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Passive Attitude Control of Flexible Spacecraft
from Quaternion Measurements1,2
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3
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Abstract. In this work, we propose a dynamic controller for a
spacecraft with flexible appendages and based on attitude measure-
ments. This control ensures the asymptotic fulfillment of the objectives
in the case of rest-to-rest maneuvers when a failure occurs on the
accelerometer sensors, so that the angular velocity is not available for
feedback. Also, it is assumed that the modal variables describing the
flexible elements are not measured. This is a lower level controller and
is to be selected at the higher level by a supervisor when an emergency
situation is detected.
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1. Introduction

An important aspect in a spacecraft control scheme is its robustness
versus sensor failures. In these cases, the controller should be capable of
ensuring the continuation of the mission. From this point of view, the design
of a controller based on only the available measurements is of interest. The
total control system is then realized in a hierarchical manner: at the higher
level, there is a supervisor deciding the type of control action to be applied,
such as in the normal operation mode, in case of sensor failure, etc.; at the
lower level, there are different controllers, one for each control action
decided by the supervisor. The controller presented in this work is of the
lower level type, to be used in the case of sensor failure. More precisely, in
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this work we design a controller based on only the attitude measurements.
For instance, this is the case of a flexible spacecraft when there is a failure
in the accelerometer sensors and when the variables describing the flexible
elements of the spacecraft are not measured. In this situation, no infor-
mation on the angular velocity and the modal variables is available.

In general, the spacecraft attitude can be determined either by attitude
measurements with respect to some external reference (vector measure-
ments), such as Sun, Earth, or other central body, magnetic field, stars, or
by centrifugal acceleration measurements (Ref. 1). In the first case, the vec-
tor measures can be differentiated in time in order to obtain estimations of
the spacecraft attitude and angular rate (Refs. 1–3). In the second case, one
determines the change in orientation; this method goes under the name of
inertial guidance, and entails the use of gyroscopes and accelerometers.
Gyroscopes have high accuracy for limited time intervals. The main problem
with inertial guidance is that it is necessary to integrate the attitude changes
starting from an initial attitude; star sensors, due to their high accuracy,
can provide a periodic update of the attitude, necessary to eliminate the
accumulated errors in the integration and to update the gyroscopes. The
scenario that we consider in this paper is that in which the information
coming from the accelerometers is not available; hence, the proposed con-
troller is not the one normally used during maneuvers, but rather the one
applied in the case of emergency, according to the hierarchical control
scheme previously outlined.

Previous works on the nonlinear control of spacecraft are based mostly
on the knowledge of the entire state, and interesting examples are given in
Refs. 4–10. More recently, some works on the design of controllers based
on measured variables have been presented. In Ref. 11, a stabilization prob-
lem for flexible spacecraft is solved making use of a dynamic controller
based on measurements of the spacecraft attitude; a limitation of this con-
troller is that the total angular momentum is supposed constant, since the
external torques are considered absent. In Ref. 12, the more general problem
of tracking a desired attitude is solved when the attitude and angular rate
are available for feedback, but not the modal variables. Inspired by the
results given in Refs. 13–14 for rigid spacecraft and based on the passivity
concept, a first example of dynamic controller, based on attitude measure-
ments and for flexible spacecraft, is presented in Ref. 15. Continuing in this
direction, a more sophisticated controller for flexible spacecraft and for
large rest-to-rest maneuvers with a fixed axis is proposed in this paper. A
comparison with the results in Ref. 11 shows that the resulting controller is
simpler.

The paper is organized as follows. In Section 2, the mathematical model
of a flexible spacecraft is presented; in Section 3, the control problem is
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stated and some basic results regarding dynamic controllers are reviewed.
The main result is presented in Section 4, consisting of a dynamic controller
based on only the attitude parameter measurements. Simulations results are
presented in Section 5; in Section 6, final comments conclude the paper.

2. Equations of Motion of a Flexible Spacecraft

In this section, we recall briefly the mathematical model of a flexible
spacecraft. The reader can find in Refs. 6–10 the details of the derivation
(see also Refs. 9, 11, and references therein). It is well-known that the kin-
ematics of a rigid body, representing the spacecraft main body, can be
described efficiently by a nonminimal set of parameters, called unit quatern-
ions or Euler parameters (Refs. 16, 17), given by

q0Gcos(Φ�2), qG�
q1

q2

q3

�G(sin (Φ�2), (1)

and subject to the constraint

q2
0CqTqG1. (2)

The rotation Φ is about the Euler axis, which is determined by the unit
vector (. The kinematic equations are therefore

�q̇0

q̇ �G(1�2)Q T(q0 , q)ω , (3)

where

Q (q0 , q)G[−q, q0IAq̃], (4)

ω is the spacecraft angular velocity and

q̃G�
0 −q3 q2

q3 0 −q1

−q2 q1 0
�

is a skew-symmetric matrix furnishing the diadic representation of the vec-
tor q. The unit quaternions are a nice nonsingular set of parameters with
desirable computational properties (see Refs. 16, 18).



JOTA: VOL. 116, NO. 1, JANUARY 200344

The dynamic equations can be written making use of the Euler theorem
and under the hypothesis of small elastic deformations (Refs. 7–8),

Jω̇CδTη̈G−ωB(JωCδTη̇)Cu, (5a)

η̈CCη̇CKηG−δω̇ . (5b)

Here, J is the total inertia (symmetric) matrix, u is the external torque acting
on the main body of the structure, η is the modal coordinate vector, and

CGdiag{2ζ iωni , iG1, . . . , N}, KGdiag{ω2
ni , iG1, . . . , N}

are the damping and stiffness matrices. Finally, δ is the coupling matrix
between flexible and rigid dynamics, namely the matrix which describes how
the flexible dynamics influences the rigid dynamics, and vice versa. In the
present model, N elastic modes are considered, with ωni the natural fre-
quencies and ζ i the associated dampings. From (5), it is possible to obtain
the dynamics of the flexible spacecraft (Refs. 7, 8, 11),

ω̇GJ−1mb [−ωB(JmbωCδTψ )CδT(CψCKηACδω )Cu], (6a)

η̇GψAδω , (6b)

ψ̇G−(CψCKηACδω ), (6c)

with

JmbGJAδTδ

the main body inertia matrix and

ψGη̇Cδω

the total velocity of the flexible appendages. To sum up, the mathematical
model of a spacecraft with flexible appendages is given by Eqs. (3) and (6).

3. Preliminaries and Some Basic Results

In this section, we state the control problem under study and we present
some basic results about the design of a controller based on either the
knowledge of the entire state (Refs. 4–10, 19) or the knowledge of the quat-
ernions and the angular velocity (Refs. 11–15), which are instrumental for
the presentation of the main results in Section 4.

3.1. Problem Statement. The control problem is to obtain a rest-to-
rest maneuver about a fixed axis with elimination of the oscillations due to
the flexible dynamics. In other words, we consider the problem of driving
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the body-fixed reference to a target reference, given by some desired value
of the quaternions. Hence, these parameters express the spacecraft attitude
error. At the same time, we want to damp out the induced flexible
oscillations.

If [q0r , qr ]G[1, 0] is the desired attitude, the control problem is to find
a control u, depending on the output measurements, such that

lim
t→S

qG0, lim
t→S

ηG0, lim
t→S

ψG0,

for any initial condition. Note that, if q→0, then q0→1 because of the
constraint relation among the unit quaternions.

3.2. State-Feedback Controllers. In this section, we review briefly
some results about state-feedback stabilization, for either rigid or flexible
spacecraft. It is worth noting that, for the latter, the controller will need
also the measurements of the modal variables. Clearly, this rarely occurs in
practice; however, these results will be useful in view of the future develop-
ments and will render them clearer.

In the case of a rigid spacecraft, it can be shown that a simple pro-
portional and derivative control suffices to globally and asymptotically sta-
bilize the system (Ref. 19). To show this, first note that the rigid body
motion is described by (3) and

ω̇GJ−1mb (−ωBJmbωCu). (7)

Let us now consider the control law

uG−kpqAkdω , (8)

with kp , kd positive scalars. Deriving along the system trajectories the fol-
lowing Lyapunov function candidate:

VGkp [(q0A1)2CqTq]C(1�2)ωTJmbω ,

with kpH0, one obtains

V̇Gkpq
TωCωT(−ωBJmbωCu)G−kdωTω⁄0.

Since V is a continuously differentiable, radially unbounded and positive-
definite function with negative semidefinite time derivative over the entire
state, the global asymptotic stability can be stated by using the LaSalle
theorem (Ref.20). In fact, the system trajectories converge to the largest
invariant set E contained in

EG{x∈�n �V̇G0}

G{x∈�n �ωG0}.
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Since

Jmbω̇G0G−kpq⇒qG0,

it is easy to see that

E G{x∈�n �qG0,ωG0}.

When dealing with a spacecraft with flexible appendages, a similar con-
trol can be designed. More precisely, a flexible spacecraft can be stabilized
by a PD control plus a term which takes into account the flexible dynamics.
If the modal variables are supposed measurable, the following static control
is sufficient to ensure the global asymptotic stability:

uG−F �
q

η
ψ
�Akdω , FG�kpI, δT��KC�AP1� I

−C��
T

� , (9)

where P1GPT
1 H0. This can be shown easily by taking the Lyapunov func-

tion candidate

VGkp [(q0A1)2CqTq]C(1�2)ωTJmbωC(1�2) [ηT,ψT] P1�ηψ� .

(10)

Its time derivative along the system trajectories (3), (6) is

V̇GωT[kpqAωB(JmbωCδTψ )CδT(CψCKηACδω )Cu]

C[ηT,ψT] P1�� 0 I

−K −C� �ηψ�A� I

−C�δω�
G−ωT(kdICδTCδ )ωA[ηT,ψT] Q1�ηψ�⁄0,

where the control (9) has been used and the matrix P1 can be computed as
solution of

P1� 0 I

−K −C�C� 0 I

−K −C�
T

P1G−2Q1 , (11)

for any fixed Q1GQT
1 H0. By the LaSalle theorem, we find that the largest

invariant set E contained in

EG{x∈�n �V̇G0}

G{x∈�n �ωG0, ηG0,ψG0}
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is given by

E G{x∈�n �qG0,ωG0, ηG0,ψG0} (12)

and the global asymptotic stability is proved. As previously noted, the need
for modal measurements limits the use of this type of controller. This prob-
lem is solved in the following section.

3.3. Output-Feedback Controllers. It is quite easy to extend the con-
troller (9) to the case of output control, i.e., when one measures only the
attitude and the angular velocity. It is sufficient to define the estimates η̂,
ψ̂ of the modal variables and to introduce the errors (Ref. 12)

eηGηAη̂, eψGψAψ̂ .

Hence, the Lyapunov function candidate V is given by (10) plus the term

(1�2) [eT
η , eT

ψ ] P2�eηeψ � , (13)

with P2GPT
2 a positive-definite matrix. By deriving this term taking into

account Eqs. (6), one obtains in V̇ the additional term

[eT
η , eT

ψ ] P2�� 0 I

−K −C��ηψ�A� I

−C�δωA�η̂̇ψ̇̂�� .

Fixing

QiGQT
i H0, iG1, 2,

computing P1 as in (11), P2 as in (14) below,

P2� 0 I

−K −C�C� 0 I

−K −C�
T

P2G−2Q2 , (14)

and using the dynamic controller

�η̇̂ψ̇̂�G� 0 I

−K −C��η̂ψ̂�A� I

−C�δωCP−1
2 ��KC�AP1� I

−C��δω , (15)

uG−F �
q

η̂
ψ̂
�Akdω , (16)

with F as in (9), finally one obtains

V̇G−ωT(kdICδTCδ )ωA[ηT, ψT] Q1�ηψ�A[eT
η , eT

ψ ] Q2�eηeψ �⁄0.
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The application of the LaSalle theorem shows that the control problem is
globally solved.

4. Passive Controller for Flexible Spacecraft

In this section, we present a dynamic controller for a flexible spacecraft,
based on passivity concepts (Ref.21), which will need only attitude measure-
ments. In the derivation of this controller, we follow the works of Refs.13-
14 for the stabilization of a rigid spacecraft. Using the notation of Section
3.3, we consider in place of (16) the control

uG−F �
q

η̂
ψ̂
�Cû,

where F is given in (9). We note that the map from the new input û to ω is
passive; i.e., there exists some constant γ0Gγ0(x0) such that

�
T

0

ωTû dt¤Aγ 2
0 , ∀T¤0. (17)

In fact, considering the function V as in (10), (13) along the trajectories of
the system (3), (6), (15), one gets

V̇GωTûAωTδTCδωA[ηT,ψT] Q1�ηψ�A[eT
η , eT

ψ ] Q2�eηeψ �⁄ω
Tû.

Therefore, it follows that (17) holds true, because

�
T

0

ωTû dt¤ V(x(T ))AV(x0)¤AV(x0), ∀T¤0;

namely, the system is passive.
Therefore, analogously to what was done in Refs. 13–14, we consider

first a velocity feedback, namely the controller (15)–(16) presented in Sec-
tion 3.3, which we have already seen to solve the control problem. The first
step is to rewrite this controller as follows:

�η̇ψ̇�G� 0 I

−K −C� �η̂ψ̂�C2P−1
2 MδQ (q0 , q) �q̇0

q̇ � , (18)

uG−F �
q

η̂
ψ̂
�A2kdQ (q0 , q) �q̇0

q̇ � , (19)
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where F is given in (9), Q (q0 , q) is as in (4),

MG�KC�A(P1CP2) � I

−C� , (20)

and P1 , P2 are positive-definite symmetric matrices, which are solutions of
(11), (14), respectively, for fixed symmetric matrices Q1 , Q2H0. Here, we
have used the fact that, from the kinematic equations (3) and from (4), one
gets

ωG2Q (q0 , q) �q̇0

q̇ � ,

since the matrix Q
T(q0 , q) is left invertible.

Let us now eliminate the use of q̇0 , q̇. Setting

xG�
q0

q
ω
η
ψ
eη
eψ

� ,

f (x)G�
(1�2)Q T(q0 , q)ω

J−1mb�AωB(JmbωCδTψ )CδT�KC�
T

�ηψ�AδTCδωAF�
q

η̂
ψ̂
�

�0 I

−K −C��ηψ�A�I−C�δω

� 0 I

−K −C��eηeψ �A� I

−C�δω
� ,

g(x)G�
0

−2kdJ
−1
mbQ (q0 , q)

0

−2P−1
2 MδQ (q0 ,q)

� ,

ûGk(x)G�q̇0

q̇ �G(1�2)Q T(q0 , q)ω ,
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the feedback system (3), (6), (18), (19) is in the form

ẋGf (x)Cg(x)k(x). (21)

It is easy to show (see for instance Ref. 22, page 193) that, if the system
(21) is asymptotically stable in the first approximation, then also the system

ẋGf (x)Cg(x) �ξ0

ξ � ,

�ξ̇0

ξ̇ �G(1�()�A�ξ0

ξ �Ck(x)�
is asymptotically stable in the first approximation for (H0 sufficiently small.
The only thing to check is that the system (21) is asymptotically stable in
the first approximation. To this aim, let us consider first the state variable

ρ0G1Aq0

in the place of q0 , so that the origin is the equilibrium point. Clearly, the
kinematics equations (3) are rewritten as

�ρ̇0

q̇ �G(1�2) �q
T

IC(−ρ0ICq̃)�ω .

Second, we consider the following system, which is the linearization of the
system (21) at the equilibrium:

�
ρ̇0

q̇

ω̇
η̇
ψ̇
ėη
ėψ

�G�
0 0 0 0 0

0 0 I�2 0 0

0 −kpJ
−1
mb −J−1mb (kdICδTCδ ) J−1mbδT� I

−C�
T

P1 J−1mbδTMT
1

0 0 −� I

−C�δ � 0 I

−K −C� 0

0 0 −P−1
2 M1δ 0 � 0 I

−K −C�
��
ρ0

q

ω
η
ψ
eη
eψ

� ,

with

M1G�KC�AP1� I

−C� ,
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and where it has been considered that

δT�KC�
T

�ηψ�AF �
q

η̂
ψ̂
�

G−kpqCδT� I

−C�
T

P1�ηψ�CδTMT
1 �eηeψ � ,

�η̂ψ̂�G�ηψ�A�eηeψ � .

Considering the Lyapunov function candidate

V Gkp (ρ2
0CqTq)C(1�2)ωTJmbω

C(1�2)[ηT, ψT] P1�ηψ�C(1�2)[eT
η , eT

ψ ] P2�eηeψ � ,

one obtains easily

V̇ G−ωT(kdICδTCδ )ωA[ηT ψT ]Q1�ηψ�A[eT
η eT

ψ]Q2�eηeψ � .

The largest invariant set E contained in

EG{x∈�n �V˙G0}

G{x∈�n �ωG0, ηG0,ψG0, eηG0, eψG0}

reduces to the origin, which hence is asymptotically stable. This is equivalent
to the fact that the dynamic matrix of the linear system is Hurwitz, and this
guarantees the asymptotic stability in the first approximation of the feed-
back system (21).

We conclude by noting that it is not necessary to have q̇0 , q̇ available
to realize the feedback

�ξ̇0

ξ̇ �G(1�() �A�ξ0

ξ �C�q̇0

q̇ �� ,

ūG�ξ0

ξ � .
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In fact, setting

�ξ0

ξ �G� χ̇0

χ̇ � ,

one can substitute the dynamics of ξ0 , ξ with

� χ̇0

χ̇ �G(1�() �A�χ0

χ �C�q0

q �� ,

ūG� χ̇0

χ̇ �G(1�() �A�χ0

χ �C�q0

q �� .

Therefore, the dynamic controller is finally

�η̇ψ̇�G� 0 I

−K −C� �η̂ψ̂�C(2�() P−1
2 MδQ (q0 , q) �A�χ0

χ �C�q0

q �� , (22a)

� χ̇0

χ̇ �G(1�() �A�χ0

χ �C�q0

q �� , (22b)

uG−kpqC(2�() kdQ (q0 , q) �χ0

χ �AδTMT
1 �η̂ψ̂� , (22c)

where it was noted that

Q (q0 , q) �q0

q �G0.

Therefore, we arrive at the following theorem.

Theorem 4.1. The controller (22) solves the control problem with atti-
tude measurements.

As a final comment, we compare the controller (22) with the one
obtained in Refs. 13-14 for a rigid spacecraft,

χ̇GA χCB q, (23a)

uG−kpqAkd (q0IAq̃)C (A χCB q), (23b)

where A , B , C , with (A , B ) controllable and (A , C ) observable, consti-
tute the realization of a strictly-positive real transfer function

C(s)GC (sIAA )−1B
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which satisfies the Kalman–Yakubovich–Popov lemma (Ref. 20); namely,

ΛA CA
TΛG−Q3 , ΛB GC

T,

for appropriate matrices Λ, Q3 positive-definite and symmetric. One notes
that (22) has additional dynamics, similar to (15), in order to estimate the
modal variables, and has an additional term in the control law. The fact
that (22) contains also the dynamics of χ0 is due only to the decision of
using all the four quaternions (but a similar controller can be derived also
when using only q).

A further argument of comparison is given by the following obser-
vation. We have proved that the estimation errors eη , eψ go to zero asymp-
totically. But, at the end of the maneuver, q, ω also tend to zero; since the
flexible dynamics is asymptotically stable this means that η, ψ go to zero.
Therefore, the information η̂, ψ̂ about η, ψ is useful but not indispensable,
in the sense that its use can improve the performance of the transient; in
any case, the stability can be achieved even if η̂, ψ̂ are not computed. In
fact, it is possible to stabilize the spacecraft without this information. This
happens not only in the present case, but also when dealing with the state-
feedback controller of Section 3.2. In fact, if we use the PD controller (8),
the derivative of (10) becomes

V̇G−[ωT, ηT,ψT] �kdICδTCδ δTMT
1 �2

M1δ�2 Q1
� �
ω
η
ψ
�,

and it is clear that the condition of positive definitiveness,

kdICδTCδAδTMT
1 Q−1

1 M1δ�4H0,

is verified for kd large enough. A similar result is valid for the controller
(23). In this sense, the controller (23) reveals to be robust with respect to
unmodeled dynamics, as stated by the following statement.

Proposition 4.1. The controller (23) is robust with respect to the
unmodeled dynamics describing the flexibility.

Proof. For the proof of this statement, let us consider the Lyapunov
function candidate

VGkp [(q0A1)2CqTq]C(1�2)ωTJmbω

C(1�2) [ηT,ψT] P1�ηψ�CkdξTΛξ ,
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with P1GPT
1 H0 to be determined. Along the system dynamics, with u given

by (see Refs. 13–14)

ξ̇GA ξCB q̇,

uG−kpqAkd (q0IAq̃)C ξ ,

one has

V̇GωT[kpqCδT(CψCKηACδω )Cu]

C[ηT,ψT] P1�� 0 I

−K −C� �ηψ�A� I

−C�δω�
C2kdξTΛ[A ξCB q̇]

G−ωTδTCδωA[ηT,ψT] Q1�ηψ�AkdξTQ3ξA[ηT,ψT] M1δω

G−(ωTδT, ηT,ψT) �C MT
1 �2

M1�2 Q1
� �
δω
η
ψ

�AkdξTQ3ξ .

The matrix P1 can be determined such that

RG�C MT
1 �2

M1�2 Q1
�

is semipositive definite. In fact, let

P1G�Pa Pb

PT
b Pc

�
be a block partition of P1. Hence,

RG(1�2) �
2C (PaAPbCAK )T (PT

bAPcCAC )T

PaAPbCAK PbKCKPT
b −PaCPbCCKPc

PT
bAPcCAC (−PaCPbCCKPc)

T PcCCCPcAPbAPT
b

� .

It is clear that setting

PaGK, PbG0, PcGI,
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one obtains

V̇G−[ωTδT, ηT,ψT] �
C 0 −C
0 0 0

−C 0 C
� �
δω
η
ψ

�AkdξTQ3ξ

G−η̇TCη̇AkdξTQ3ξ ,

where we recall that

η̇GψAδω

is the modal velocity. Hence,

EG{x∈�n � η̇GψAδωG0, ξG0},

and from ξ̇G0, one finally obtains ωG0 and therefore qG0; moreover,
from ωG0, one deduces ψG0 and ψ̇GKηG0; i.e., E is given by (12). �

5. Simulation Results

As an example of a flexible spacecraft to which apply the designed
controller let us consider the thermoelectric outer planet spacecraft (TOPS),
which is provided with a great parabolic communication antenna (see Ref.
23). The main parameters characterizing TOPS are the following:

JmbG�
1543.9 −2.3 −2.8

−2.3 471.6 −35

−2.8 −35 1713.3
�,

δG�
A9.4733 −15.5877 0.0052

−0.5331 0.4855 18.0140

0.5519 4.5503 16.9974

−12.1530 11.7138 −0.0002

−0.0289 0.0199 6.2378

0.2268 0.8289 −35.7298

−0.8935 5.4516 1.5005

1.1628 2.6350 −0.0989

−0.1688 0.3131 3.6231

−1.4910 2.0020 −0.2893

� ,
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with Jmb in Kg m2 and δ in Kg1�2 m, with the natural frequencies (in rad�s)

ωn1G0.7400, ωn2G0.7500, ωn3G0.7600, ωn4G0.7600, ωn5G1.1600,

ωn6G3.8500, ωn7G5.0200, ωn8G5.6600, ωn9G5.6600, ωn10G5.6900,

and the dampings

ζ1G0.004, ζ2G0.005, ζ3G0.0064, ζ4G0.008, ζ5G0.0085,

ζ6G0.0092, ζ7G0.0105, ζ8G0.012, ζ9G0.015, ζ10G0.017,

associated to the first 10 natural modes.
The compensator (22) has been implemented by considering the gains

kpG300, kdG800,

(G0.1, and choosing Q1GI, Q2G10 I in (11), (14) for determining P1 , P2 .
The initial attitude is described by the quaternions

q0(0)G0.1736, q(0)G�
q1(0)

q2(0)

q3(0)
�G�

A0.5264

−0.2632

0.7896
�,

and the rest-to-rest maneuver brings the quaternions to q0G1, qG0. This
maneuver corresponds to a rotation of 160° with an Euler axis which is

(G[−2�114, 1�114, 3�114]T

at the initial time. Moreover, initially the spacecraft is still, so that

ω (0)G0, η(0)G0, ψ (0)G0.

The comparison of the controller (22) with the controller (23) has been
conducted by choosing

AGC GI, B G2.5 I,

where I is the 3B3 identity matrix and the gains

kpG150, kdG450.

These last values, lower than the ones used for the controller (22), are justi-
fied by the fact that the control input results to be of the same amplitude
of the control determined by (22), at least in the initial transient, so estab-
lishing a fair comparison.

The simulation results are summarized in Figs. 1–4. The behavior of
the quaternions q0 , q1 , q2 , q3 is given in Fig. 1, while the control compo-
nents u1 , u2 , u3 are shown in Fig. 2. The modal displacements η1 , η2 and
their estimates η̂1 , η̂2 are shown in Fig. 3. Finally, in Fig. 4, the quaternions
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Fig. 1. Controller (22): Quaternion q0 , q1 , q2 , q3 vs. time.

Fig. 2. Controller (22): Input components u1 , u2 , u3 vs. time.
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Fig. 3. Controller (22): Modal displacements and estimates ηi , η̂i , iG1, 2, vs. time.

Fig. 4. Controller (23): Quaternion q0 , q1 , q2 , q3 vs. time.
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for the controller (23) are reported. Comparing Figs. 1 and 4, the improve-
ments obtained via the controller (22) are clear; it reaches the desired atti-
tude in about 15 s, while the controller (23) needs more than 30 s.

6. Conclusions

The application of the proposed dynamic control, based on quaternion
measurements only, ensures the asymptotic convergence to zero of the atti-
tude errors and damps out the flexible motion induced in the maneuver,
with an enhancement of the transient performance with respect to that of
the controllers previously presented. This controller constitutes a first step
toward the design of a multilevel control scheme, composed of a high-level
supervisor plus various lower-level controllers performing different tasks,
among which those regarding the continuation of a mission in the case of
sensor failures.
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