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Abstract

In this work a class of nonlinear controllers has been derived for spacecraft with %exible appendages. The control aim is to track a given
desired attitude. First, a static controller based on the measure of the whole state is determined. Then, a dynamic controller is designed;
this controller does not use measures from the modal variables, and the variables measured are the parameters describing the attitude and
the spacecraft angular velocity. Finally, it is shown that a relaxed version of the tracking problem can be solved when the only measured
variable is the spacecraft angular velocity. Simulations show the performances of such control schemes. ? 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The attitude tracking problem, which basically con-
sists of ensuring the tracking of a desired attitude while
damping out the undesired vibrations, is an interesting
test-bed for applying techniques developed for nonlin-
ear systems. First applications of these techniques can be
found in Dwyer (1984), Monaco and Stornelli (1985a, b),
Monaco, Normand-Cyrot, and Stornelli (1986), Dwyer,
Sira-Ramirez, Monaco, and Stornelli (1987), Wen and
Kreutz-Delgado (1991), Crouch (1984), Di Gennaro,
Monaco, Normand-Cyrot and Pignatelli (1997), and Di
Gennaro, Monaco, and Normand-Cyrot (1999), which
deal with the simple case of rigid spacecraft, and in Joshi
(1989), Vadali (1990), Georgiou, Di Gennaro, Monaco, and
Normand-Cyrot (1991), Joshi, Kelkar, and Wen (1995),
Kelkar and Joshi (1996) and Di Gennaro (1998b), in the
case of spacecraft with %exible appendages. These works re-
quire that the entire state of the system is available for feed-
back. Furthermore, they deal with the case of point-to-point
maneuvers for %exible spacecraft or with the case of
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tracking maneuvers for rigid spacecraft; moreover, they do
not consider terms in the controller which explicitly take
into account the contribution to the attitude pointing due to
the %exibility; this clearly diminishes the pointing precision.
To overcome these last limitations, in this work we pro-

pose a state-feedback controller which solves the attitude
tracking problem for %exible spacecraft, and which contains
also a direct compensation of the dynamic terms due to the
%exibility. This controller is at the basis of the development
of an output-feedback controller overcoming the Krst limita-
tion mentioned, namely the state measurability. In fact, the
measurability hypothesis is an important aspect (and limita-
tion) in the implementation of sophisticated nonlinear con-
trol laws for %exible spacecraft. In particular, this means
that not only the variables describing the attitude and the
spacecraft angular velocity, but also the modal variables
describing the de%ection of the %exible elements have to
be measured. The pointing precision of the payload carried
by these %exible structures is a crucial issue and, therefore,
the lack of modal measures may constitute a problem when
applying Kne attitude control strategies. Unfortunately, in
some cases the availability of the overall system state is an
unrealistic hypothesis, due to the impossibility or imprac-
ticability of using appropriate sensors. A solution to this
problem are the proposed dynamic compensators.
Previous works on the design of dynamic controllers, but

limited to rigid spacecraft, can be found in Aeyels (1985),
where the stabilization problem of the angular velocity
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equations is considered, and in Tsiotras (1995), and
Lizarralde and Wen (1996), where the attitude maneu-
ver problem is solved, exploiting the passivity approach,
measuring only the spacecraft attitude. In the case of %ex-
ible spacecraft with feedback from the output and for
point-to-point maneuvers, some recent results can be found
in Di Gennaro (1996), where the attitude maneuver problem
is solved exploiting the fact that the total angular momentum
remains constant, and Di Gennaro (1998c), where a dynamic
controller is derived, making use of the attitude parameters.
Exploiting the results contained in Di Gennaro (1998a),

where a dynamic compensator for %exible spacecraft is
derived to actively damp the vibrations with piezoelectric
actuators during attitude tracking, in this work we determine
an output-feedback controller solving the tracking problem
for %exible spacecraft. Two versions of the output tracking
problem are considered: in the Krst case, the modal vari-
ables are not measured. In the second case, generalizing the
results of Di Gennaro (1998a), the same problem is solved
when the only measured variable is the spacecraft angular
velocity. Note that the lack of attitude measures is a more
serious and interesting problem than the lack of the angular
velocity. In this second case, it is obvious that the attitude
tracking problem can be solved only in an approximated
way, in the sense of ultimate boundedness of the system
trajectories (Khalil, 1996). This can be also considered an
attitude tracking problem with bounded attitude error, i.e. a
milder version of the attitude tracking problem.
The rest of the paper is organized as follows. In Section

2 the mathematical model of a spacecraft with %exible ap-
pendages is recalled. In Section 3 the control problem is
stated, while in Section 4 a nonlinear controller is derived,
solving the posed problem under the hypothesis of measur-
ability of the whole state of the system. This assumption is
removed in Section 5, where a dynamic controller is pre-
sented either when the measured variables are the attitude
and angular velocity parameters, or when we suppose that
only angular velocity measures are available. This controller
is tested in Section 6, where some simulation results are
presented. Some comments conclude the paper.

2. Mathematical model of �exible spacecraft

The mathematical model of a %exible spacecraft is here
brie%y recalled (for details see Monaco & Stornelli, 1985b;
Monaco et al., 1986; Di Gennaro et al., 1999)

ė0 =− 1
2 e

T!e;

ė = 1
2 (e0I + ẽ)!e;

!̇e = J−1
mb [− N (!e;  ; !r)

+ �T(C + K�− C�!e) + u]− !̇r ;(
�̇
 ̇

)
= A

(
�
 

)
− AB�!e − B�!̇r ; (1)

where e0, e are the quaternions describing the attitude error
(Ickes, 1970; Wertz, 1978) between the actual and the ref-
erence attitude, described by the quaternions q0, q, and qr0,
qr , and given by Yuan (1988)

(
e0
e

)
=

(
q0 qT

−q q0I + q̃

)(
qr0
qr

)
;

q̃=




0 −q3 q2
q3 0 −q1
−q2 q1 0


 (2)

with I the identity matrix. Moreover, !e=!−!r is the error
between the spacecraft angular velocity ! and the reference
!r . Note that !r and !̇r , expressed in the spacecraft frame,
depend on q0, q

!r = 2R(q0; q; qr0; qr)(−qr qr0I − q̃r)
(

q̇r0
q̇r

)
; (3)

!̇r = 2R(q0; q; qr0; qr)(−qr qr0I − q̃r)
(
Tqr0
Tqr

)
; (4)

where R(q0; q; qr0; qr) transforms vectors expressed in the
reference frame into vectors in the spacecraft frame (Wertz,
1978). Furthermore, Jmb is the main body symmetric inertia
matrix, C = diag{2�i�ni ; i= 1; : : : ; Ne}, K = diag{�2ni ; i=
1; : : : ; Ne} are the damping and stiUness matrices (Ne elastic
modes are considered, with�ni the natural frequencies and �i
the associated dampings), � is the coupling matrix between
elastic and rigid dynamics, � is the vector of the modal
displacements and  =�!e + �̇ is the diUerence between the
total modal velocity �!+�̇ and the reference modal velocity
�!r . Finally, u is the external torque produced by gas jets

N (!e;  ; !r) = (!̃e + !̃r)(Jmb!e + �T + J!r) (5)

is the gyroscopic term (J=Jmb+�T� is the symmetric inertia
matrix of the undeformed structure) and

A=
(

0 I
−K −C

)
; B=

(
0
I

)
: (6)

In the following we will suppose that �(A)∈C−, where
�(·) denotes the set of eigenvalues. This means that K ¿ 0,
C ¿ 0, and that the spacecraft structure has a non-negligible
internal damping.
The attitude tracking problem consists of determining a

control law such that the actual spacecraft attitude follows a
desired one, damping out the induced oscillations of the tips
of the spacecraft %exible appendages, namely limt→∞ e=0,
limt→∞TT� = 0. Here, the constant matrix T transforms
modal coordinates into real ones. Note that if e → 0 then
e0 → 1 as t tends to inKnity, due to the constraint relation
among the four quaternions (Wertz, 1978).
Moreover, we will deal with the attitude tracking prob-

lem with bounded attitude error, which represents a sort of
“relaxed” attitude tracking problem. In this case, we want
that the spacecraft tracks a Kxed reference with bounded
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bounded attitude error, and oscillation damping, namely
limt→∞ ‖e‖ = kE , limt→∞TT� = 0 with kE a certain
constant less than 1.
While the attitude tracking problem is a classical problem

of rendering asymptotically stable the error dynamics (1),
the attitude tracking problem with bounded attitude error
is a problem of ultimate boundedness of the trajectories of
these error dynamics (Khalil, 1996). To better understand
the interest of this second problem, note that if we suppose
to measure !, but not q0 and q, from (2) and (3) it is
clear that the variables e0, e and !e are not available for
feedback, since either e0, e or !r in general depend also
on q0, q. Moreover, also !̇r in general depends on q0, q,
and therefore is unknown (see (3)). Hence, in this case the
attitude tracking problem cannot be solved; physically, it is
not possible to rotate the spacecraft up to the desired attitude
since we do not know the actual attitude from which it starts
to slew. But one might be able to solve the relaxed version
of this problem, ensuring bounded attitude error.

3. State-feedback control

In this section we suppose that the entire state is available
for feedback. The following result shows that the attitude
tracking problem is solvable in the case of measure of the
whole state.

Theorem 1. Let us suppose that the whole state is available
for measure. For all kp¿ 0 and for kd ¿ 0 large enough;
the following static controller solves the attitude tracking
problem for system (1) with a reference angular velocity
!r ∈L∞ and derivative !̇r ∈L2 ∩L∞

u=−kpe − kd!e − 1
2 Jmb(e0I + ẽ)!e + N (!e;  ; !r)

− �T(C + K�− C�!e) + Jmb!̇r (7)

with N (!e;  ; !r) given by (5).

Proof. This result is proved by applying Barbalat theorem
(Sastry & Bodson; 1989). To this aim; it is necessary to
prove the boundedness and the square integrability of
the state of the system. For; let us consider the following
Lyapunov function (Khalil; 1996):

V (t; x) = (kp + kd)[(1− e0)2 + eTe]

+
1
2
(e + !e)TJmb(e + !e)

+
1
2
(�T  T)P

(
�
 

)
; (8)

where V (t; x)6 �(‖x‖); �∈K∞; P = PT¿ 0 and
x=(eT !Te �T  T)T is the state vector. Using Eqs. (1); the

time derivative along the system trajectories is

V̇ (t; x) = (kp + kd)eT!e + (e + !e)T
[
1
2
Jmb(e0I + ẽ)!e

−N (!e;  ; !r) + �T(C + K�− C�!e)

+ u− Jmb!̇r

]
+ (�T  T)P

[
A
(

�
 

)
− AB�!e − B�!̇r

]
: (9)

Substituting (7) in (9); V̇ (t; x) can be written as follows:

V̇ (t; x) =−kp‖e‖2 − kd‖!e‖2 + (�T  T)PA
(

�
 

)

− (�T  T)PAB�!e − (�T  T)PB�!̇r : (10)

Setting

Q=




kpI 0 0

0 kdI QT
32

0 Q32 Q33


 ; Q32 = PAB�=2;

Q33 =−(PA+ ATP)=2¿ 0 (11)

with I the identity matrix, one has

V̇ (t; x) = −xTQx − (�T  T)PB�!̇r

6−�m‖x‖2 +  ‖!̇r‖ ‖x‖; (12)

where �m = min �(Q) and  = ‖PB�‖. Once the matrix
Q33¿ 0 has been Kxed and P¿ 0 is determined as solution
of the Sylvester equation; the matrix Q is positive-deKnite
for kd ¿ 0 large enough. Therefore; �m¿ 0. Since !̇r ∈L∞;
!̇r is bounded; say ‖!̇r(t)‖6 c; ∀t¿ t0 (this re%ects the fact
that Tqr0; Tqr are bounded; since q; qr are unitary vectors and
!̇r is given by (4)). Hence; one has that V̇ (t; x)6 0 when
‖x(t)‖¿ c =�m ; namely x(t) is bounded (see Khalil; 1996).
To prove the square integrability of x(t), let us integrate

both sides of (12)

V (t; x)− V (t0; x0)

6− �m

∫ t

t0
‖x(")‖2 d"+  

∫ t

t0
‖!̇r(")‖ ‖x(")‖ d"

6− �m

∫ t

t0
‖x(")‖2 d"+  

[∫ t

t0
‖!̇r(")‖2 d"

]1=2

×
[∫ t

t0
‖x(")‖2 d"

]1=2
;

where the Schwarz inequality (Curtain & Pritchard, 1977)
has been used and x0=x(t0). Considering the limit as t tends
to inKnity and denoting with ‖ · ‖2 the L2-norm, one has

V (∞; x)− V (t0; x0)6− �m‖x‖22 +  ‖!̇r‖2‖x‖2: (13)
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Moreover, since V (∞; x)¿ 0,

�m‖x‖22 −  ‖!̇r‖2‖x‖2
6V (t0; x0)− V (∞; x)6V (t0; x0)

and this implies that x∈L2, since

‖x‖26 1√
�m

[
V (t0; x0) +

 2

4�m
‖!̇r‖22

]1=2
+

 
2�m

‖!̇r‖2;
(14)

!̇r ∈L2 by hypothesis, and V (t; x)6 �(‖x‖), �∈K∞, as
previously observed. The application of Barbalat theorem
allows one to conclude that limt→∞ x= 0, and limt→∞ e=
0, limt→∞TT� = 0, i.e. controller (7) fulKlls the control
objectives.

4. Output-feedback control

In this section the hypothesis of measurability of the
whole state is removed. First, we suppose that the modal
variables are not measured. In what follows we show that,
if the system parameters are perfectly known, it is possible
to design a dynamic controller, based on the estimates �̂,  ̂
of the modal variables, ensuring the control objectives for
the attitude tracking problem.

Theorem 2. If the modal variables �;  are not measured;
for all kp¿ 0 and for kd ¿ 0 large enough the dynamic
controller(
˙̂�
˙̂ 

)
= A

(
�̂
 ̂

)
− AB�!e − B�!̇r

+#
(

K�
�(!̃e + !̃r) + C�

)
(e + !e); (15)

u=−kpe − kd!e − 1
2 Jmb(e0I + ẽ)!e + N (!e;  ̂ ; !r)

− �T(C ̂ + K�̂− C�!e) + Jmb!̇r (16)

solves the attitude tracking problem for system (1) with
a reference angular velocity !r ∈L∞ and derivative
!̇r ∈L2 ∩L∞; where N (!e;  ; !r)| = ̂ is given by (5); A;
B are given by (6); and # = #T¿ 0 is a gain matrix.

Proof. The proof is similar to that of Theorem 1 and;
therefore; is only sketched. In our case; we need to take
into account the estimates on � and  ; hence; an additional
term is necessary in the Lyapunov function. Considering
the function V (t; x) given by (8); let us consider

V1(t; x; e�; e ) = V (t; x) +
1
2
(eT� eT )#

−1
(

e�
e 

)
; (17)

where e�=�−�̂; e = −  ̂ are the estimate errors. Note that
#−1¿ 0. In the time derivative of V1; along the trajectories
of system (1); we have V̇ (t; x) as in the proof of Theorem
1 and

V̇ 1(t; x; e�; e ) = V̇ (t; x) + (eT� eT )#
−1[

A
(

�
 

)
− AB�!e − B�!̇r −

(
˙̂�
˙̂ 

) ]
:

Therefore; substituting the control u given by (16) and the

updating laws ˙̂�; ˙̂ in (15); one has

V̇ 1(t; x; e�; e )

=− kp‖e‖2 − kd‖!e‖2 + (�T  T)PA
(

�
 

)

− (�T  T)PAB�!e − (�T  T)PB�!̇r

+ (eT� eT )#
−1A

(
e�
e 

)
(18)

similar to (10) except for the last term due to the estimate
errors. Setting Q as in (11); and Kxing the positive-deKnite
matrix Qe; so that #−1 is solution of the Sylvester equation
Qe =−(#−1A+ AT#−1)=2; one Knally obtains

V̇ 1(t; x; e�; e )6− �m

∥∥∥∥∥∥
x
e�
e 

∥∥∥∥∥∥
2

+  ‖!̇r‖
∥∥∥∥∥∥

x
e�
e 

∥∥∥∥∥∥ ; (19)

where �m =min{�(Q); �(Qe)} and  = ‖PB�‖. Arguing as
in the proof of Theorem 1 one concludes that the control
problem is solved; with limt→∞ e� =0; limt→∞ e =0.

In this second part of this section we suppose that not only
� and  , but also q0, q are not available. This happens, for
instance, when an attitude sensor failure occurs. As pointed
out before, when the quaternions q0, q cannot be measured
the spacecraft position is not known with precision; this
means that also e0, e (see (2)) and !r , !̇r (see (3) and (4))
are unknown, and the attitude tracking problem does not
have a solution. Therefore, we will try to solve the attitude
tracking problem with bounded error.
We suppose to have an estimate q̂0(0) �= q0(0), q̂(0) �= q(0)

of the spacecraft attitude at t = 0. By q̂0, q̂ we denote the
estimate of q0, q, whose dynamics are chosen equal to

˙̂q0 =− 1
2 q̂

T!;

˙̂q= 1
2 (q̂0I +

˜̂q)!: (20)

Then, we will consider the attitude error ê0, ê between q̂0,
q̂ and the desired attitude qr0, qr , given by (2) with q̂0, q̂ in
the place of q0, q. Furthermore, we will indicate by !̂r , ˙̂!r
the estimated angular velocity and acceleration, computed
by (3) and (4), with q0, q substituted by q̂0, q̂.
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It is now clear that the attitude tracking problem with
bounded error can be solved as an attitude tracking problem
where the spacecraft error attitude is ê0, ê instead of e0, e.
This also leads to consider the estimates !̂r , !̂e = ! − !̂r ,
˙̂!r in the place of !r , !e, !̇r . Therefore, the posed problem
can be solved by applying the controller of Theorem 2, in
which the estimation dynamics �̂,  ̂ and the control u are ap-
propriately modiKed. This intuitive discussion is formalized
in the following theorem, which solves the attitude tracking
problem with bounded error.

Theorem 3. Let us suppose that only the spacecraft angu-
lar velocity ! is available for measure. Moreover; let(

E0
E

)
=

(
q0 qT

−q q0I + q̃

)(
q̂0
q̂

)
(21)

be the error between q̂0; q̂ and q0; q; and let us indicate
‖E(0)‖ by kE . For all kp¿ 0 and for kd ¿ 0 large enough;
the dynamic controller (15); (16) with e0; e; !e; !r ; !̇r
substituted by ê0; ê; !̂e = ! − !̂r ; !̂r ; ˙̂!r ; and with q̂0; q̂
given by (20); solves the attitude tracking problem with
bounded error for system (1); with an estimated reference
angular velocity !̂r ∈L∞ and derivative ˙̂!r ∈L2 ∩L∞.
Moreover; the estimate error E0; E remain constant with
limt→∞ ‖e‖= kE .

Proof. The mathematical model in the new coordinates ê0;
ê; !̂e =!− !̂r ; �;  = �!̂e + �̇; can be derived as in Section
2 and is given by

˙̂e0 =− 1
2 ê

T!̂e;

˙̂e = 1
2 (ê0I +

˜̂e)!̂e;

˙̂!e = J−1
mb [− N (!̂e;  ̂ ; !̂r)

+ �T(C + K�− C�!̂e) + u]− ˙̂!r ;(
�̇
 ̇

)
= A

(
�
 

)
− AB�!̂e − B� ˙̂!r (22)

withN (!e;  ; !r)|!e=!̂e ;  = ̂ ; !r=!̂r
as in (5). The proof of the

theorem follows from arguments analogous to those used in
the proofs of Theorems 1 and 2. The Lyapunov function is
again the function (17), with ê0; ê; !̂e in the place of e0; e;
!e; and x=(ê !̂Te �T  T eT� eT )

T; e�= �− �̂; e =  −  ̂ .
Making use of dynamics (22); and the dynamic controller;
one works out (see (18) and (19))

V̇ (t; x)6− �m‖x‖2 +  ‖ ˙̂!r‖ ‖x‖
with  ; Q33; Qe; �m =min{�(Q); �(Qe)}; Q as in the proof
of Theorem 2. The same arguments used in the proofs of
Theorems 1 and 2; with the bound (14) substituted by

‖x‖26 1√
�m

[
V (t0; x0) +

 2

4�m
‖ ˙̂!r‖22

]1=2
+

 
2�m

‖ ˙̂!r‖2

yield limt→∞ x=0. In particular; limt→∞ ê=0. It is easy to
see that (ê0; ê) = (1; 0) if and only if the attitude estimation
error E is equal to the tracking error e. Then; limt→∞ ‖e‖=
‖E‖=kE . Moreover; limt→∞TT�=0. Finally; E0; E remain
constant since

Ė0 =− 1
2 E

T(!− !) = 0;

Ė = 1
2 (E0I + Ẽ)(!− !) = 0:

This result states that during the tracking the attitude error
does not increase with respect to the initial error; roughly
speaking, the controller does not worsen the initial attitude
error. Obviously, the presence of noises and measurement
and integration errors worsen the estimate integration (20)
in practice, since (20) do not contain terms forcing q̂ to con-
verge to q. The discussion of this case goes beyond the aim
of this paper. Nevertheless, this is a valid method in practi-
cal situations for solving an approximated attitude tracking
problem, at least for limited time intervals.

5. Simulation results

The spacecraft implemented on a digital computer is char-
acterized by the inertia matrix

Jmb =


 400 3 10

3 300 12
10 12 200


 kg m2:

The %exible appendage considered in these simulations has
a length of 20 m, is constituted by aluminum, with a density
of 2:76× 103 kg=m3, a Young modulus of 6:8× 1010 N=m2

and a shear modulus of 2:5 × 1010 N=m2. The point of at-
tachment of the appendage to the main body is given by the
vector components rx = 1:5, ry = 2:3, rz = −0:8 m. Three
elastic modes result from the modal analysis of the struc-
ture, with natural frequencies �n1 = 19:38, �n2 = 77:98,
�n3 =157:22 rad=s and dampings �1 =0:0001, �2 =0:00005,
�3 = 0:00001. Only the Krst two modes have been consid-
ered in the controller design, so taking into account possible
spillover eUects. The coupling matrix � is given by

�=




14:3961 8:37634 −5:29354
−20:4871 7:59188 −6:08014
4:50401 11:5222 −12:6033


 kg1=2 m:

Finally, a payload of 30 kg is present at the tip of the
appendage.
The reference trajectory to be tracked is described as

follows:

qr0 = cos
(r
2
; qr =


 cos 0:5tsin 0:5t

0


 sin (r

2
;

(r = sin )t; )= 0:035 rad=s:
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These quaternions correspond to a spiral maneuver
which, starting from the initial spacecraft attitude, diverges
when (r increases and converges when (r decreases. Note
that

q̇r0|t=0 = − (̇r
2
sin

(r
2

∣∣∣∣∣
t=0

= 0;

q̇r|t=0 =
[
*̇r sin

(r
2
+ *r

(̇r
2
cos

(r
2

]
|t=0 =


 )=2

0
0




and therefore, from (3), !r(0) = () 0 0)T when q0(0) =
qr0(0), q(0)=qr(0) (see later). In the following simulations
it has been supposed that the initial error angular velocity is
!e(0)=−!r(0), i.e. at the initial time the spacecraft is idle.
Moreover, the initial modal variables �(0),  (0) values are
supposed given by �(0)=0,  (0)=�!e(0)+�̇(0)=−�!r(0),
i.e. the %exible appendage is undeformed.
As far as the initial error between actual attitude and ref-

erence attitude is concerned, for the Krst two cases, in which
the spacecraft attitude is measured (controllers of Theorems
1 and 2), it has been supposed that e(0)=1 and e(0)=0, i.e.
that the body Kxed frame and the reference frame coincide
at t = 0. In the third case, regarding Theorem 3 where the
quaternions q0, q are not measured, the initial values for the
estimated quaternions q̂0, q̂ (see dynamics (20)) have been
set equal to q̂0(0)=0:866, q̂(0)= (0:05 −0:17 −0:467)T.
These values are equivalent to an error w.r.t. the actual atti-
tude corresponding to a rotation of about 60◦ about the axis
(0:1 − 0:34 − 0:935)T.
For all the controllers we have considered kp = 105, kd =

3×105. For the dynamic controllers (Theorems 2 and 3) the

gain matrix # has been set equal to the identity matrix,
while the initial conditions for the estimated modal vari-
ables are �̂(0) = 0,  ̂ (0) = 0. As previously stressed, in the
controller design only the Krst two modes were taken into
account.
The simulations are rendered more realistic by respecting

the fact that the gas jets work in a bang-bang manner, with
saturation values at 60 Nm. This renders harder the control
task. It is worth noting that kp and kd are large enough to
ensure the trajectory tracking, at least at low velocity, but
small enough to avoid the bad behavior determined by the
gas jet saturation.
The Krst simulation regards controller (7) (Theorem 1,

“controller a”). Figs. 1(a) and 3(a) show a good behavior
in the quaternion tracking. Fig. 2(a) shows the %exible dy-
namics. Analogous comments hold true for controllers (15),
(16) (Theorem 2, “controller b”), for which the behavior of
the quaternions is practically the one seen for the controller
(7) (Fig. 1(b); see also Fig. 3(b)). In this case, how-
ever, the modal variables are estimated (their behavior in
Fig. 2(b) is almost the same of the variables to be esti-
mated). Finally, the third simulation regards the controller
of Theorem 3 (“controller c”). Obviously, in this case the
performance cannot be compared with those previously
obtained. The quaternion tracking is clearly imprecise
(Fig. 1(c)) and the control action is more active, so that the
modal dynamics are always excited and their estimations
are imprecise. However, it is interesting to note that the
maneuver remains qualitatively similar to the previous ones
(Fig. 3(c)), so that, even in presence of big errors in the
attitude determination, the controller is capable to alleviate
the error given by a possible attitude sensor failure.

Fig. 1. Reference quaternions qr0, qr (circles) and actual quaternions q0; q.
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Fig. 2. Modal displacements �1; �2; �3 and estimates �̂1; �̂2.

Fig. 3. Projections on a plane of the reference (dotted lines) and actual (solid lines) trajectories.

6. Conclusions

In this paper we have proposed a class of controllers which
solve the tracking problem for a %exible spacecraft. Some
of these controllers do not need the measure of the modal
and the attitude variables, and this represents a clear advan-
tage for practical implementations. On the other hand, they
relay on the perfect knowledge of the system parameters, in
particular those describing the elastic motion (natural fre-
quencies and damping ratios). This is an obvious limitation,
since they are not usually known accurately. Future work
will regard the design of structurally stable controllers which
avoid this drawback.
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