = − arctan r21
r22
, ψ = − arctan r13

r33

Indetermination in ϑ: ϑ ∈ [−π,−π2 ) ∪ [π2 , π) or ϑ ∈ [−π2 ,
π
2 )

unless ϑ is an odd multiple of π2 – in this case ϑ ∈ [−π2 ,
π
2 )

(cosϑ ≥ 0)

For small rotations

R312(ϕ, ϑ, ψ) ≃





1 ϕ −ψ
−ϕ 1 ϑ
ψ −ϑ 1




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Kinematics – The Euler Parameters

Euler parameters
Using the Euler axis ǫ and angle Φ (positive if clockwise) to
determine the attitude of the rigid main body

©
Q

P
H

P

O

P 0

P 0

r
r0

Q

©

²

Vector r is transformed into r ′ = r +
−−→
PP′ = r +

−→
PH +

−−→
HP′ with

−→
QP = −~ǫ× (~ǫ×

−→
OP) = −~ǫ× (~ǫ× ~v)

−→
PH = −(1− cos Φ)

−→
OP = (1− cos Φ)~ǫ× (~ǫ× r)

−−→
HP′ = −|

−−→
QP′| sin Φ

~ǫ×
−→
QP

|
−→
QP|

= − sin Φ ~ǫ×
−→
OP = − sin Φ ~ǫ× r
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Kinematics – The Euler Parameters

Hence: r ′ = r + (1 − cos Φ) ǫ× (ǫ× r) − sin Φ ǫ× r

Setting

ǫ× =

0

@

0 −ǫ3 ǫ2

ǫ3 0 −ǫ1

−ǫ2 ǫ1 0

1

A ←− dyadic representation of ǫ =

0

@

ǫ1

ǫ2

ǫ3

1

A

ǫ× v =

0

@

0 −ǫ3 ǫ2

ǫ3 0 −ǫ1

−ǫ2 ǫ1 0

1

A

0

@

v1

v2

v3

1

A

ǫ× (ǫ× v) =

0

@

0 −ǫ3 ǫ2

ǫ3 0 −ǫ1

−ǫ2 ǫ1 0

1

A

2 0

@

v1

v2

v3

1

A =

0

@

−(ǫ2
2 + ǫ2

3) ǫ1ǫ2 ǫ1ǫ3

ǫ1ǫ2 −(ǫ2
1 + ǫ2

3) ǫ2ǫ3

ǫ1ǫ3 ǫ2ǫ3 −(ǫ2
1 + ǫ2

2)

1

A

0

@

v1

v2

v3

1

A

one gets (ǫ̃2 = ǫǫT − I)

r ′ = R(Φ)r =
h

I + (1 − cos Φ) ǫ̃2 − sin Φ ǫ̃
i

r =
h

cos Φ I + (1 − cos Φ) ǫǫT − sin Φ ǫ̃
i

r

R(Φ) =

0

@

ǫ2
1 + (ǫ2

2 + ǫ2
3) cos Φ ǫ1ǫ2(1 − cos Φ) + ǫ3 sin Φ ǫ1ǫ3(1 − cos Φ) − ǫ2 sin Φ

ǫ1ǫ2(1 − cos Φ) − ǫ3 sin Φ ǫ2
2 + (ǫ2

1 + ǫ2
3) cos Φ ǫ1ǫ3(1 − cos Φ) + ǫ1 sin Φ

ǫ1ǫ3(1 − cos Φ) + ǫ2 sin Φ ǫ1ǫ3(1 − cos Φ) − ǫ1 sin Φ ǫ2
3 + (ǫ2

1 + ǫ2
2) cos Φ

1

A
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Kinematics – The Euler Parameters

This parameterization with the Euler axis uses 3 parametrers: Φ and
the 3 components of ǫ (with the constraint ‖ǫ‖ = 1)

Since ǫ̃ǫ = 0, one deduces that ǫ is the eigenvector (determines the
rotation axis)

R(Φ)ǫ =
[

I + (1 − cos Φ) ǫ̃2 − sin Φ ǫ̃
]

ǫ = ǫ

ǫ has the same components in RC and in RΓ

Attitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009
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Kinematics – The Unitary Quaternion

The Unitary Quaternion or Euler symmetric
parameters

Quaternions, introduced by Hamilton in 1843, and used by Whittaker
in 1937 to describe the rigid body motion, are defined by

q0 = cos
Φ

2
, q =





q1

q2

q3



 =





ǫ1

ǫ2

ǫ3



 sin
Φ

2

Constraint: q2
0 + q2

1 + q2
2 + q2

3 = q2
0 + ‖q‖2 = 1

Since
sin Φ = 2 cos Φ

2 sin Φ
2 , cos Φ = 1 − 2 sin2 Φ

2 ⇒ 1 − cos Φ = 2 sin2 Φ
2

R(Φ) = Rbi =

0

@

ǫ2
1 + (ǫ2

2 + ǫ2
3) cos Φ ǫ1ǫ2(1 − cos Φ) + ǫ3 sin Φ ǫ1ǫ3(1 − cos Φ) − ǫ2 sin Φ

ǫ1ǫ2(1 − cos Φ) − ǫ3 sin Φ ǫ2
2 + (ǫ2

1 + ǫ2
3) cos Φ ǫ1ǫ3(1 − cos Φ) + ǫ1 sin Φ

ǫ1ǫ3(1 − cos Φ) + ǫ2 sin Φ ǫ1ǫ3(1 − cos Φ) − ǫ1 sin Φ ǫ2
3 + (ǫ2

1 + ǫ2
2) cos Φ

1

A

=

0

@

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

1

A = I − 2(q0I − q̃)q̃
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Kinematics – The Unitary Quaternion

Hence
(

q0

q

)

describes the spacecraft attitude w.r.t. RC, and the

transformation matrix describing the rotation that brings RC onto RΓ
is Rbi

The quaternion is the generalization of an imaginary number
(Hamilton)

q = q0 + q1i + q2j + q3k =

(

q0

q

)

, q =





q1

q2

q3



 ,

where i, j, k are imaginary numbers such that

i2 =j2 = k2 = −1 ij = − ji = k

jk =−kj = i ki = − ik = j

and q0 is the real or scalar part and q = q1i + q2j + q3k is the
imaginary or vectorial part

Attitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009



Outline Introduction Kinematics Dynamics The Control Problem Simulation Results Conclusions

Kinematics – The Unitary Quaternion

Addition and subtraction are obvious

Multiplication of 2 quaternions q, e is defined as for complex
numbers (but the products of i, j, k are not commutative)

qr = qe =(q0 + q1i + q2j + q3k)(e0 + e1i + e2j + e3k) =

= (q0e0 − q1e1 − q2e2 − q3e3)+

+ (q0e1 + q1e0 + q2e3 − q3e2)i+

+ (q0e2 − q1e3 + q2e0 + q3e1)j+

+ (q0e3 + q1e2 − q2e1 + q3e0)k = (e0q0 − eT q,e0q + q0e − ẽq)

i.e.

„

qr0

qr

«

=

„

q0

q

« „

e0

e

«

=

0

B

B

@

q0e0 − q1e1 − q2e2 − q3e3

q0e1 + q1e0 + q2e3 − q3e2

q0e2 − q1e3 + q2e0 + q3e1

q0e3 + q1e2 − q2e1 + q3e0

1

C

C

A

=

„

q0 −qT

q q0I + q̃

« „

e0

e

«

=

„

e0 −eT

e e0I − ẽ

« „

q0

q

«
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Kinematics – The Unitary Quaternion

The matrices multiplying
(

q0

q

)

e
(

e0

e

)

are orthogonal, so that

(

e0

e

)

=

(

q0 qT

−q q0I − q̃

)(

qr0

qr

)

=

(

qr0 qT
r

qr −qr0I + q̃r

)(

q0

q

)

If q, e represent 2 rotations (defined by the matrices R1, R2), the
rotation defined by R2R1 is represented by the quaternion qr = qe

Note the order of the matrices and that of the quaternions

R(qr ) = R2(e)R1(q) ↔ qr = qe

Attitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009
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Kinematics – The Unitary Quaternion

Quaternion dynamics
To derive the quaternion dynamics, let

RC  RΓt →
„

q0(t)
q(t)

«

RC  RΓt+∆t →
„

q0(t + ∆t)
q(t + ∆t)

«

the quaternions representing the spacecraft attitude w.r.t. RC at
time t (reference RΓt ) and t + ∆t (RΓt+∆t )

Let

RΓt  RΓt+∆t →
„

e0

e

«

=

0

B

B

@

cos ∆Φe
2

ǫe sin ∆Φe
2

1

C

C

A

the error quaternion representing the spacecraft attitude at time
t + ∆t (i.e. of (RΓt+∆t )) w.r.t. RΓt

∆Φe = Φ(t + ∆t) − Φ(t) is the rotation performed in ∆t about ǫe
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Kinematics – The Unitary Quaternion

R¡t

RC R¡t+¢t

©(t) ¢©e

©(t+¢t)

q0(t)
q(t)

Ã         !

Ã                  !

q0(t+¢t)
q(t+¢t)

Ã    !

e0
e

For the quaternion multiplication law
(

q0(t + ∆t)
q(t + ∆t)

)

=

(

e0 −eT

e e0I − ẽ

)(

q0(t)
q(t)

)

=









cos ∆Φe
2 −ǫT

e sin ∆Φe
2

ǫe sin ∆Φe
2 cos ∆Φe

2 I − ǫ̃e sin ∆Φe
2









(

q0(t)
q(t)

)

Attitude Control of Spacecraft University of L’Aquila – L’Aquila – A.A. 2008–2009



Outline Introduction Kinematics Dynamics The Control Problem Simulation Results Conclusions

Kinematic Equations with the Unitary Quaternions

As ∆t → 0 and for the small angle approximations

cos
dΦ

2
≈ 1, sin

dΦ

2
≈

dΦ

2
=

1
2
|ω| dt

where

|ω(t)| = lim
∆t→0

∆Φe

∆t
= lim

∆t→0

Φ(t + ∆t) − Φ(t)
∆t

=
dΦ

dt
ω(t) = ǫe|ω(t)|

Hence

„

q0(t + dt)
q(t + dt)

«

=

0

B

B

@

1 −ǫT
e

1
2 |ω(t)| dt

ǫe
1
2 |ω(t)| dt I − ǫ̃e

1
2 |ω(t)| dt

1

C

C

A

„

q0(t)
q(t)

«

=

„

q0(t)
q(t)

«

+
1

2

„

0 −ωT (t) dt
ω(t) dt −ω̃(t) dt

«„

q0(t)
q(t)

«

.

⇒

(

q̇0(t)
q̇(t)

)

=









q0(t + dt)− q0(t)
dt

q(t + dt)− q(t)
dt









=
1
2

(

0 −ωT (t)
ω(t) −ω̃(t)

)(

q0(t)
q(t)

)
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Kinematic Equations with the Unitary Quaternions

Rearranging

(

q̇0

q̇

)

= 1
2

(

−qT

R(q)

)

ω = 1
2Q

T (q0, q)ω

QT =

(

−qT

R(q)

)

R(q0, q) = q0T + q̃

=





q0 −q3 q2

q3 q0 −q1

−q2 q1 q0





Note that ω is expressed in RΓ = RΓt

Note also that ω = 2Q(q0, q)

(

q̇0

q̇

)

This description is more appropriate for rest–to–rest maneuvers
((q0, q) expresses the attitude error)

Advantages of (nonminimal) parametrization, with respect to a
minimal one (Euler angles)

1. Absence of geometrical singularities
2. Attitude matrix is algebraic and does not depend on transcendental

functions
3. Easy quaternion multiplication rule for successive rotations
4. An attitude change is obtained by a single rotation about an

appropriate axis (fuel and time optimum)
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Kinematic Equations with the Unitary Quaternions

In the case of attitude tracking kinematics are expressed with error
quaternion

(

ė0

ė

)

= 1
2Q

T (e0, e)ωe ωe = ω − ωr

ωr has to be expressed in RΓ (as ω)

ωr = R(q0, q)RT (qr0, qr )µ(qr , q̇r )
R(q0, q) = I − 2(q0I − q̃)q̃

R(qr0, qr) = I − 2(qr0 − q̃r )q̃r

with
(

q̇r0

q̇r

)

=
1
2
QT (qr0, qr )µ(qr , q̇r ) ⇒ µ(qr , q̇r ) = 2Q(qr0, qr )

(

q̇r0

q̇r

)

.
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Dynamic Equations

Dynamic equations
The dynamic equation for a satellite with flexible elements, such as
solar panels, antennas, etc., can be obtained following the hybrid
coordinates approach proposed by Likins [Likins, 1970] and used in
[Monaco, Stornelli, CDC 1985], [Monaco, Normand-Cyrot, Stornelli,
1986], etc

Angular velocity dynamics (Euler theorem)

L̇ = −ω × L + ug + dr = −(ω̃e + ω̃r)L + ug + dr

L = total angular momentum (depends on the rigid and flexible
dynamics)

ug = control torque acting (gas jets)

dr = disturbances on the main body

ωe = ω − ωr (ωr = reference angular velocity)

ω× = ω̃ (dyadic representation)
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Dynamic Equations

Reaction wheels dynamics

Ω̇ = −ω̇ + J−1
r ur = −ω̇e + J−1

r ur − ω̇r

Ω = angular velocity of the reaction wheels with respect to the main
body

ur = reaction wheel driving torques

Jr = reaction wheel inertia matrix

Flexible appendage dynamics

Mf ξ̈ + Cf ξ̇ + Kf ξ = Hf + df

ξ = 3N × 1 vector of physical displacements flexible appendages
discretized with N particles

Mf , Cf Kf = 3N × 3N mass, damping and stiffness matrices

Hf = 3N × 1 vector of noninertial forces due to the main body rotation
(centrifugal, Coriolis, due to the non uniform angular velocity variation)

df = 3N × 1 vector of external disturbance on the flexible structure
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Dynamic Equations

mi = mass of the i th particle (i = 1, · · · ,N)

r0i = particle position in the undeformed structure w.r.t. RΓ

ξi = particle physical displacement

mi

»i

r0i

R¡

³

´

»
RC
x

y

z
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Dynamic Equations

Total angular momentum sum of “rigid” and “flexible contributions”

Lr = Jtω + JrΩ

Lf =

N
∑

i=1

(r0i+ξi)×mi ξ̇i+Lc
f =

N
∑

i=1

mi(r̃0i+ξ̃i)ξ̇i+

N
∑

i=1

mi(r̃T
0i ξ̃i+ξ̃

T
i r̃0i+ξ̃

T
i ξ̃i)ω

mi = mass of the i th particle (i = 1, · · · ,N)

r0i = particle position in the undeformed structure w.r.t. RΓ

ξi = particle physical displacement

Jt = Jmb + Jr +
N

P

i=1

`

J0i + mi r̃T
0i r̃0i

´

= inertia matrix of the whole

undeformed structure

Jmb = main body inertia matrix

J0i = particle inertia matrix (expressed in the frame attached to the
mass and with the axes parallel to the RΓ frame);
here J0i = 0 since the particles are considered punctiform

Torsional motion neglected (it can be considered in a similar way)
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Dynamic Equations

Noninertial forces Hf =







Hf1
...

HfN






on the particles

Hfi = mi

[

(r̃0i + ξ̃i)ω̇ − 2ω̃ξ̇i + ω̃T ω̃(r0i + ξi)
]

i = 1, · · · ,N

Model for the control law design obtained assuming
Small deformations
Coriolis and centrifugal effects Lc

f neglected
First Ne < N vibration modes (significant modes)

Hence Mf0, Cf0, Kf0 Ne × Ne matrices and

Mf 0ξ̈0 + Cf 0ξ̇0 + Kf 0ξ0 = Hf 0 + df 0
ξ0 =





ξ01
...

ξ0Ne





Hf≃ Hf 0 =

0

B

@

m1 r̃01
...

mNe r̃0Ne

1

C

A
ω̇ = −Mf 0δ0ω̇ δ0 =

0

B

@

δ01
...

δ0Ne

1

C

A
=

0

B

B

@

r̃T
01
...

r̃T
0Ne

1

C

C

A

df≃ df 0 =

0

B

@

df 01
...

df 0Ne

1

C

A
Mf 0 = diag{m1I, · · · ,mNe I}
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Dynamic Equations

Decoupling of the flexible dynamics (modal analysis)

η = T ξ Ne × 1 vector of the appendage modal displacements

T decouples the dynamics and is orthogonal (T−1 = T T )

TMf 0T T = I TKf 0T T = K = diag{ω2
1, · · · , ω

2
Ne}

Note that
TCf 0T T = C ≃ diag{2ζ1ω1, · · · , 2ζNeωNe}

the damping matrix C can be considered diagonal only in first
approximation
λi = ω2

i are the first Ne modal frequencies and ζi are the damping of
the Ne modes

Mf0ξ̈0 + Cf0ξ̇0 + Kf0ξ0 = Hf0 + df0 = −Mf0δ0ω̇ + df0

⇓

TMf0T−1 T ξ̈+ TCf0T−1 T ξ̇+ TKf0T−1 T ξ = −TMf0T T T δ0ω̇+ T df0

⇓

η̈+ Cη̇+ Kη = −T δ0ω̇+ Tdf0 = −δ(ω̇e + ω̇r)+ Df
T δ0 = δ

Tdf0 = Df
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Dynamic Equations

The flexible dynamics are hence

η̈ + Cη̇ + Kη = −T δ0ω̇ + Tdf0 = −δ(ω̇e + ω̇r ) + Df

K , C stiffness and damping matrices, δ the Ne × 3 coupling matrix

Also the angular momentum due to the flexible appendages is
approximated

Lf ≃
Ne
∑

i=1
mi r̃0i ξ̇i = δT

0 Mf0ξ̇ = δT
0 T T TMf0T T T ξ̇ = δT η̇

Hence

L = Lr + Lf = Jt(ωe + ωr) + JrΩ + δT η̇

The angular velocity dynamics rewrite → L̇ = −(ω̃e + ω̃r )L + ug + dr

Jt (ω̇e + ω̇r ) + Jr Ω̇ + δT η̈ = −(ω̃e + ω̃r )

"

Jt (ωe + ωr ) + Jr Ω + δT η̇

#

+ ug + dr
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Mathematical Model

The mathematical model of the flexible spacecraft is

ė0= −
1
2

eT
ωe ←− redundant Green = kinematics

ė=
1
2

R(e)ωe Blue = rigid dynamics

ω̇e= J−1
mb

h

− (ω̃e + ω̃r )(Jtωe + Jr Ω + δ
T z + Jtωr ) + δ

T (Cz + Kη) + ug − ur + Dr

i

− ω̇r

Ω̇= −ω̇e + J−1
r ur − ω̇r

η̇= z Red = flexible dynamics

ż= −δω̇e − (Cz + Kη)− δω̇r + Df

with Dr = dr − δT Df = dr − δT
0 df0, Jt = Jmb + Jr + δT δ

Sometime it is practical to substitute Ω̇ with

L̇ = −(ω̃e + ω̃r)L + ug + dr

The disturbances acting on the structure are supposed negligible for
simplicity
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Mathematical Model

In order to simplify the design of the control law, we use the variables

ξe = L− Jtωr = Jtωe + Jr Ω + δ
T
η̇ = (Jmb + Jr )ωe + JrΩ + δ

T
ψ

ψ = δωe + η̇

– ξe = error between total angular momentum and reference angular
momentum of the undeformed structure with idle reaction wheels

– ψ = difference between the total modal velocity δω + η̇ and the
reference velocity δωr , in modal coordinates

Therefore, the mathematical model of a flexible spacecraft can be
rewritten

ė0 = −
1
2

eT
ωe ←− redundant

ė =
1
2

R(e)ωe
↓

N(ωe , ξe, ωr ) = (ω̃e + ω̃r )(ξe + Jωr )

ω̇e = J−1
mb

h

− N(ωe, ξe, ωr ) + δ
T

“

Cψ + Kη − Cδωe

”

+ ug − ur

i

− ω̇r

ξ̇e = −N(ωe, ξe, ωr ) + ug − Jω̇r
„

η̇

ψ̇

«

= A
„

η

ψ

«

− ABδωe − Bδω̇r ← A =

„

0 I
−K −C

«

, B =

„

0
I

«
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Mathematical Model

When dealing with rest-to-rest maneuver (i.e. qr = 0, ωr = 0, ω̇r = 0)

q̇0 = −
1
2

qT
ω

q̇ =
1
2

R(e)ω

ω̇ = J−1
mb

h

− N(ω, ξ) + δ
T

“

Cψ + Kη − Cδω
”

+ ug − ur

i

ξ̇ = −N(ω, ξ) + ug
„

η̇

ψ̇

«

= A
„

η

ψ

«

− ABδω

with

ξ = L = Jtω+JrΩ+δT η̇ = (Jmb+Jr)ω+JrΩ+δTψ N(ω, ξ) = ω̃ξ
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The Control Problems

Problem Formulation
Rest–to–rest maneuvers: Drive RΓ to RΓr (constant), damping out
the induced flexible oscillations

lim
t→∞

q = 0 lim
t→∞

η = 0

Tracking maneuvers: RΓ tracks RΓr (variable), damping out the
induced flexible oscillations

lim
t→∞

e = 0, lim
t→∞

η = 0

Problems solved for σ(A) ∈ C
√√√− (non–negligible internal damping)
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The Rest–to–Rest Maneuver

Rest–to–Rest Maneuvers
State/Output–Feedback Controllers

Simple case: rigid spacecraft −→

q̇0 = −
1

2
qTω No reaction wheels

q̇ =
1

2
R(e)ω

ω̇ = J−1
mb

h

− ω × Jmbω + ug

iState Feedback. A simple proportional
and derivative control ug = −kpq − kdω,
with kp > 0, kd > 0 scalars, globally
asymptotically stabilizes a rigid spacecraft [Wie, AIAA JG 1985]

In fact, take the following Lyapunov function candidate

V = kp

[

(q0 − 1)2 + qT q
]

+
1
2
ωT Jmbω

⇓

V̇ = kpqTω + ωT
[

− ω × Jmbω−kpq − kdω
]

= −kdω
Tω ≤ 0

La Salle theorem:

x(t) → {q = 0, ω = 0} = E ⊆ E =
{

x ∈ IRn | V̇ = 0
}
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The Rest–to–Rest Maneuver

Flexible spacecraft: −→

q̇0 = −
1

2
qT
ω No reaction wheels

q̇ =
1

2
R(e)ω

ω̇ = J−1
mb

h

−ω×(Jmbω+δ
T
ψ)+δ

T
“

Cψ+Kη−Cδω
”

+ug
i

ξ̇ = −ω × (Jmbω + δT
ψ) + ug

„

η̇

ψ̇

«

= A
„

η

ψ

«

− ABδω

State Feedback. A similar
proportional control can be
designed (PD + terms
accounting for the flexible dynamics)

ug = −kpq − kdω−δ
T
»„

K
C

«

− P1AB
–„

η

ψ

«

P1 = PT
1 > 0

In fact
V = kp

h

(q0 − 1)2 + qT q
i

+
1

2
ωT Jmbω +

1

2

“

ηT ψT
”

P1

„

η

ψ

«

⇓

V̇ = ωT
h

kpq − ω ×
“

Jmbω + δTψ
”

+ δT
“

Cψ + Kη − Cδω
”

+ ug

i

+
“

ηT ψT
”

P1

"

A
„

η

ψ

«

− ABδω

#

= −ωT (kd I + δT Cδ)ω −
“

ηT ψT
”

Q1

„

η

ψ

«

≤ 0

⇒ La Salle: E =
{

x ∈ IRn | q = 0, ω = 0, η = 0, ψ = 0
}
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The Rest–to–Rest Maneuver

Output Feedback. Modal position and velocity are often not
measurable (sensors placed along the flexible structure necessary)
Extend the previous controller: estimates η̂, ψ̂ of η, ψ
Lyapunov function candidate P2 = PT

2 > 0

V = V +
1

2

“

eT
η eT

ψ

”

P2

„

eη
eψ

«

, eη = η − η̂, eψ = ψ − ψ̂

⇓

V̇ = V̇ +
“

eT
η eT

ψ

”

P2

"

A
„

η

ψ

«

− ABδω −

 

˙̂η
˙̂
ψ

!#

The control law is now slightly changed

u = −kpq − kdω − δT
»„

K
C

«

− P1AB
–„

η̂

ψ̂

«

and the update law is chosen
 

˙̂η
˙̂
ψ

!

= A
„

η̂

ψ̂

«

− ABδω + P−1
2

"

„

K
C

«

− P1AB

#

δω

⇒ V̇ = −ωT (kd I + δT Cδ)ω −
“

ηT ψT
”

Q1

„

η

ψ

«

−
“

eT
η eT

ψ

”

Q2

„

eη
eψ

«

≤ 0

⇒ La Salle ⇒ global stability
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The Rest–to–Rest Maneuver

Tracking Maneuvers
State/Output–Feedback Controllers

La Salle theorem can not be applied – Barbalat theorem instead

State Feedback. Take the PD–like controller

ug = −kpe − kdωe −
1

2
JmbR(e)ωe + N − δT (Cψ + Kη − Cδωe) + Jmbω̇r

designed using

V (t, x) = (kp +kd )
h

(e0 −1)2 +eT e
i

+
1

2
(e+ωe)T Jmb(e+ωe)+

1

2

“

ηT ψT
”

P
„

η

ψ

«

Deriving

V̇ (t, x) = (kp + kd )eTωe + (e + ωe)T

"

1

2
JmbR(e)ωe − N̄(ωe, ψ, ωr )

+ δT (Cψ + Kη − Cδωe) + ug − Jmbω̇r

#

+
“

ηT ψT
”

P

"

A
„

η

ψ

«

− ABδωe − Bδω̇r

#

ug
= − kp‖e‖2 − kd‖ωe‖

2 −

‚

‚

‚

‚

η

ψ

‚

‚

‚

‚

2

Q
−
“

ηT ψT
”

PABδωe −
“

ηT ψT
”

PBδω̇r

≤ −λm‖x‖2 + α‖ω̇r‖‖x‖

Hence ‖x‖ → 0 (Barbalat) Show the details of the proof Skip the details
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The Rest–to–Rest Maneuver

Proof. We suppose that ωr ∈ L∞[0,∞) and ω̇r ∈ L2[0,∞) ∩ L∞[0,∞)

Integrating both sides of V̇ (t, x) − λm‖x‖2 + α‖ω̇r‖‖x‖ we have

V (t, x) − V (0, x0) ≤ −λm

Z t

0
‖x(τ)‖2dτ + α

Z t

0
‖ω̇r (τ)‖‖x(τ)‖dτ ≤

Schwarz inequality −→ ≤ −λm

Z t

0
‖x(τ)‖2dτ + α

"

Z t

0
‖ω̇r (τ)‖

2dτ

#1/2"
Z t

0
‖x(τ)‖2dτ

#1/2

and considering the limit as t tends to infinity (‖ · ‖2 is the L2-norm) one has

V (∞, x) − V (0, x0) ≤ −λm‖x‖2
2 + α‖ω̇r‖2‖x‖2

Since V (∞, x) ≥ 0,

λm‖x‖2
2 − α‖ω̇r‖2‖x‖2 ≤ V (0, x0) − V (∞, x) ≤ V (0, x0)

and because ω̇r ∈ L2[0,∞) ∩ L∞[0,∞) we obtain the bound

‖x‖2 ≤
1

p

λm

"

V (0, x0) +
α2

4λm
‖ω̇r‖

2
2

#1/2

+
α

2λm
‖ω̇r‖2 ⇒ x ∈ L2[0,∞)

It follows that V (∞, x) < ∞, i.e. V (t, x) is uniformly bounded in t along the solution
trajectories and, therefore, x is uniformly bounded
Also ẋ is uniformly bounded and, hence, x is uniformly continuous. Since x is a
uniformly continuous function in L2[0,∞), we have that (Barbalat theorem)

lim
t→∞

x = 0 and in particular lim
t→∞

e = 0, lim
t→∞

η = 0
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The Rest–to–Rest Maneuver

Remark. The control uPD is sufficient to solve the attitude tracking
when ωr , ω̇r ∈ L2[0,∞) ∩ L∞[0,∞). In fact, taking

V (t , x) = (kp + kd)
[

(e0 − 1)2 + eT e
]

+
1
2

(eT + ωT
e )Jmb(e + ωe)

+
1
2

(

ηT ψT
)

[

P +

(

K 0
0 I

)

]

(

η
ψ

)

finally one works out (α1, α2 are appropriate constants)

V̇ (t , x) ≤ −λm ‖x‖2
+
(

α1 ‖ωr‖ + α2 ‖ω̇r‖
)

‖x‖ ⇒ lim
t→∞

x = 0

The PD controller is robust in the sense that it does not need the
parameter knowledge

Moreover, can be used when measurements of the modal variables
are not available

Nevertheless, the gains kp, kd must be higher (no good in space)
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The Rest–to–Rest Maneuver

Output Feedback. If the modal variables η, ψ are not measured, use
the same control but with estimates η̂, ψ̂

ug = −kpe−kdωe −
1
2

JmbR(e)ωe + N̂ − δT (Cψ̂+K η̂−Cδωe)+Jmbω̇r

The design of the update controls ˙̂η, ˙̂ψ is based on

V(t , x , eη, eψ) = V (t , x) +
1
2

(

eT
η eT

ψ

)

Γ−1
(

eη
eψ

)

Analogously to the previous case one eventually gets
(

˙̂η
˙̂ψ

)

= A
(

η̂

ψ̂

)

− ABδωe − Bδω̇r + Γ

(

K δ
δ(ω̃e + ω̃r ) + Cδ

)

(e + ωe)

with
N̂ = (ω̃e + ω̃r )(Jmbωe + δT ψ̂ + Jsωr )
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The Rest–to–Rest Maneuver

Reaction wheels
When using reaction wheels the methods substantially is the same

1 Lyapunov V (t, x) =

(kp +kd )
h

`

e0−1
´2

+eT e
i

+ 1
2
`

e+ωe
´T Jmb

`

e+ωe
´

+ 1
2

“

ηT ψT
”

P
„

η

ψ

«

+ 1
2 ξ

T
e ξe

2 Choose appropriately

ur = −
h

− kpe− kdωe −
1
2 JmbR(e)ωe + N − δT (Cψ+ Kη−Cδωe)+ Jmbω̇r

i

+ ξ̃eJωr

N = (ω̃e + ω̃r )(ξe + Jωr )

3 Calculate V̇ (t, x) ≤ −λm‖x‖2 + α0ϕ(ωr , ω̇r )‖x‖
4 Under stronger hypothesis ωr , ω̇r ∈ L2[0,∞) ∩ L∞[0,∞)

5 Barbalat lim
t→∞

x = 0, while lim
t→∞

Ω = J−1
r Jωr (obvious)

6 When η, ψ are not measured use estimates

ur = −
h

− kpe− kdωe −
1
2 JmbR(e)ωe + N̂ − δT (Cψ̂+ K η̂−Cδωe)+ Jmbω̇r

i

+ ˜̂
ξeJωr

N̂ = N(ωe , ξ̂e, ωr ) = (ω̃e + ω̃r )(ξ̂e + Jωr ) ξ̂e = (Jmb + Jr )ωe + Jr Ω + δT ψ̂

7 Prove stability using V(t, x, eη , eψ) = V (t, x) + 1
2 ξ

T
e ξe + 1

2

“

eT
η eT

ψ

”

Γ−1
„

eη
eψ

«

8 Get

 

˙̂η
˙̂
ψ

!

= A
„

η̂

ψ̂

«

− ABδωe − Bδω̇r + Γ

„

Kδ
δ(ω̃e + ω̃r ) + Cδ

«

(e + ωe)

9 Barbalat again
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Simulation Results

Simulation Results (Tracking Maneuvers)
The mathematical model of the spacecraft has been implemented
on a digital computer

Spillover has been studied by considering a model with more elastic
modes than in the model used to derive the control law

Material Aluminum Shear modulus 2.5 1010 N/m2

Length 20 m rx 1.5 m

Density 2.76 103 Kg/m3 ry 2.3 m

Young modulus 6.8 1010 N/m2 rz −0.8 m

Characteristics of the flexible appendage
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Simulation Results

Three elastic modes result from the modal analysis of the structure,
with natural frequencies ωn1 = 19.38, ωn2 = 77.98, ωn3 = 157.22
rad/s and dampings ζ1 = 0.0001, ζ2 = 0.00005, ζ3 = 0.00001

Only the first two modes have been considered in the controller
design

Coupling matrix δ

δ =





14.3961 8.37634 −5.29354
−20.4871 7.59188 −6.08014
4.50401 11.5222 −12.6033



 Kg1/2m

A payload of 30 Kg is present at the tip of the appendage

The spacecraft is characterized by an inertia matrix

Jmb =





400 3 10
3 300 12
10 12 200



 Kg m2
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Simulation Results

Reference trajectory described as

qr0 = cos
φr

2
, qr =





cos 0.5 t
sin 0.5 t

0



 sin
φr

2
, φr = sin γt , γ = 0.035 rad/s

Trajectory corresponding to a spiral maneuver which, starting from
the initial spacecraft attitude, diverges when φr increases and
converges when φr decreases

RΓ ≡ RΓr for t = 0, i.e. e0(0) = 1, ei(0) = 0 i = 1, 2, 3; the initial
error angular velocity is ωe(0) = ωr (0)

η(0) = 0, ψ(0) = δωe(0) + η̇(0) = δωr (0) (undeformed flexible
appendages)
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Simulation Results

A comparison between the controllers with gas gets (state feedback
and output feedback) has been conducted

For both the controllers kp = 105, kd = 3 × 105

For the dynamic controller the gain matrix Γ has been set equal to
the identity matrix, while the initial conditions for the estimated
modal variables are η̂(0) = 0, ψ̂(0) = 0

The simulations are rendered more realistic by respecting the fact
that the gas jets work in a “bang–bang” manner, with saturation
values at 60 Nm. This renders harder the control task
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Simulation Results

A PD controller is capable to track the desired trajectory when the
angular velocity is low, but when it increases and the influence of the
flexibility becomes too high and unstable, the input saturation
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Simulation Results

The state feedback controller is capable to track the reference. The
control effort (norm of ug) similar to the PD case
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Simulation Results

Analogous result for the output feedback controller. η and ψ are well
estimated
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Conclusions
Control laws for rigid/flexible spacecraft can be determined with the
Lyapunov approach

When elastic variables are not known, dynamics in the controller
ensure stability

The absence of measurements of the modal variables is a clear
advantage for practical implementations

The method can be extended to the case of ω not measured

Extensions are also possible with estimation of perturbations

The knowledge of system parameters, in particular those describing
the elastic motion (natural frequencies and damping ratios), is an
obvious limitation, since they are not usually known accurately

Adaptive robust controllers can avoid this drawback
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Conclusions

Thank You!

See details in
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