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On Regulation Under Sampling

B. Castillo, S. Di Gennaro, S. Monaco, and D. Normand-Cyrot

Abstract—The paper deals with linear and nonlinear regulation under
sampling. It is shown that digital solutions exist under assumptions
which are closely related to the existence of robust solutions to the
continuous problem. Approximated solutions are computed starting from
the continuous ones.

Index Terms—Nonlinear systems, regulation problem, sampled systems.

I. INTRODUCTION

Regulation provides an elegant framework for setting asymptotic
disturbance compensation and tracking. Starting from the fundamen-
tal linear results in [6], the nonlinear problem was first studied in [9],
while the discrete-time problem was recently addressed in [2].

On the basis of the results there stated, hereinafter the authors study
the regulation problem for a discrete-time system resulting from the
sampling of a continuous-time one. Assuming the solvability of the
continuous-time regulation problem, under which extra conditions
does a solution exist to the sampled problem? It is shown that the ex-
istence of a continuous robust solution suffices to solve the problem;
robustness is preserved in the linear context, while the solution of
the nonlinear problem satisfies a property which is conjectured to be
necessary for robustness. Moreover, an approximated solution at any
prefixed order can be computed starting from the continuous solution.

The result obtained is quite intuitive and suggests that one think of
the sampled problem as an “approximation” of the given continuous
problem, so requiring robustness. As a matter of fact, the sampled
system can be considered perturbed with respect to the continuous
dynamics, since references and perturbations are approximated by
piecewise constant signals. It must be pointed out that the statement
of the problem in a digital context, where references and perturbations
are assumed piecewise constant, appears to be coherent with respect
to references which are usually generated by digital devices but may
be not satisfactory with respect to perturbations.

Some basic results on regulation and the problem statement are the
subjects of the next section. In Section III the linear sampled regu-
lation problem is studied. The result stated provides an elementary
introduction to the nonlinear problem which is developed, following
the same lines, in Section IV.

II. SOME BASIC FACTS AND PROBLEM FORMULATION

The nonlinear system usually considered for studying the regulation
problem is the following:

_x = f(x; u; w)

_w = s(w)

e = h(x;w) (1)
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x 2 IRn; u 2 IRm are the state and input variables respectively,f; s;

andh are analytic functions of their arguments. The signalw takes
into account the external disturbances and references modeled by an
exosystemdefined onIRs, while e denotes the tracking error and the
effect of external disturbances. It is assumed that(x;w) = (0; 0) is
an equilibrium.

For this system, the state feedback regulator problem (SFRP)
consists of finding, if possible, a controlleru = �(x; w) such that:

(SC) x = 0 is asymptotically stable for the closed-loop unper-
turbed dynamics_x = f(x; �(x; 0); 0);

(RC) for each initial condition(x(0); w(0)) in a neighborhoodU
of the origin, limt!1 e(t) = 0.

The linear approximation of (1) is the system

_x = Ax +Bu+ Pw

_w = Sw

e = Cx+Qw (2)

where

A =
@f

@x
; B =

@f

@u
; P =

@f

@w

S =
@s

@w
w=0

; C =
@h

@x
; Q =

@h

@w
:

A solution to the nonlinear continuous-time SFRP, as proposed in
[9], is based on the following assumptions.

(H1) The pair(A;B) is stabilizable.
(H2) The equilibriumw = 0 of the exosystem is stable in the

sense of Lyapunov, andS has all the eigenvalues on the
imaginary axis.

Theorem 1 [9]: Under (H1) and (H2), the nonlinear SFRP is
locally solvable if and only if there exist two maps�(w) and
(w)
at leastC2, defined in a neighborhood ofw = 0 with �(0) = 0 and

(0) = 0 which solve the regulator equations

@�

@w
s(w) = f(�(w); 
(w); w)

0 = h(�(w);w): (3)

The control law takes the formu = �(x; w) = 
(w)+K(x��(w)),
with K any matrix such that�(A + BK) 2 CI�.

In the linear context, where the controller takes the formu =

K1x + K2w, the existence of a solution is set in the more general
framework of antistable signalsw. More precisely,(H2) is replaced
by the following.
(HL

2 ): The eigenvalues ofS are in the closed right-side of the
complex plane.

Theorem 2 [6]: Under(H1); (H
L

2 ); the linear SFRP is solvable if
and only if there exist two matrices(�;�) solutions of

�S = A� +B� + P

0 = C�+Q: (4)

The control law takes the formu = �w+K(x��w), with K any
matrix such that�(A + BK) 2 CI�.

As far as discrete-time control systems are concerned, a nonlinear
result was stated in [2]. Given

xD(k + 1) = fD(xD(k); uD(k);wD(k))

wD(k+ 1) = sD(wD(k))

eD(k) = h(xD(k); wD(k)) (5)
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the nonlinear discrete-time SFRP consists of finding a controller
of the form uD(k) = �D(xD; wD); �D(�; �) a smooth map with
�D(0; 0) = 0, such that:

(SD) x = 0 is locally exponentially stable for the closed-loop
unperturbed dynamics

x(k + 1) = fD(xD; �D(xD; 0); 0);

(RD) for each initial condition(xD(0);wD(0)) in a neighborhood
U of the origin, limk!1 eD(k) = 0.

The linear approximation of (5) takes the form

xD(k + 1) = ADxD(k) +BDuD(k) + PDwD(k)

wD(k+ 1) = SDwD(k)

eD(k) = CDxD(k) +QDwD(k) (6)

where

AD =
@fD

@xD
; BD =

@fD

@uD

PD =
@fD

@wD
; SD =

@sD

@wD w =0

CD =
@hD

@xD
; QD =

@hD

@wD
:

Under assumptions which are the discrete-time versions of(H1)

and (H2), denoted by(HD

1 ) and (HD

2 ), the following result holds
[2].

Theorem 3 [2]: Under (HD

1 ) and (HD

2 ), the nonlinear discrete-
time SFRP is locally solvable if there exist two maps�D(wD) and

D(wD), at leastC2, defined in a neighborhood ofwD = 0 with
�D(0) = 0 and
D(0) = 0, which solve the regulator equations

�D(sD(wD)) = fD(�D(wD);�D(�D(wD);wD); wD) (7a)

0 = h(�D(wD);wD): (7b)

The control law takes the formuD(k) = �D(xD; wD) = 
D(wD)+

KD(xD � �D(wD)), with KD any matrix such thatAD + BDKD

has eigenvalues inside the unitary circle.
With reference to the class of antistable referenceswD, i.e., the

discrete-time version of(HL

2 ), say(HDL

2 ), the following well-known
linear result is obtained.

Theorem 4: Under(HD

1 ), (HDL

2 ) the linear discrete-time SFRP is
solvable if and only if there exist two matrices(�D;�D) solutions of

�DSD = AD�D +BD�D + PD

0 = CD�D +QD: (8)

The control law takes the formuD(k) = �DwD+KD(xD��DwD),
whereKD is any matrix such thatAD + BDKD has eigenvalues
inside the unitary circle.

The present paper is devoted to the study of the regulator problem
for sampled systems. More precisely, on the basis of the recalled
results, it will be shown that under some additional conditions,
Theorems 3 or 4 apply to the discrete-time systems resulting from
the sampling of continuous-time ones satisfying Theorems 1 or 2.
The underlying hypothesis under which we study the existence of
digital solutions is thatw may be assumed constant on the sampling
time intervals.

With this in mind, the problem statement is the following:the
(robust) sampled SFRP is solvable if there exists a positive number�0
such that for almost all sampling intervals� 2 (0; �0], the (robust)
discrete-time SFRP is solvable for the discrete-time sampled system.

The robustness of the solution considered here reflects the effec-
tiveness of the controller with respect to mismatches of the parameters

of the given plant as in [6] and [3] in linear and nonlinear context,
respectively.

III. T HE REGULATION PROBLEM FOR SAMPLED LINEAR SYSTEMS

Consider the sampled system associated to (2), forced by piecewise
constantsu andw on time intervals of amplitude�; it takes the form
(6) with

AD = e
�A
; BD =

�

0

e
sA
Bds =

1

i=1

�i

i!
A
i�1

B; CD = C

SD = e
�S
; QD = Q; PD =

1

i=0

�i+1

(i+ 1)!
Pi (9)

wherePi can be iteratively computed according to the relationships

P0 = P; Pi = APi�1 + PS
i
; i = 1; 2; � � � : (10)

Starting from a linear continuous-time solution, we discuss the
existence of a solution to the associated sampled linear problem. To
this aim, we need the following assumptions which, as well known,
ensure the existence of a robust solution to the linear problem in the
sense of Francis [6].

(HL

3 ) For all � 2 �(S);

rank
A� �I B

C 0
= n+ p:

(HLD

3 ) For all � 2 �(SD);

rank
AD � �I BD

CD 0
= n+ p:

Next theorem states that the existence of a robust solution implies
the solvability of the robust sampled linear problem.

Theorem 5: Under (H1); (H
L

2 ); and (HL

3 ) the robust sampled
linear SFRP is solvable.

Proof: First of all we note that(H1) implies(HD

1 ) for almost all
� [12]; moreover,(HL

2 ) implies (HLD

2 ). The proof will be achieved
by proving that under(HL

3 ) there exists a solution to (8) which admits
an expansion in powers of� around the continuous-time solution
(�0;�0). With this in mind, let us consider the following equations
of the form (4):

�iS = A�i +B�i + ~Pi i = 0; 1; 2; � � �

0 = C�i + ~Qi (11)

with ~Pi and ~Qi given by

~P0 = P0 = P; ~Q0 = Q; ~Qi = 0

~Pi =
1

i+ 1
Pi +

i+1

h=2

i+ 1

h

� A
h
�i+1�h + A

h�1
B�i+1�h � �i+1�hS

h

i � 1: (12)

Because of(HL

3 ), these equations can be solved in the unknowns
�i’s and�i’s. Let us now consider the following power expansions
around(�0;�0):

�D =

1

i=0

�i

i!
�i; �D =

1

i=0

�i

i!
�i (13)

which are convergent for� small enough, and the control law

uD(k) = �DwD +KD (xD ��DwD) (14)

whereKD is such that(AD + BDKD ) has eigenvalues inside
the unitary circle. SinceuD(k) = �DwD when xD = �DwD, it
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is a matter of computations to verify that (13) solves (8). In fact,
substituting (13) into (8), one has

1

i=0

�i

i!
�iSD = AD

1

i=0

�i

i!
�i +BD

1

i=0

�i

i!
�i + PD

0 = CD

1

i=0

�i

i!
�i +QD:

ExpandingAD; BD; PD; SD; CD; andQD in powers of� and
regrouping the coefficients in the same power of�, one recovers for
any i � 0, the previous equations (11). Since(HL

3 ) implies (HLD
3 ),

the robustness of the solution follows.
It is interesting to point out that by approximating the power

expansions (13) by means of finite ones, approximated solutions are
obtained as shown hereinafter, where signalsw of bounded amplitude
are considered. Let

�
r
D =

r

i=0

�i

i!
�i; �

r
D =

r

i=0

�i

i!
�i (15)

with

�D = �
r
D +O(�

r+1
); �D = �

r
D +O(�

r+1
) (16)

whereO(�r+1) contains the higher order remaining terms.
Corollary 1: Under the conditions of Theorem 5, for any integer

r, the control law

u
r
D(k) = �

r
DwD +KD xD � �

r
DwD (17)

guarantees thatlimk!1 keD(k)k = O(�r+1), for any wD of
bounded amplitude.

Proof: The controller (17) induces a map~� which satisfies

~�SD = (AD +BDKD )~� +BD �
r
D �KD �

r
D + PD

while substituting (13) into the first equation of (8), and considering
(16) one obtains

�
r
DSD � (AD +BDKD )�

r
D �BD �

r
D �KD �

r
D � PD

= O(�
r+1

)

so that, by the Center Manifold Theorem [1] one gets~� =

�r
D + O(�r+1). As far as the error is concerned, note first that

limk!1 kxD(k)��r
DwD(k)k � limk!1(kxD(k)� ~�wD(k)k+

k~� � �r
DkkwD(k)k). Since limk!1 kxD(k) � ~�wD(k)k = 0,

we have that limk!1 kxD(k) � �r
DwD(k)k � `1%�

r+1 for
a positive constant̀ 1. Now, since 0 = CD�D + QD =

CD�
r
D + QD + O(�r+1), we have

keD(k)k= kCDxD +QDwDk

� kCDkkxD � �
r
DwD(k)k+ kCD�

r
D +QDkkwD(k)k

� `2kxD ��
r
DwD(k)k+ `1%�

r+1

where`2 = kCDk. Taking the limits, one getslimk!1 keD(k)k �

%`�r+1, with ` = `1(1 + `2) an appropriate constant.

IV. THE REGULATION PROBLEM FOR SAMPLED NONLINEAR SYSTEMS

In this section we consider the sampling of the nonlinear system
(1), forced by piecewise constantu and w on time intervals of
amplitude�. It takes the form (5) with

fD(�; xD(k); uD(k); wD(k))

= x + �(Lf + Ls)(x)

+
�2

2!
(Lf + Ls)

2
(x) + � � �

=

1

i=0

�i

i!
(Lf + Ls)

i
(x) = e

�(L +L )
(x)

sD(�; wD(k))

= w

w (k)

+ �Ls(w)

w (k)

+
�2

2!
+ L

2
s(w)

w (k)

� � �

=

1

i=0

�i

i!
L
i
s(w)

w (k)

= e
�L

(w)

w (k)

where the explicit dependence on� has been put in evidence, and
where(Lf+Ls)

i is theith application ofLf+Ls :=
@(�)

@x
f+

@(�)

@w
s.

As in the linear case, one seeks a solution(�D(wD); 
D(wD))

fulfilling (7), under the hypothesis of solvability of the SFRP for
the continuous system (1). To this end, let us consider the following
extra condition [3], [4].

(H3) For every pair of analytic functions~f(x; u; w) and~h(x;w)
computed in the Appendix, there exist in a neighborhood
of (x;w) = 0 two mappings�(w); 
(w) such that the
following equations are satisfied:
@�

@w
s(w) = A�(w) +B
(w) + ~f(�(w); 
(w); w)

0 = C�(w) + ~h(�(w);w):

(18)

Hypothesis(H3) represents the nonlinear counterpart of(HL
3 ), in

the sense that it is a necessary condition for the existence of a robust
controller [3], [4].

As a matter of fact, rewriting (1) as

_x = f(x; u; w) = Ax +Bu+ f2(x; u; w)

_w = s(w)

e = h(x; w) = Cx+ h2(x;w)

the underlying idea is to substitute a solution expressed as a power
expansion of� around the continuous-time solution(�0; 
0) into (7),
to get equations of the form (18).

Theorem 6: Under(H1); (H2); and(H3); the nonlinear sampled
SFRP is locally solvable.

Proof: As in the linear case,(H1) implies (HD
1 ) for almost all

�, and(H2) implies (HD
2 ). Referring the reader to the appendix for

the expression of~fi(�; �; �) and~hi(�; �), by introducing the equations

@�i(w)

@w
s(w) = A�i(w) +B
i(w) + ~fi(�i(w); 
i(w); w) (19a)

0 = C�i(w) + ~hi(�i(w);w) (19b)

solvable with respect to�i and
i because of(H3), we show that a
solution to (7) can be expressed as a power expansion in� around
the continuous-time solution(�0; 
0), making use of the solutions
(�i; 
i) of (19). To do so, let us consider the following series:

�D(�; wD) =

1

i=0

�i

i!
�i(wD); 
D(�; wD) =

1

i=0

�i

i!

i(wD)

(20)
convergent for� small enough, with�i(�) and 
i(�) solutions of
(19). Let us define the control law

uD(k) = 
D(�; wD) +KD (xD � �D(�;wD))

= �D(�; xD; wD) (21)

with KD such that(AD + BDKD ) has eigenvalues inside the
unitary circle. Noting that�D(�; �D(�;wD); wD) = 
D(�; wD),
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substitution of (20) into (7) results in
1

i=0

�i

i!
�i e

�L
wjw =fD �;

1

i=0

�i

i!
�i(wD);

1

i=0

�i

i!

i(wD); wD

(22a)

0 = h

1

i=0

�i

i!
�i(wD);wD : (22b)

By equating the terms of the same power in�, (19) is iteratively
derived (see the appendix for computational details), thus proving
that the solution to (7) is given by (20).

Remark 1: For i = 0 from (19a), (19b) one recovers the
continuous-time solution

@�0(w)

@w
w

s(wD)

= f(�0(wD); 
0(wD); wD)

= A�0(wD) +B
0(wD) + ~f0(�0(w); 
0(w); w)jw (23a)

0 = h(�0(wD);wD) = C�0(wD) + ~h0(�0(w);w)jw (23b)

with ~f0(�0(w); 
0(w); w) = f2(�0(w); 
0(w); w) and ~h0
(�0(w);w) = h2(�0(w);w). For i = 1 one gets

@�1(w)

@w
w

s(wD) = A�1(wD) +B
1(wD)

+ ~f1(�1(w); 
1(w); w)jw (24a)

0 =
@h

@x
�1(wD)

= C�1(wD) + ~h1(�1(w);w)jw (24b)

where ~f1 and ~h1 take the form

~f1(�1(w); 
1(w); w) =
@f2(x; u; w)

@x
�1(w)

+
@f2(x; u; w)

@u

1(w)

+
1

2
Lff(x; u; w)

~h1(�1(w);w) =
@h2(x;w)

@x
�1(w):

It can be easily verified that~fi and~hi particularize to (12) iff and
h are linear.

Let us now consider as in the linear context the problem of com-
puting approximated solutions. It is worthy to point out the relevance
of this problem since closed forms for the sampled dynamics do not
exist in general in the nonlinear context [5]. Let

�
r
D(�; wD) =

r

i=0

�i

i!
�i(wD); 


r
D(�; wD) =

r

i=0

�i

i!

i(wD)

(25)
with

�D(�; wD) = �
r
D(�; wD) + '1(�; wD)


D(�; wD) = 

r
D(�; wD) + '2(�; wD)

where'i(�; wD) for i = 1; 2 contain the remaining higher order
terms.

Corollary 2: Under the conditions of Theorem 6, for any integer
r the control law

u
r
D(k) = 


r
D(�; wD) +KD xD � �

r
D(�; wD)

= �
r
D(�; xD; wD) (26)

guarantees thatlimk!1 keD(k)k = O(�r+1).

Proof: Under the hypotheses of Theorem 6, a solution (20)
exists, and hence functions in (25) and the control (26) are com-
putable. The controller (26) induces aC2 map ~�(�; wD) such that
limk!1 kxD(k) � ~�(�; wD)k = 0 and [1]

~�(�; sD(�; wD)) = fD �; ~�(�; wD); �
r
D(�; ~�(�; wD); wD); wD :

If we now consider the exact solution�D(�; wD); 
D(�; wD); given
by (20), and if the control (21) is applied, for the right-hand term
of (7a) we have

�D(�; sD(wD)) = �
r
D(�; sD(wD)) + '1(�; sD(wD))

= �
r
D(�; sD(wD)) +O �

r+1
; wD

while the left-hand term of (7a) can be rewritten as

fD(�; �D(�;wD); �D(�; �D(�; wD); wD); wD)

= fD �; �
r
D(�; wD); �

r
D �; �

r
D(�; wD); wD ; wD +  (�; wD)

for an appropriate function (�; wD) = O(�r+1; wD), since the
control (21) can be expressed asuD(k) = 
rD(�; wD)+'2(�; wD)+

KD (xD � �rD(�; wD) � '1(�; wD)) = urD(k) + O(�r+1; wD).
Hence, putting� explicitly in evidence, (7a) can be written as

�
r
D(�; sD(wD))� fD �; �

r
D(�; wD); �

r
D �; �

r
D(�; wD); wD ; wD

= O �
r+1

; wD : (27)

Then, from the Center Manifold Theorem [1]~�(�; wD) = �rD
(�; wD) + �(�; wD), with �(�; wD) = O(�r+1; wD). Now, as in the
linear case, sincelimk!1 kxD(k)�~�(�; wD)k = 0 andwD(k) < %,
one has

lim
k!1

kxD � �
r
D(�; wD)k � lim

k!1
kxD � ~�(�; wD)k

+ lim
k!1

k~�(�; wD)� �
r
D(�; wD)k

= lim
k!1

k�(�; wD)k

� max
kw k�%

k�(�; wD)k � k1%�
r+1

for an appropriate constantk1. Therefore

lim
k!1

keD(k)k= lim
k!1

kh(xD; wD)k = kh(~�(�; wD); wD)k

� h(~�(�; wD); wD)� h �
r
D(�; wD); wD

+ h �
r
D(�; wD); wD

� k2%�
r+1

+ k3%�
r+1

= %`�
r+1

` = k2 + k3, whereh(~�(�; wD); wD) = h(�rD(�; wD); wD) +
~h

(�(�; wD); wD)�(�;wD) for an appropriate function~h, and

k~h(�(�; wD); wD)�(�; wD)k

� max
kw k�%

k~h(�(�; wD); wD)�(�; wD)k � k2%�
r+1

k�
r
D(�; wD)k

� max
kw k�%

�
r
D(�; wD) = p(�; %)

h �
r
D; wD

� max h �
r
D; wD � k3%�

r+1

with k2; k3 appropriate constants.

V. CONCLUSION

It has been shown that the existence of robust solutions to the reg-
ulator problem in the continuous-time context implies the solvability
of the problem under sampling. A robust solution is obtained in the
linear case. The nonlinear problem admits a solution which satisfies
(HD

3 ) below; such a condition is conjectured to be necessary for
robustness in discrete time.
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F
(h;r)

=

�r(wD) if h = 0; r > 0;
@

@x
(Lf + Ls)

h�1f �r(wD) +
@

@u
(Lf + Ls)

h�1f 
r(wD); if h � 1; r > 0;

(Lf + Ls)
hx ; if h � 0; r = 0

(HD

3 ) For the analytic functions ~fD(xD; uD; wD) and ~hD
(xD; wD), there exist in a neighborhood of(xD; wD) = 0

two mappings�D(wD); 
D(wD) such that the following
equations are satisfied:

�D(sD(wD)) = AD�D(wD) +BD
D(wD)

+ ~fD(�D(wD); 
D(wD);wD)

0 = CD�D(wD)+ ~hD(�D(wD);wD):

It directly follows from the used arguments how to compute itera-
tively approximated solutions. It must be noted that only approxi-
mated solutions at the first order can be computed if robustness of
the continuous problem fails.

This work represents a first contribution for the effective computa-
tion of a nonlinear digital regulator. Work is in progress for a better
understanding of discrete-time nonlinear robustness.

APPENDIX

The expressions of~fi(�; �; �) and ~hi(�; �) in (19) are obtained by
developing powers of� equations (22). As far as the left-hand term
of (22a) is concerned, make use of the exchange theorem of the Lie
series and compute
1

j=0

�j

j!
�j e

�L
w

w
=

1

j=0

�j

j!
e
�L

(�j(w))

w

=

1

j=0

�j

j!

j

h=0

j

h
L
h

s (�j�h(w))

w

: (28)

For the right-hand term in (22a) one obtains

fD �;

1

i=0

�i

i!
�i(wD);

1

i=0

�i

i!

i(wD); wD

=

1

j=0

�j

j!

j

h=0

j

h
F
(h;j�h) (29)

where we have the equation shown at the top of the page, with
F (i+1;0)

= (Lf + Ls)F
(i;0); h � 0 so that fD(�; x; u; w) =

1

i=0
�

i!
F (i;0). By equating the terms in (28), (29) with the same

power in �, one obtains the following relationship:

@�j�1(w)

@w
s(w)

w

= A�j�1(wD) +B
j�1(wD)

+ ~fj�1(�j�1(w); 
j�1(w); w)

w

(30)

with

~fj�1(�j�1(w); 
j�1(w); w)

=
@f2(x; u; w)

@x
�j�1(w)

+
@f2(x; u; w)

@u

j�1(w)

+
1

j

j

h=2

j

h
F
(h;j�h)

� L
h

s�j�h(w) ;

if j � 2

and

~fj�1(�j�1(w); 
j�1(w); w) = f2(�0(w); 
0(w); w); if j = 1:

By settingi = j � 1 into (30), (19a) is derived.
As far as (19b) is concerned, from (22b) one has

h

1

i=0

�i

i!
�i(w);w

w

=

1

i=0

�i

i!
C�i(wD) + h2

1

i=0

�i

i!
�i(w);w

w

i.e., the coefficient of theith power in � is 0 = C�i(wD) +
~hi(�i(w);w)jw , with

~hi(�i(w);w) = �hi(�0(w); � � � ; �i�1(w); �i(w);w)

=
@i

@�i
h2

1

j=0

�j

j!
�j(w); w

�=0

where�0(w); � � � ; �i�1(w) are known since computed in the previ-
ous i � 1 steps.
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