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This work presents some variable structure con-
trollers for linear systems of the form

ẋ = (A + ∆A)x + (B + ∆B)Φ(u) + f

y = Cx
(1)

with ∆A, ∆B uncertainty matrices, A, B, C the
nominal matrices, Φ(u) a nonlinear continuous func-
tion, x, u, y the state, input and output of the sys-
tem, and f ∈ Rn a disturbance. The design is based
on the adaption of the bounds on the uncertainty
matrices and the disturbance, through the appli-
cation of Barbalat lemma, as common in adaptive
control. The theoretical results are then applied to
the attitude control of flexible spacecraft subject to
external disturbances.

The subject of the paper is of interest in attitude
control of flexible structures. Many contributions
can be found in the literature. In fact, in the last
decades the research effort has been focused on the
nonlinear nature of the spacecraft model, and var-
ious works are available either in for rigid [10, 17,
24, 2] or flexible spacecraft [18, 20, 21, 22, 1, 12, 14],
also in the digital setting [19, 9]. The robustness of
these nonlinear controllers has been one of the main
issues addressed [23, 11, 13].

In this perspective, the present paper raises some
perplexities, both for the theoretical and the appli-
cation contributions. In the remaining of this dis-

cussion some observations, which can be considered
as issues for further research activities, are illus-
trated.

The authors assume that the uncertainties ∆A,
∆B and the disturbance f are matched by the input

∆A = BH, ∆B = BE, f = Bd

with H, E, d bounded in norm. This simplifies
terribly the control problem, since (1) become

ẋ = Ax + BΦ(u) + B
(
Hx + EΦ(u) + d

)

y = Cx.

Indeed, on this subject various works can be found
in the literature, even for more general structures,
see for instance [4] and references therein. Also the
nonlinear nature of the term Φ(u) does not pose par-
ticular difficulties, since it is assumed locally Lip-
schitz. The stability analysis hence becomes triv-
ial, since this term behaves like a linear one. This
is crucial in the proof of the theorems.

The study on the input saturation, as claimed
in the introduction of the paper, and that justifies
the analysis of nonlinear functions Φ(u), is not con-
vincing, since analyzed only by simulations and not
theoretically. Nevertheless, some works on input
saturation can be found in the literature, see for
instance [15, 16].
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A further assumption which weakens the interest
in the proposed controllers is that the state and the
input are bounded, as assumed in the proofs, so
allowing a simple determination of the gains of the
controller. Further hypotheses on the bound of f
will be discussed later on.

The application of the theoretical results to the
attitude control of flexible spacecraft is weak for
various reasons. To begin with, it should be ob-
served that the authors consider some simplifying
assumptions under which the model of a flexible
spacecraft can be approximated by equations (1).
These simplifications are only valid for small rota-
tion angles and small angular velocities, and trans-
form the nonlinear kinematics and the spacecraft
dynamics given in equation (44) of the paper to the
form (1). For large slewing maneuvers the proposed
controller can not guarantee the asymptotic stabil-
ity. In fact, in this case the nonlinear contribution
to the dynamics, due to the gyroscopic term, can
not be ignored. Alternatively, the authors should
have studied the error determined by the applica-
tion of the proposed controllers to the nonlinear
spacecraft model. Furthermore, the use of classi-
cal PD–like controllers could be a valid alternative
to the proposed strategy, and could be compared
with the proposed controllers, also in term of com-
putational efforts.

Another aspect that could be explored as further
investigation, and linked to these model approxi-
mations and with the discontinuous nature of the
variable structure controller, are the spill–over ef-
fects induced on higher–modes [6, 7].

An aspect claimed in the introduction but not
studied in the paper is the active suppression of vi-
brations of the flexible appendages. In fact, usually
the term “active” refers to the presence of actua-
tors (e.g. piezoelectric actuators) which contribute
in the damping of the vibrations induced by slewing
maneuvers. Many papers deal with this subject, see
for instance [5, 14, 3, 8] and references therein.

The application to the spacecraft is weak for an-
other aspect. In the simulation section the distur-
bance term f is considered as function of the state
and the input of the spacecraft. This is a com-
mon approach, in which the nonlinearities are con-
sidered as disturbances acting on the system. The
critical point, again, is given by the assumptions
made. In fact, since it is assumed that f = Bd
with ‖d‖ ≤ β3, the stabilization problem is trivially
simplified, since this implies assuming a bound on
the state. But this is the aim of the stabilization
problem. Assuming bounded the state of part of
the system dynamics is a strong hypothesis.

Finally, the control considered in the simulations
is given in equation (50) of the paper, and is a slight
modification of the designed controller considered in
order to attenuate the chattering problem deriving
from the applied technique. A theoretical proof of
the asymptotic stability property of the system is
an interesting point of further investigation.
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