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Abstract. We consider a class of hybrid dynamical systems and obtain conditions under which the behavior of
these systems can be reduced to a finite state automaton. Specifically, we consider timed automata with more
general enabling regions coupling the continuous and discrete dynamics than those previously considered. We
provide a necessary condition for the existence of a finite state reduction, together with examples showing that
this condition is not sufficient. We then give two sufficient conditions that provide a large class of systems with
general enabling regions which admit finite reductions.
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1. Introduction

A number of models for hybrid system consisting of both discrete and continuous dynamics
have been proposed and analysis of the behavior of such systems has received considerable
attention (see, for example, Stiver et al., 1994; Branicky et al., 1994; Brockett, 1994; Kohn
and Nerode, 1993; Ramadge, 1990; and references therein). Although the dynamics of
hybrid systems are generally quite complicated and the systems often difficult to analyze,
certain classes of systems have been shown to have rather simple behavior.

In particular, a considerable amount of work has been done for a class of systems known
as timed automata and the closely related class of systems known as hybrid automata (e.g.,
see Alur and Dill, 1990; Alur et al., 1993; Alur et al., 1994). Various results have been
obtained on conditions under which the behavior of these systems can be reduced to a
finite automaton. Using a temporal reduction technique, (Alur and Dill, 1990) showed
that for integer rectangular partitions of the continuous state space, the behavior of a timed
automaton can be reduced to a finite state automaton, and (Alur et al., 1990) obtained similar
results under certain constraints for what they called timer region automata. (McManis and
Varaiya, 1994) extended the timer region automata model and obtained reduction results for
a subclass called suspension automata. (Puri and Varaiya, 1994) obtained reduction results
for another class of systems with rectangular differential inclusions. These reductions are
also related to the notion of finite bisimulations which has been studied by (Henzinger,
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1995) and (Henzinger, 1996). A review of the information structures for a variety of setups
is provided in (Deshpande and Varaiya, 1995).

In this note, we investigate a class of timed automata that allow quite general enabling
regions. We obtain a necessary condition on the partitions for the existence of a finer
congruence leading to a finite state reduction, and we provide two examples showing that
this necessary condition is not sufficient. We also provide two sufficient conditions showing
that a fairly broad class of timed automata admit a finite reduction. The approach we use
is close to the reduction techniques in the works mentioned above and is also similar to
other work on partition refinement such as (Kanellakis and Smolka, 1990; Paige and Tarjan,
1987; and Alur et al., 1992). Our results suggest that obtaining a full characterization of
those enabling regions that admit a finite reduction in terms of geometric properties of the
partition is difficult.

2. Timed Automata and Temporal Reductions

A timed automaton, as defined in (Alur and Dill, 1990), is a hybrid systemH in which the
continuous component consists of a finite set of integrators, called clocks, together with
a set of projection operators, and the discrete component consists of a finite automaton.
Specifically, the continuous flow is defined by the simple o.d.e.ẋi = 1, i = 1, . . . ,n.
Under appropriate conditions (specified below), the continuous state can also undergo a
projection (resetting of certain clocks). To this end, forJ ⊆ {1,2, . . . ,n}, let PJ :Rn→ Rn

be the linear projection withPJ(x)k = 0 if k ∈ J andPJ(x)k = xk otherwise. The discrete
component consists of an automatonA = (Q, 6 ∪ {ε}, Qi , E, QB). The setQ is a finite
set of states withQi ⊆ Q the set of initial states.6 is a finite input alphabet not containing
the null inputε. The setE ⊆ Q× Q× (6 ∪ {ε}) is the set of state transitions. An element
(q,q′, α) ∈ E represents a state change fromq to q′ with labelα. The setQB is a subset
of Q used to define the standard sequence acceptance condition for a B¨uchi automaton as
briefly explained below.

The coupling of the continuous and discrete components is brought about by two additional
constraints. First, a finite partitionπ on the continuous state spaceRn is assumed to be
given. Each transition ofA is only allowed, or enabled, if the continuous state belongs
to specified elements of the partition. Second, a set of projections is associated to each
transition. When a transition inA is enabled byπ and occurs, the continuous statex is
projected using somePJ .

Let x(t) = (x1(t), . . . , xn(t)) and letD = (1, . . . ,1) be a vector of lengthn. Thenx(t)
evolves inRn along the straight linex(t) = x(0)+ t D until when in the enabling region of
a transition, that transition occurs and a projection may result.

Given an automatonA with accepting setQB, the language ofA defined by the B¨uchi
acceptance condition is the set of infinite input strings{αi } such that the corresponding
sequence of states{qi } satisfiesqi ∈ QB for infinitely manyi . For a timed automatonH,
a run ofH is a finite or infinite sequence(x0,q0, t0, α0, J0), (x1,q1, t1, α1, J1), . . . subject
to the obvious consistency constraints imposed by the coupled continuous and discrete
dynamics ofH, wherexi andqi denote the continuous and discrete states respectively,ti
denotes the time of a discrete state transition under inputαi , andJi denotes the corresponding
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projection of the continuous state at the transition. The untimed language ofH is defined to
be the set of all infinite sequences{αi } for which there exists an infinite run ofH satisfying
the Büchi acceptance condition—namely,qi ∈ QB for infinitely manyi .

The untimed language ofH characterizes the set of acceptable discrete inputs/controls
to the system. Hence, questions regarding the existence of acceptable runs, verification of
behavior, design of control strategies, etc., depend crucially on the structure of the untimed
language. It is therefore of interest to determine when the untimed language possesses a
simple structure, e.g., when it corresponds to the language of some finite state automaton.

The main idea in reducing a timed automatonH to a finite state automaton (i.e., showing
that the untimed language ofH is regular) is to introduce an equivalence relation onRn,
which groups together states equivalent under time flow and projections, and then couple
this to the underlying automatonA. In (Alur and Dill, 1990), such a temporal reduction
was carried out for the case in which the partitionπ is an integer rectangular lattice., but
this idea can be extended to general finite partitionsπ .

Let π be a finite partition on the state spaceRn of a generalized timed automaton. We
say that a partitionω onRn is finer thanπ if for eachx, y ∈ Rn, x ≡ y mod(ω) implies
x ≡ y mod(π). For any finite partitionω of Rn, let Zω denote the quotient ofRn modω (a
finite set) and letz = [x]ω denote the equivalence class ofx ∈ Rn. For eachx ∈ Rn the
current class ofx modω is [x]ω and the next class ofx modω is defined to be:

N(x) = z ∈ Zω s.t. ∃t > 0 with [x + t D]ω = z 6= [x]ω
and∀0≤ t

′ ≤ t [x + t D]ω ∈ {z, [x]ω}.

Intuitively, N(x) is the next class ofω that the state trajectory of the integrator system enters
under time evolution without projection. There is at least one coset ofω that will not have
a successor.

The partitionω of Rn is said to be a congruence of the integrator system with resetting if
for eachx, y ∈ Rn, x ≡ y mod(ω) implies PJ(x) ≡ PJ(y)mod(ω) for each projectionPJ

andN(x) = N(y). In this case, for eachz ∈ Zω with z = [x]ω definePJ(z) = [ PJ(x)]ω
and τ(z) = N(x). We say that a congruence is finite if it is a finite partition. The
following proposition can be stated as “bisimulation implies language equivalence” which
is a well known result (e.g., see (Henzinger, 1995; Henzinger, 1996). It also follows
straightforwardly from the argument in (Alur and Dill, 1990).

PROPOSITION1 Given a timed automatonH, if there exists a finite congruenceω that is
finer thanπ then there is a finite automatonD such that the the language ofD is equal to
the untimed language ofH (in which case we say thatH admits a reduction to a finite state
automaton).

The extension to non-rectangular grid partitions allows treating some problems that might
arise naturally such as enabling conditions based on norm constraints. In the next two
sections, we present some conditions under whichH admits a reduction to a finite state
automaton in terms of the structure of the partitionπ .
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3. A Necessary Condition

If a partitionω is not a congruence then eitherPJ or N does not preserveω. We now define
the notion of critical points to characterize this lack of preservation under projections and
time flow, respectively.

DEFINITION 1 Let J ⊂ {1, . . . ,n}. A point(x1, . . . , xn) such that xj = 0 for j ∈ J is a
PJ-critical point w.r.t partitionω if ∃yj , j ∈ J s.t. for someε > 0 theε-ball centered at
z, where zj = xj , j 6∈ J ; zj = yj , j ∈ J , is in the same equivalence class and is mapped
under PJ to different equivalence classes.

DEFINITION 2 A line segment{(x1 − t, . . . , xn − t) : t ∈ (0, T)} is an N-critical line
segment if for all points y on the line segment and for allε > 0 sufficiently small, theε-ball
centered at y is in the same equivalence class and is mapped under operation N to different
equivalence classes. x is an N-critical point w.r.t partitionω if x − t D is contained in an
N-critical line segment∀t > 0 sufficiently small and x is not contained in any N-critical
line segment.

Critical points induce finer partitions which in turn may induce new critical points. If
at some stage no critical points are introduced, it means that the partition at that stage is a
congruence. Also note that if|J| < n−1 then critical points will actually make up surfaces.
For J = {1, . . . ,n} − { j }, we shall refer to aPJ-critical point also as aPj -critical point.

PROPOSITION2 If at any stage during a reduction, there is a Pi -critical point (0, . . . ,0,ai ,

0, . . . ,0) and a Pj -critical point (0, . . . ,0,aj ,0, . . . ,0) such that ai and aj are not ratio-
nally related then there is no finite congruence.

Proof: Supposeai andaj are not rationally related and without loss of generality assume
thatai > aj . We consider projections onto thei − j plane. Since(ai ,0) and(0,aj ) arePi -
andPj -critical points, respectively, after inverse projections it follows that(ai ,aj ) is anN-
critical point. Consider the rectangle formed by the points(0,0), (ai ,0), (ai ,aj ), (0,aj ).
The N-critical point at(ai ,aj ) induces a refinement of the rectangle through an inverse
flow. That is, a partition boundary is formed by the line joining(ai ,aj ) to (ai −aj ,0) since
ai > aj . This results in aPi -critical point at(ai −aj ,0), which requires a further refinement
of the boundary by an inversePi -projection from this point. This in turn results in another
N-critical point at(ai − aj ,aj ). This procedure is continued by alternating inverse flows
(resulting in eitherPi - or Pj -critical points) followed by inverse projections (resulting in
N-critical points).

Sinceai > aj , an inverse flow from anN-critical point at(ai , α) will induce a Pi -
critical point at(ai − α,0). An N-critical point at(β,aj ) will induce aPj -critical point at
(0,aj − β) if β < aj and will induce aPi -critical point at(β − aj ,0) if β > aj . Under
each of these operations, a critical point of the form(m1ai + m2aj ,n1ai + n2aj ) with
m1,m2,n1,n2 integers produces another critical point of this type. That is, since the initial
N-critical point (ai ,aj ) has integer coefficients, every inducedPi -critical point is of the
form (m1ai +m2aj ,0) and everyPj -critical point is of the form(0,n1ai + n2aj ).
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Figure 1. Examples with no finite congruence.

Now, suppose the congruence is finite. Then at some stage, the procedure above fails
to produce critical points. Hence for some integersm1,m2 andm̃1, m̃2 with (m1,m2) 6=
(m̃1, m̃2) we havem1ai +m2aj = m̃1ai + m̃2aj . This contradicts the fact thatai andaj are
not rationally related.

Proposition 2 shows that if a timed automaton admits a finite reduction, then all the critical
points generated during the process of refiningπ must be rationally related. However, the
following two examples in Figures (1a) and (1b) show that such a condition is not sufficient
for the existence of a finite reduction. In Figure (1a) the partition consists of the outer
triangle (with the slope of the hypotenuse not equal to one) which is taken to have rational
corner points. In Figure (1b), the partition consists of the two bold faced triangles. The
congruence in each case is constructed as shown in the figures. It can be seen that in both
cases the procedures do not terminate in a finite number of steps, and yet by construction
all of the critical points generated at each stage are rationally related.

4. Two Sufficient Conditions

4.1. Extended Rational Grids

Given a rectangular grid, in defining a partition it is possible to allow appropriate surfaces
passing through two adjacent grid points and still have a congruence. We call such structures
extended rational grid partitions.
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DEFINITION 3 (Extended Rational Grids)A finite partitionπ onRn, with cosets R1, R2,

. . . , Rm, is said to be anextended rational gridif it can be constructed through the following
steps:

1. A rational rectangular grid is placed onRn and each grid hypercube is divided into n!
hyperpyramids having the D-directional line in common. Call this partitionωg.

2. In each hyperpyramid of a grid hypercube, nonintersecting surfaces passing through
the grid points and points on the D-directional line can be added. The surfaces divide
the hyperpyramid portion of the hypercube into separate regions. The surfaces can be
arbitrary except with the constraint that, under time flow, no point in any region can
exit and then reenter the same region.

3. The boundaries of the cosets are constructed from hyperplanes perpendicular to an
axis, hyperpyramids connected to a D-directional line, and the surfaces introduced in
Step 2. (The surfaces from Steps 1 and 2 which are not explicitly used in the boundaries
of the cosets can be removed.)

PROPOSITION4.1 If π is an extended rational grid partition then there is a finite congruence
ω that is finer thanπ .

Proof: Consider the refinement,ω, of π given byω = ωg ∩ π . We claim thatω is a
finite congruence. To see this, we check that projections and time flow preserveω. By
construction, each of the points on the hyperplane perpendicular to thex1 axis and between
grid points is in the same equivalence class and similarly for each axis. Therefore, the
projections preserveω. As well, by Step 2 of the construction, time flow preservesω.
Therefore, both projections and time flow preserveω and thusω is a finite congruence that
is finer thanπ .

Figure (2) provides examples of 2-d and 3-d extended rational grid partitions. The parti-
tions have borders which consist of very general surfaces as long as they can be embedded
on a grid and satisfy the constraint of the definition. These constraints allow a wide va-
riety of enabling regions including, for example, norm constraints (which correspond to
circular/spherical enabling regions).

4.2. Nested Clocks

Another class of partitions admitting a finite reduction allow even more general enabling
regions subject to an ordering type of constraint on the clocks. This is formalized in the
following definition.

DEFINITION 4 (Nested Clocks)A finite partitionπ onRn with cosets R1, R2, . . . , Rm, is
said to be anested clock partitionif R1, . . . , Rm are polytopes, such that
(i) {(x1, . . . , xn) | x1 ≤ x2 ≤ · · · ≤ xn}C ⊂ R1, where{·}C denotes complement, and
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Figure 2. Examples of extended rational grid partitions.

(ii) for someδ > 0 we have{(x1, . . . , xn) |x1 < δ, x1 < x2 < · · · < xn} ⊂ R2.

In the 2-d case, the restriction that the cosetsR1, . . . , Rm be polytopes can be dropped as
long as we impose a regularity condition such as assuming the regions inπ only contain
boundaries whose intersection with any hyperplane consists of a finite number of connected
components. The key property we need is that at each stage only a finite number of new
N-critical points are created. Hence, in 2-d the nested clock condition amounts to having
only one coset below the diagonal linex1 = x2 and having the boundaries of cosets
above the diagonal line bounded away from thex2 axis (e.g., see Figure (3)). In the
multidimensional case, one could also generalize to non-polytope cosets as long as suitable
regularity conditions are satisfied so that the key property mentioned above and in the proof
below is satisfied.

PROPOSITION4.2 If π is a nested clock partition then there is a finite congruenceω that is
finer thanπ .

Proof: For simplicity, we restrict ourselves to the 2-d case, but the proof extends easily
to multidimensions. The key point is that only a finite number of new critical points are
created after each round of inverse flow followed by inverse projection, which is obtained
through the restriction that the cosetsR1, . . . , Rm be polytopes (or by a suitable regularity
assumption as mentioned above).

From conditions (i) and (ii), initially there are noP-critical points, and allN-critical
points satisfyx2 > x1. The condition thatR1, . . . , Rm are polytopes results in only finitely
many N-critical points and letb0 denote the maximum value of the second component
of the N-critical points. TheseN-critical points will induce onlyP2-critical points by an
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Figure 3. A nested clock partition in 2-D.

inverse flow. These in turn may induce a number of newN-critical points by an inverse
projection. However, sinceR1, . . . , Rm are polytopes there will only be a finite number
of new N-critical points, and from condition (i) all the newN-critical points will also
satisfyx2 > x1. Moreover, from condition (ii), thex2 components of the critical points
induced by the inverse flow and inverse projection will be at mostb0 − δ. By repeating
the argument, we see that after at mostb0/δ rounds of inverse flow followed by inverse
projection, no critical points are induced. This results in a finite congruence finer thanπ .
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