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a b s t r a c t

This work deals with a sliding mode control scheme for discrete time nonlinear systems. The control
law synthesis problem is subdivided into a finite number of subproblems of lower complexity, which
can be solved independently. The sliding mode controller is designed to force the system to track a
desired reference and to eliminate unwanted disturbances, compensating at the same time matched
and unmatched parameter variations. Then, an observer is designed to eliminate the need of the state
in the controller implementation. This design technique is illustrated determining a dynamic discrete
time controller for induction motors.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The advent of digital technology and its widespread use have
revolutionized the computer-based implementation of advanced
control schemes. In fact, recent advances in digital microprocessor
technology have given considerable credit to digital control
systems, exhibiting relatively low operational cost, flexibility in
implementation, simple and functional interactive communication
among several control loops. At the same time, there has been a
growing interest in the design of controllers based on the digital
model of the system.When the system is continuous, the first step
is to obtain an accurate sampled model. This has motivated an
interesting research activity in the area of discrete time control
and has determined the development of digital control methods.
Starting from the first studies on the sampling of continuous time
nonlinear systems (Monaco & Normand-Cyrot, 1985, 1988), many
tools have been developed in the last two decades to control
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digital and sampled nonlinear systems, see for instance Monaco
and Di Giamberardino (1996), Monaco and Normand-Cyrot (1997,
2001, 2007) and references therein. The aim of this work is to
give a further contribution in this field. The main objective is to
design a discrete time feedback controller which ensures stability
and achieves a specified transient response for discrete time
nonlinear systems. Moreover, to provide a certain robust stability
margin against bounded uncertainties, a simple approach is used
here, based on the sliding mode approach (Utkin, 1993). Sliding
mode control is a particular type of variable structure control,
designed to drive and constrain the system state to lie within
a neighborhood of a switching function. The advantages of the
sliding mode technique are well known. First, this method enables
the decomposition of the design problem into two independent
subproblems: (a) selection of discontinuity surfaces with the
desired sliding motion, and (b) determination of a control law
to force the sliding mode along this manifold. This allows the
suppression of the effects of matched parameter uncertainties and
disturbances, and total invariance is obtained when the motion of
the system is in sliding mode.
In this paper, an iterative procedure is proposed to design a

discrete time sliding mode control law for a class of nonlinear
systems. This controller complies with the bounds on the control
resources, and is such that the system state is driven toward
a certain sliding manifold and stays there for all sampled
time instants, avoiding chattering. Furthermore, a discrete time
observer is designed to estimate the non-measurable states and
perturbation. A separation principle is then applied to verify the
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stability of the closed-loop system with this resulting dynamic
state feedback. Finally, the proposed control strategy is applied to
control voltage–fed induction motors.
Induction motors represent challenging nonlinear systems and

constitute an important area of application of recent control
methodologies. From a practical point of view, they present
many appealing characteristics which render them suitable for
the industrial environment (robustness, low maintenance, high
performances, etc.). A classical technique for induction motor is
the field oriented control, due to Blaschke (1972). More recently,
various nonlinear control design approaches have been applied
to induction motors to improve their performance, e.g. passivity
(Ortega, Nicklasson, & Espinoza-Pérez, 1996), slidingmode (Dodds,
Vittek, & Utkin, 1998; Utkin, 1993), adaptive input–output
linearization (Marino, Peresada, & Valigi, 1993), backstepping (Tan
& Chang, 1999), adaptive sliding mode (Loukianov, 2002). All
these approaches are designed using the continuous time model
of the plant, which are then approximated (discretized) for real
time implementation. This discretization yields relatively low
performance. To get better results from real time implementations,
the controllermust be designed on the basis of an accurate discrete
time model of the plant (Castillo-Toledo, Di Gennaro, Loukianov
& Rivera, 2008; Monaco & Di Giamberardino, 1996; Monaco &
Normand-Cyrot, 1985). Hence, as a further contribution of this
paper, an approximated model for current-fed induction motors
is derived following Monaco and Di Giamberardino (1996) and
Ortega and Taoutaou (1996), and a dynamic controller is derived on
the basis of this model to achieve rotor speed and flux amplitude
tracking.
The paper is organized as follows. The main results are

presented in Section 2, where a discrete time sliding mode control
is developed. A nonlinear discrete time observer is designed, and
the stability of the closed-loop system is studied. The application
of the proposed control method to induction motors is developed
in Section 3. In Section 4, simulation results are presented for
validation of the proposed methodology. Finally, some remarks
conclude the paper.

2. Design of digital control by block backstepping

In this section, we will determine a digital control for a
particular class of systems, which includes many systems of
interest in applications.

2.1. The class of systems under study

Consider a nonlinear system

xk+1 = f (xk, uk)+ d(wk)
yk = h(xk)
ηk = γ (xk)

(1)

where k ∈ Z denotes the discrete time, with Z the set of
the nonegative integers. The state vector xk is defined on a
neighborhood X of the origin of Rn, uk ∈ Rm is the input vector,
yk ∈ Rp is the vector of the variables to be controlled, and ηk ∈ Rq
is the measured output of the system. Here f (·, ·), h(·), γ (·), d(·)
are smooth vector fields of class C∞

[t,∞), with f (0, 0) = 0, h(0) = 0,
γ (0) = 0. Moreover, d(wk) is a perturbation term representing
modeling errors, aging, disturbances, etc. Initially d(wk) will be
supposed known; this assumption will be removed later on.
The control objective is to force the output yk to track

asymptotically a reference signal yr(wk), rejecting the effects of
an external disturbance d(wk). The tracking error is defined as the
difference between yk and the reference signal yr(wk) to be tracked
i.e.
ek = yk − yr(wk). (2)
The reference signal yr(wk) and the disturbance d(wk) are assumed
to be bounded,with bounded increments, and generated by a given
external system described by

wk+1 = s(wk), wk ∈ Rs

yr,k = yr(wk)
dk = d(wk).

(3)

While yr(wk) is known, d(wk) has to be estimated. In this section
we first derive a controller for system (1) assuming known the
state xk and the perturbation d(wk). Then, an observer for the
unmeasured state variable and for the perturbation is designed.
In thiswork,we consider systems (1) that, under an appropriate

nonsingular transformation, can be described by
x0,k+1 = f0(x0,k, x1,k, . . . , xq,k, wk)
xi,k+1 = fi(x0,k, x1,k, . . . , xi,k, xi+1,k)+ di(wk)

xq,k+1 = fq(x0,k, x1,k, . . . , xq,k)
+ Bq(x0,k, x1,k, . . . , xq,k)uk + dq(wk) (4)

yk = x1,k (5)
ηk = γ (xk)

i = 1, . . . , q − 1, where xk =
(
xT0,k xT1,k · · · x

T
q,k

)T
∈ X ⊂ Rn,

xj,k ∈ Rnj , j = 0, 1 · · · , q, n =
∑q
j=0 nj. Finally, x0,k represents

the state of the dynamics, possibly unstable, which enters in the
remaining dynamics through bounded functions. This is the case
of the induction motor, for instance, where the dynamics of the
angular position θ are unstable, with θ appearing in the other
dynamics through bounded trigonometric functions.
The following assumption is considered hereinafter.

(A.1.a). The equations
Fi(x0,k, x1,k, . . . , xi,k, xi,k+1, wk, xi+1,k)
= fi(x0,k, x1,k, . . . , xi,k, xi+1,k)+ di(wk)− xr,i,k+1
− Ki(xi,k − xr,i,k) = 0

i = 1, . . . , q − 1, with Ki given matrices and xr,1,k = yr,k, admit
unique solutions in xi+1,k given by
xr,i+1,k = κi+1(x0,k, x1,k, . . . , xi,k, wk)
and for all x ∈ X the matrix Bq is bounded in norm with bounded
inverse B−1q , namely∥∥Bq(x0,k, x1,k, . . . , xq,k)∥∥ ≤ βq
and∥∥B−1q (x0,k, x1,k, . . . , xq,k)∥∥ ≤ β−q
for certain constants βq, β−q > 0. C
As a particular case, verified in certain applications, some of the

maps fi, i = 0, . . . , q− 1, can take the form

fi(x0,k, x1,k, . . . , xi,k, xi+1,k) = f̄i(x0,k, x1,k, . . . , xi,k)
+ Bi(x0,k, x1,k, . . . , xi,k)xi+1,k

(6)

as in Loukianov (1998, 2002) or in the block backstepping (Khalil,
1996). In this case Assumption (A.1.a) can be substituted by the
following.
(A.1.b). For all x ∈ X the matrices Bi, i = 1, . . . , q, are bounded in
norm∥∥Bi(x0,k, x1,k, . . . , xi,k)∥∥ ≤ βi
and there exist the inverses B−1i with∥∥B−1i (x0,k, x1,k, . . . , xi,k)∥∥ ≤ β−i
for certain constants βi, β−i > 0. C
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Remark 1. When the maps fi have the structure (6), pseudo-
inverse matrices B	i = B

T
i (BiB

T
i )
−1 could be used in assumption

(A.1.b). C

A final assumption regards the control amplitude. As quite
obvious in applications, we require the control to be capable of
ensuring tracking of the desired reference and, at the same time,
rejection of the disturbance acting on the system. In order to
formalize this requirement, consider a given reference xr,q,k and
define

∆◦q,k = x
◦

q,k+1 − xq,k
x◦q,k+1 = fq(x0,k, x1,k, . . . , xq,k)+ dq(wk)
∆r,k = xr,q,k − xr,q,k+1

and suppose that∥∥∆◦q,k +∆r,k∥∥ ≤ δq, δq > 0. (7)

Condition (7) means that, for the qth subsystem (4), the control
is capable of imposing at step k + 1 that xq,k+1 = xr,q,k+1, when
xq,k = xr,q,k, namely when the qth reference signal is tracked at
step k. In fact, the qth subsystem (4) can be rewritten as

xq,k+1 − xr,q,k+1 = Bq(x0,k, x1,k, . . . , xq,k)

×
[
B−1q (x0,k, x1,k, . . . , xq,k)

(
∆r,k +∆

◦

q,k

)
+ uk

]
with

∥∥B−1q (·)∥∥ ≤ β−q . Hence, in the sequel we assume that the
following holds.
(A.2). The maximal value umax of the control is such that

umax > δqβ
−

q . C

2.2. The backstepping procedure

The control design procedure consists of a step-by-step
construction of a new system with states zi,k = xi,k − xr,i,k, i =
1, . . . , q, where xr,i,k is the desired value for xi,k, which will be
defined by such a construction.
We start by defining as new variable the tracking error (2)

z1,k = ek = x1,k − xr,1,k

with xr,1,k = yr(wk) the reference value for x1,k, having dynamics

z1,k+1 = f1(x0,k, z1,k + xr,1,k, x2,k)+ d̄1(wk) (8)

where

d̄1(wk) = d1(wk)− xr,1,k+1(wk) = d1(wk)− yr(s(wk)).

In Eq. (8), x2,k is viewed as a control input used to impose the
following desired dynamics

z1,k+1 = K1z1,k. (9)

The design matrix K1 is Schur, namely it has the eigenvalues inside
the unit circle, to ensure the asymptotic stability of (9). Therefore,
on the basis of Assumption (A.1.a), one determines the solution in
x2,k for the equation

F1(z1,k, x2,k, wk) = f1(x0,k, z1,k + xr,1,k, x2,k)

− K1z1,k + d̄1(wk) = 0.
(10)

This solution is given by xr,2,k = κ2(x0,k, z1,k, wk)which represents
the reference behavior for x2,k. Proceeding in the same way, one
introduces z2,k = x2,k − xr,2,k, having dynamics

z2,k+1 = f2(x0,k, z1,k + xr,1,k, z2,k + xr,2,k, x3,k)+ d̄2(wk)
where d̄2(wk) = d2(wk) − xr,2,k+1. One imposes the desired
dynamics

z2,k+1 = K2z2,k (11)

where K2 is Schur. By assumption (A.1.a), the equation

F2(z1,k, z2,k, x3,k, wk) = f2(x0,k, z1,k + xr,1,k, z2,k + xr,2,k, x3,k)

− K2z2,k + d̄2(wk) = 0

has solution in x3,k given by xr,3,k = κ3(x0,k, z1,k, z2,k, wk)
which is the reference value for x3,k. Iterating these steps, one
finally introduces the variable zq,k = xq,k − xr,q,k, xr,q,k =
κq(x0,k, z1,k, . . . , zq−1,k, wk), with dynamics

zq,k+1 = fq(x0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)

+ Bq(x0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)uk + d̄q(wk)

where d̄q(wk) = dq(wk) − xr,q,k+1. It is worth mentioning that
the new variables zi,k, i = 0, 1, . . . , q, determine a nonlinear
transformation

z0,k = x0,k = ϕ0(x0,k)
z1,k = x1,k − xr,1,k = ϕ1(x0,k, x1,k, wk)

z2,k = x2,k − κ2(x0,k, x1,k − xr,1,k, wk)
= ϕ2(x0,k, x1,k, x2,k, wk)

z3,k = x3,k − κ3(x0,k, x1,k − xr,1,k, x2,k − xr,2,k, wk)
= ϕ3(x0,k, x1,k, x2,k, x3,k, wk)

...

zq,k = xq,k − κq(x0,k, . . . , xq−1,k − xr,q−1,k, wk)
= ϕq(x0,k, x1,k, x2,k, . . . , xq,k, wk).

(12)

It is easy to check that, by means of this transformation zk =
ϕ(xk, wk)=

(
ϕT0 ϕT1 · · · ϕTq

)T
, system (4) is diffeomorphic to

z0,k+1 = f0(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k, wk)
z1,k+1 = K1z1,k +∆f1
z2,k+1 = K2z2,k +∆f2
...

zq−1,k+1 = Kq−1zq−1,k +∆fq−1
zq,k+1 = fq(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)

+ Bq(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)uk + d̄q(wk)

(13)

with
∆f1 = f1(z0,k, z1,k + xr,1,k, z2,k + xr,2,k)

− f1(z0,k, z1,k + xr,1,k, xr,2,k)

∆f2 = f2(z0,k, z1,k + xr,1,k, z2,k + xr,2,k, z3,k + xr,3,k)
− f2(z0,k, z1,k + xr,1,k, z2,k + xr,2,k, xr,3,k)

...

∆fq−1 = fq−1(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)
− fq−1(z0,k, z1,k + xr,1,k, . . . , xr,q,k).

It is worth noting that when fi are in the form (6), under (A.1.b)
one gets

xr,2,k =
(
B1(z0,k, z1,k + xr,1,k)

)−1 (K1z1,k
− f1(z0,k, z1,k + xr,1,k)− d̄1(wk)

)
...

xr,q,k =
(
Bq−1(·)

)−1 (Kq−1zq−1,k − fq−1(·)− d̄q−1(wk))
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and system (4) is diffeomorphic to

z0,k+1 = f0(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k, wk)
z1,k+1 = K1z1,k + B1z2,k
z2,k+1 = K2z2,k + B2z3,k
...

zq−1,k+1 = Kq−1zq−1,k + Bq−1zq,k
zq,k+1 = fq(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)

+ Bq(z0,k, z1,k + xr,1,k, . . . , zq,k + xr,q,k)uk + d̄q(wk).

When not specified, in the following it will be clear from the
context if hypothesis (A.1.a) or (A.1.b) applies.

2.3. Digital sliding mode control

In this section, we will design a sliding mode controller for
system (13), such that the reference signal yr(wk) is tracked and
the disturbance d(wk) is rejected. This will be achieved in presence
of constraints on the input

‖uk‖ ≤ umax. (14)

The maximal value umax is assumed to fulfill Assumption (A.2).
As usual in the slidingmode technique (Utkin, 1993), the control

forces the system evolution on a certain surface which guarantees
the achievement of the control requirements. A natural choice is
the sliding surface Sk = zq,k = 0. With this choice, the last of (13)
can be also rewritten as follows

Sk+1 = fq(z0,k, z1,k + xr,1,k, . . . , Sq + xr,q,k)

+ Bq(z0,k, z1,k + xr,1,k, . . . , Sq + xr,q,k)uk + d̄q(wk).
(15)

The next step is to find a control law which fulfills the bound (14)
and forces the system evolution on Sk = 0. Such a control is

uk =


uk,eq for

∥∥uk,eq∥∥ ≤ umax
uk,eq∥∥uk,eq∥∥umax for

∥∥uk,eq∥∥ > umax (16)

where the equivalent control uk,eq is calculated imposing Sk ≡ 0
in (15)

0 = fq(z0,k, z1,k + xr,1,k, . . . , xr,q,k)

+ Bq(z0,k, z1,k + xr,1,k, . . . , xr,q,k)uk + d̄q(wk).

Using (A.1.b)

uk,eq = −B̄−1q
[
f̄q + d̄q(wk)

]
(17)

f̄q = fq(z0,k, z1,k + xr,1,k, . . . , zq−1,k + xr,q−1,k, xr,q,k)

B̄q = Bq(z0,k, z1,k + xr,1,k, . . . , zq−1,k + xr,q−1,k, xr,q,k)

or, in the original coordinates

uk,eq = −
[
Bq(x0,k, x1,k, . . . , xq−1,k, xr,q,k)

]−1
×
[
fq(x0,k, x1,k, . . . , xq−1,k, xr,q,k)+ d̄q(wk)

]
.

A simple analysis will prove that the dynamics of the closed-
loop systemover the surface Sk ≡ 0, i.e. the slidingmodedynamics,
are stable. For, let us rewrite (15) and (17) as

Sk+1 = Sk + f̃s + B̃quk (18)

uk,eq = −B̃−1q
(
Sk + f̃s

)
(19)

where

f̃s = −zq,k + f̃q + d̄q(wk) =
(
∆◦q,k +∆r,k

)∣∣
xk=ϕ−1(zk,wk)

B̃q = Bq(z0,k, . . . , zq−1,k + xr,q−1,k, Sk + xr,q,k)
and

f̃q = fq(z0,k, . . . , zq−1,k + xr,q−1,k, Sk + xr,q,k).

It follows that∥∥uk,eq∥∥ ≤ ∥∥∥B̃−1q ∥∥∥ ∥∥∥Sk + f̃s∥∥∥ . (20)

Let us now consider the two cases given in (16). When
∥∥uk,eq∥∥ ≤

umax, the equivalent control uk,eq is applied, bringing the system
trajectory on the sliding manifold Sk = 0 in one step. When∥∥uk,eq∥∥ > umax,
Sk+1 = Sk + f̃s + B̃qumax

uk,eq∥∥uk,eq∥∥
=

(
Sk + f̃s

)(
1−

umax∥∥uk,eq∥∥
)
.

(21)

Along any solution of (21), the increment of the Lyapunov
function Vk = ‖Sk‖ is given by

∆V = ‖Sk+1‖ − ‖Sk‖

=

∥∥∥Sk + f̃s∥∥∥(1− umax∥∥uk,eq∥∥
)
− ‖Sk‖

≤

(∥∥∥Sk + f̃s∥∥∥− umax∥∥B−1q ∥∥
)
− ‖Sk‖ .

It is now sufficient to note that, from Assumptions (A.1.a) and (A.2)∥∥∥Sk + f̃s∥∥∥− umax∥∥B−1q ∥∥ ≤ ‖Sk‖ + δq − umax∥∥B−1q ∥∥ < ‖Sk‖
to deduce that ‖Sk‖ decreases monotonically. Therefore, also∥∥uk,eq∥∥ decreases monotonically, since from (20)∥∥uk,eq∥∥ ≤ β−q (‖Sk‖ + δq)
and there will be a certain time instant k̄ such that

∥∥uk,eq∥∥ ≤ umax,
for k ≥ k̄. At this time the the equivalent control uk,eq is applied,
bringing the system trajectory on the sliding manifold Sk = 0 at
time k̄+ 1.
Themotion on the slidingmanifold Sk = zq,k = 0, i.e. the sliding

mode dynamics, is described by a reduced (n−nq)th order system

z0,k+1 = f0(z0,k, z1,k + xr,1,k, . . . , xr,q,k, wk)
z1,k+1 = K1z1,k +∆f1
z2,k+1 = K2z2,k +∆f2
...

zq−2,k+1 = Kq−2zq−2,k +∆fq−2
zq−1,k+1 = Kq−1zq−1,k

(22)

since∆fq−1 = 0. Moreover, since the matrices Ki, i = 1, . . . , q− 1
are Schur, zq−1,k asymptotically decays to zero, as well as ∆fq−2.
Iteratively, one checks that also zq−2,k, . . . , z1,k and∆fq−3, . . . ,∆f1
asymptotically decay to zero, fulfilling the control objective. Hence,
the residual dynamics on the sliding manifold are

z0,k+1 = f0(z0,k, xr,1,k, . . . , xr,q,k, wk).
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2.4. A discrete time observer and stabilization via dynamic feedback

The measurability of the whole state and the knowledge of
the disturbance are strong hypotheses often not verified, as for
example, in the case of induction motors. This problem may be
overcome by using observers and estimators. In what follows
we consider system (1) which, after a coordinate transformation(
ηTk ζ Tk

)T
= T (xk), can be put in the following form

ηk+1 = φ1(ηk, ζk, dη, uk)
ζk+1 = φ2(ηk, ζk, uk)

(23)

where ζk is the vector of the non-measurable state variables and
dη(wk) is the disturbance, depending onwk and having dynamics

dη,k+1 = Sdη,k
supposed linear. In the case of the induction motor it will be
shown that it is possible to exploit the particular structure of
the equations in order to obtain an observer which ensures
exponential convergence. For, let us consider the following
particular structure for Eq. (23)

ηk+1 = Λ11ηk +Λ13dη,k +Λ14uk + fη(ηk)ζk
ζk+1 = fζ (ηk, ζk)

with fη(ηk) a globally bounded function, as in the case of the
induction motor. The proposed observer is the following

η̂k+1 = Λ11ηk +Λ13d̂η,k +Λ14uk + fη(ηk)ζ̂k + G1(ηk − η̂k)

ζ̂k+1 = fζ (ηk, ζ̂k)

d̂η,k+1 = Sd̂η,k + G2(ηk − η̂k).

(24)

We consider the following assumptions.

(A.3). The pair
(
0 Λ13
0 S

)
,
(
Id 0

)
is detectable, where Id is the

identity matrix. C

(A.4). The dynamics of ζk − ζ̂k are exponentially stable. C
Introducing the errors

e1,k = ηk − η̂k, e2,k = ζk − ζ̂k, e3,k = dk − d̂k
under (A.3) and (A.4) it is easy to show that the error dynamics(
e1,k+1
e3,k+1

)
=

(
−G1 Λ13
−G2 S

)(
e1,k
e3,k

)
+

(
fη(ηk)
0

)
e2,k

e2,k+1 = fζ (ηk, ζk)− fζ (ηk, ζ̂k)

are globally exponentially stable for an appropriate choice of
the gain matrix G =

(
G1
G2

)
. In fact, by (A.4), e2,k goes to zero

exponentially. Moreover, the dynamics of e1,k, e3,k are globally
input-to-state stable (Khalil, 1996), with exponential rate thanks
to (A.3).
In the remainder of this section we will show that the feedback

ûk =


ûk,eq for

∥∥ûk,eq∥∥ ≤ umax
ûk,eq∥∥ûk,eq∥∥umax for

∥∥ûk,eq∥∥ > umax
ûk,eq = −B−1q (x̂k)

[
fq(x̂k)+ d̄q(ŵk)

] (25)

with x̂k = T−1(ηk, ζ̂k) given from (24), asymptotically stabilizes
system (1). This result can be easily proved making use the
following theorem.

Theorem 1 (Lin and Byrnes (1994), Th. 4.3 — Separation Principle).
The asymptotic stabilization problem of system (1) is solvable via
estimated state feedback (24) and (25) if, and only if, system (1) is
asymptotically stabilizable and exponentially detectable. C
We summarize our conclusions in the next result.

Theorem 2. If the nonlinear system (4) can be put in the form (23),
with measured output vector ηk = γ (xk), under condi-
tions (A.1)–(A.4) the control law (24) and (25) asymptotically sta-
bilizes the system (1). C

3. Digital control of induction motors

In this section, a discrete time sliding mode controller is
designed on the basis of the sampled dynamics of an induction
motor, given in Appendix. The variables to be controlled are
the rotor velocity and the rotor flux squared modulus, while
the disturbance to be rejected is the load torque. The measured
variables are the rotor speed and stator currents. For the rotor
fluxes and for the load torque an observer is designed.

3.1. Control design

The sampled dynamics for the induction motor in the stator
fixed reference frame (α, β) can be approximated as follows (see
Appendix)

θk+1 = θk + δωk + a1
(
iβ,kφα,k − iα,kφβ,k

)
−
δ2

2J
CL,k

ωk+1 = ωk + a2
(
iβ,kφα,k − iα,kφβ,k

)
− δCL,k/J

φα,k+1 = χ1,k = ρ1,k cos∆θk − ρ2,k sin∆θk
φβ,k+1 = χ2,k = ρ1,k sin∆θk + ρ2,k cos∆θk
iα,k+1 = iα,k + δ

(
αβφα,k + pβωkφβ,k − γ iα,k

)
+ δuα,k/σ

iβ,k+1 = iβ,k + δ
(
αβφβ,k − pβωkφα,k − γ iβ,k

)
+ δuβ,k/σ

where

χk(ωk, φk, Ik, wk) =
(
χ1,k
χ2,k

)
= e∆θk=ρk

ρk(φk, Ik) =
(
ρ1,k
ρ2,k

)
= a0φk + a3Ik

∆θk(ωk, φk, Ik, wk) = p(θk+1 − θk)

= pδωk + pa1
(
iβ,kφα,k − iα,kφβ,k

)
−
pδ2

2J
CL,k

e∆θk= =
(
cos∆θk − sin∆θk
sin∆θk cos∆θk

)
, = =

(
0 −1
1 0

)
and a0, . . . , a3, J, α, β, γ , σ are constants, δ is the sampling
period, CL,k is the load torque, φk =

(
φα,k φβ,k

)T, Ik =(
iα,k iβ,k

)T, uk = (
uα,k uβ,k

)T are the rotor flux, stator current,
voltage vectors. Note that e∆θk= is a counterclockwise rotation
matrix.
This system is in the form (1), with the vectors of the variables

to be controlled and measurable given by

yk =
(
ωk Φk

)T
, ηk =

(
θk ωk iα,k iβ,k

)T
.

Here,Φk = ‖φk‖2 = φ2α,k+φ
2
β,k is the square rotor fluxmagnitude.

It is worth noting that

Φk+1 = φ
T
k+1φk+1 = (a0φk + a3Ik)

T (a0φk + a3Ik) .

Moreover, yr,k =
(
ωr,k Φr,k

)T is the reference signal vector to
be tracked, where ωr,k and Φr,k are appropriate bounded signals
with bounded increments, generated by the external system (3)
alongwith the disturbance CL,k = CL,k(wk) to be rejected, supposed
bounded.
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It is well known that the control objective can be met ensuring
an appropriate electromechanical torque, proportional to the term

ITk=φk = iβ,kφα,k − iα,kφβ,k

and an appropriate reactive power

ITkφk = iα,kφα,k + iβ,kφβ,k.

In fact, while the angular velocity requirement determines a
certain acceleration to be imposed to the mechanical system, and
hence a certain electromechanical torque Cm,k = µITk=φk (µ is
a constant, see Appendix), the flux requirement imposes a flux
vector with a certain module, which can be obtained thanks to a
certain reactive power Pk = ITkφk. This can be done imposing(
φTk
−φTk=

)
Ik =

(
ψ1,k
ψ2,k

)
= Ψk

with ψ1,k = Pk, ψ2,k = Cm,k/µ appropriate functions, which gives

Ik =
1
Φk

(
φk =φk

)
Ψk = eθφ,k=Ψk (26)

for Φk 6= 0. Note that Ik results to be Ψk rotated of θφ,k
counterclockwise. Eq. (26) gives the expression of the reference
current Ir,k. This is the classical field oriented control (FOC, see for
instance Fekih and Chowdhury (2004)). In this way the current
vector imposes a reference module and a reference angle to the
flux vector. From this discussion it is clear that it is convenient to
consider the following change of coordinates

x0,k =
(
x01,k
x02,k

)
=

(
θφ,k
θk

)
,

x1,k =
(
x11,k
x12,k

)
= yk, x2,k =

(
x21,k
x22,k

)
= Ik

(27)

where θφ,k = arctan(φβ,k/φα,k) is the flux vector angle, and xk =(
xT0,k xT1,k xT2,k

)T
. Clearly, the inverse transformation is

θk = x02,k
ωk = x11,k,

φα,k = x12,k cos x01,k
φβ,k = x12,k sin x01,k,

iα,k = x21,k
iβ,k = x22,k.

In the new coordinates the inductionmotor sampled dynamics are

x0,k+1 = f0(x0,k, x1,k, x2,k, wk)
x1,k+1 = f1(x0,k, x1,k, x2,k)+ d1(wk)
x2,k+1 = f2(x0,k, x1,k, x2,k)+ B2uk

(28)

i.e. are in the form (4) with q = 2, and

f0(xk, wk) =

 arctan
χ2,k(ωk, φk, Ik, wk)
χ1,k(ωk, φk, Ik, wk)

θk + δωk + a1ITk=φk −
δ2

J
CL,k


f1(xk) =

(
ωk + a2ITk=φk

a20Φk + 2a0a3φ
T
k Ik + a

2
3I
T
k Ik

)
f2(xk) = (1− δγ )Ik + δβ(αId − pωk=)φk

B2 =
δ

σ
Id, d1(wk) =

−δJ CL,k
0

 .
Notice that the first equation refers to unstable internal dynamics,
since they describe the rotation of the rotor flux vector and the
rotor position. Hence, their instability is not a physical problem.
Moreover, from a mathematical point of view, these variables
appear in the dynamics of x1,k, x2,k through bounded functions.
In what follows we derive a sliding mode controller, using the
control procedure of Section 2. To this aim, one considers first the
nonlinear transformation (12)

z0,k = x0,k, z1,k = x1,k − yr,k, z2,k = x2,k − Ir,k
with Ir,k given by (26). In order to determine explicitly Ir,k, consider
that, from (26)

ITkφk = ψ1,k, ITk=φk = ψ2,k, ITk Ik =
1
Φk
(ψ21,k + ψ

2
2,k)

Φk 6= 0. Hence, setting

z1,k+1 = x1,k+1 − yr,k+1

=

 ωk + a2ψ2,k − δCL,k/J − ωr,k+1

a20Φk + 2a0a3ψ1,k +
a23
Φk
(ψ21,k + ψ

2
2,k)− Φr,k+1


= K1z1,k

with K1 = diag{k11, k12} Schur, one works out the solutions

ψr,1,k = −
a0
a3
Φk ±

1
a3

√
∆k

ψr,2,k =
1
a2

(
ωr,k+1 − ωk +

δ

J
CL,k + k11(ωk − ωr,k)

)
∆k =

(
Φr,k+1 + k12(Φk − Φr,k)

)
Φk − a23ψ

2
r,2,k.

With this choice forψr,1,k,ψr,2,k, the explicit expression of Ir,k = κ2
remains determined whenΦk 6= 0

Ir,k = κ2 =
1
Φk

(
φk =φk

) (ψr,1,k
ψr,2,k

)
= eθφ,k=Ψr,k (29)

with Ψr,k =
(
ψr,1,k ψr,2,k

)T, i.e. Ir,k is Ψr,k rotated of θr,k
counterclockwise. Moreover, it is easy to check by induction
that, starting from finite values of ωk, Φk at k = 0, Ψr,k
remains bounded. As a consequence, also Ir,k remains bounded.
Furthermore, imposing

z2,k+1 = x2,k+1 − Ir,k+1

= (1− δγ )Ik + δβ(αId − pωk=)φk +
δ

σ
uk − Ir,k+1

= K2z2,k
with K2 = diag{k21, k22} Schur, one gets

uk,eq =
σ

δ
(−(1− δγ )Ik − δβ(αId − pωk=)φk

+ Ir,k+1 + K2(Ik − Ir,k)).

The fulfillment of the control objective derives from Section 2. In
fact, the system is diffeomorphic to system (13), with q = 2

z0,k+1 = f0(z0,k, z1,k + xr,1,k, z2,k + xr,2,k, wk)
z1,k+1 = K1z1,k +∆f1
z2,k+1 = f2(z0,k, z1,k + xr,1,k, z2,k + xr,2,k)+ B2uk
and

∆f1 = f1(z0,k, z1,k + xr,1,k, z2,k + xr,2,k)
− f1(z0,k, z1,k + xr,1,k, xr,2,k).

Hence, the bounded control (16) steers Sk = z2,k = Ik − Ir,k to
zero after a finite time interval. Hence, ∆f1 tends to zero as well.
The sliding mode on Sk = 0 are given by

z0,k+1 = f0(z0,k, z1,k + xr,1,k, xr,2,k, wk)
z1,k+1 = K1z1,k.

Since z1,k+1 = K1z1,k are asymptotically stable, the residual
dynamics are z0,k+1 = f0(z0,k, xr,1,k, xr,2,k, wk).
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3.2. Reduced order nonlinear observer

Under the assumption (H.1) for CL (see Appendix), the following
reduced order nonlinear observer can be used for rotor flux and
load torque estimation

ω̂k+1 = ωk + a2ITk=φ̂k −
δ

J
ĈL,k + λ1(ωk − ω̂k)

ĈL,k+1 = ĈL,k + λ2(ωk − ω̂k)

φ̂k+1 = e∆θk=
(
a0φ̂k + a3Ik

)
.

This reduced observer can be obtained from (24) considering only
the dynamics of the component ωk of ηk. Obviously, here dη,k =
CL,k and ζk = φk. The observation errors e1,k = ωk − ω̂k, e2,k =
φk − φ̂k, e3,k = CL,k − ĈL,k have the following dynamics(
e1,k+1
e3,k+1

)
=

−λ1 −δJ
−λ2 1

(e1,k
e3,k

)
+

(
a2ITk=
0e2,k

)
e2,k+1 = a0e∆θk=e2,k.

(30)

A Lyapunov stability analysis will prove the exponential stability of
the origin. For, let us consider the Lyapunov function Vk = eT2,ke2,k.
Since e∆θk= is orthogonal, one checks that

Vk+1 = −(1− a20)‖e2,k‖
2
= −(1− a20)Vk.

Since a0 = e−αδ , with α > 0, for every sampling period δ one
has that Vk+1 < 0 and the exponential convergence of e2,k to zero
is verified. Finally, using the Jury criterion (Åström &Wittenmark,
1997), for

λ2 < 0,
δ

J
λ2 + λ1 + 1 > 0,

δ

J
λ2 + 2λ1 − 2 < 0

one checks that the first equation of (30) is input-to-state stable,
and therefore e1,k, e3,k tend to zero exponentially. Note that
physically Ik is bounded, andmoreover it is common in applications
to use devices to limit the current amplitude. Hence the function
fη(ηk) = a2ITk= can be considered globally bounded.
The controller so determined is hence,

ûk =


ûk,eq for

∥∥ûk,eq∥∥ ≤ umax
ûk,eq∥∥ûk,eq∥∥umax for

∥∥ûk,eq∥∥ > umax (31)

where umax is chosen to fulfill Assumption (A.2), and the equivalent
control ûk,eq is

ûk,eq =
σ

δ

(
−(1− δγ )Ik − δβ(αId − pωk=)φ̂k

+ Îr,k+1 + K2(Ik − Îr,k)
)

with

Îr,k =
1

Φ̂k

(
φ̂k =φ̂k

) (ψ̂r,1,k
ψ̂r,2,k

)
, Φ̂k = φ̂

T
k φ̂k

ψ̂r,1,k = −
a0
a3
Φ̂k ±

1
a3

√
∆̂k

ψ̂r,2,k =
1
a2

(
ωr,k+1 − ωk +

δ

J
ĈL,k + k11(ωk − ωr,k)

)
∆̂k =

(
Φr,k+1 + k12(Φ̂k − Φr,k)

)
Φ̂k − a23ψ̂

2
r,2,k.

(32)

It is worth noting that the initial condition φ̂k(0) for the flux
observer has to be chosen different from zero in order to avoid
singularities in (32).
Fig. 1. (a) Angular velocity: comparison between DSMBC and sampled DFOC;
(b) Zoom of (a); (c) Tracking errors z11,k = ωk−ωr,k for the DSMBC and the sampled
DFOC.

4. Simulations

To show the effectiveness of the proposed control law,
simulations have been carried out on a three-phase, two-pole
machine, with a stator–referred rotor. The plate parameter values
of the motor are Pnom = 0.25 Hp,ωnom = 1600 rpm, Vnom = 220 V,
Inom = 1.0 A for power, velocity, voltage and current, while the
parameters are Rs = 14 �, Rr = 10.1 �, Ls = 400 mH, Lm =
377 mH, Lr = 412.9 mH, p = 2, J = 0.01 kg m2. The nominal load
torque is CL,n = 1.1 N m.
It is worth mentioning that the induction motor has been

simulated as a continuous time system, in order to consider amore
realistic condition. Moreover, in order to obtain better current
transients, the reference current components have been bounded
by five times Inom, which is an admissible value during transients.
A ‘‘worst case’’-like scenario is considered, in which the

unknown load torque is supposed a square signal, ranging in the
interval [−CL,n, CL,n], as shown in Fig. 4.c. Moreover, we suppose
that the rotor velocity tracks the sampled sinusoidal signal ωr,k =
70 sin 3kδ, k = 0, 1, 2, . . ., and the flux magnitude tracks a
constant signalΦr,k = 0.2 Wb2.
The parameters used in the control law and the observer are

δ = 500 µs, umax = 220 V, k11 = 0.1, k12 = 0.9, λ1 = 0.7,
λ2 = −0.7, φ̂0 =

(
0 0.1

)TWb.
Figs. 1 and 2 show the output tracking results for the

controller (31), comparedwith the sampled version of a direct field
oriented control (DFOC) used in Fekih and Chowdhury (2004).
Fig. 3 summarizes the behavior of the voltage uk, the flux φk,

and the current Ik. It is clear the better performance obtained with
control (31).
Finally, in Fig. 4 the estimation errorsφα,k−φ̂α,k,φβ,k−φ̂β,k, the

load torque CL,k and its estimate ĈL,k are shown. It is worth noting
that, despite the load torque is assumed piece-wise constant, the
observer follows well square shape signals and its response is fast
for step changes in CL.

5. Conclusions

In this work, a sliding mode control has been proposed for
output reference tracking, based on a general decomposition
method for discrete time nonlinear systems. A reduced order
observer has been designed for the unmeasured states and
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Fig. 2. (a) Rotor squared flux norm: comparison between DSMBC and sampled
DFOC; (b) Zoom of (a); (c) Tracking errors z12,k = Φk − Φr,k for the DSMBC and
the sampled DFOC; (d) Zoom of (c).

Fig. 3. (a) φα,k vs. φβ,k; (b) iα,k vs. iβ,k; (c) uα,k vs. uβ,k .

Fig. 4. (a) Estimation error φα,k − φ̂α,k; (b) Estimation error φβ,k − φ̂β,k; (c) CL,k
(solid) and ĈL,k (dash–dot).

perturbation, ensuring the fulfillment of the control objective. This
controller has been applied for the control of induction motors.
An approximated discrete time model for induction motors has
been derived. The resulting dynamic controller has been simulated
and compared with a classical field oriented control, showing
satisfactory steady state and transient performance, and showing
at the same time the capability of the control system of rejecting
modeled disturbances.

Appendix. Approximated sampledmodel for inductionmotors

In this appendix, an approximated sampledmodel for induction
motors is derived. Under the assumptions of equal mutual
inductance and a linear magnetic circuit, a sixth-order induction
motor model is given as (Marino et al., 1993)

θ̇ = ω

ω̇ = µIT=φ −
1
J
CL

φ̇ = −αφ + pω=φ + αLmI

İ = αβφ − pβω=φ − γ I +
1
σ
u

(A.1)

where θ and ω are the rotor position and angular velocity
respectively, φ =

(
φα φβ

)T, I = (
iα iβ

)T, u = (
uα uβ

)T
are the rotor flux, stator current and voltage vectors, CL is the load
torque, J is the rotor moment of inertia, and α = Rr

Lr
, β = Lm

σ Lr
,

γ =
L2mRr
σ L2r
+
Rs
σ
, σ = Ls −

L2m
Lr
, µ = 3

2
Lmp
JLr
, and Ls, LrLm are the stator,

rotor and mutual inductance respectively, Rs and Rr are the stator
and rotor resistance respectively, and p is the number of pole pairs.
The first three Eqs. (A.1) constitute the so-called current-

fed model, in which I can be regarded as the control input. It
is easy to check that the current-fed model cannot be exactly
discretized (Monaco & Normand-Cyrot, 1985). Necessary and
sufficient conditions for exact discretizability under coordinate
transformation and input feedback can be found in Castillo-Toledo
et al. (2008), Monaco and Di Giamberardino (1996) and Monaco,
Di Giamberardino, and Normand-Cyrot (2006). Nevertheless, an
approximated sampledmodel can be derived considering constant
the current I in the third Eq. (A.1) over the sampling period δ, and
under the following assumption.
(H.1). The load torque CL is piece-wise constant over the sampling
period δ. C
Assumption (H.1) holds for all cases in which CL is slowly

varying with respect to the electric dynamics.
As far as the approximated sampled version of current-fed

model is concerned, let us use the following globally defined
change of coordinateθωY
X

 =


θ
ω

e−pθ=φ
e−pθ=I

 (A.2)

where
d
dt
e−pθ= = −pω=e−pθ=, e−pθ== = =e−pθ=.

Considering X as new input, so neglecting for the moment its
dynamics, one obtains the following bilinear model

θ̇ = ω

ω̇ = µXT=Y −
1
J
CL

Ẏ = −αY + αLmX .

(A.3)

The advantage of considering (A.2) is that the equation
regarding Y becomes linear. Under the following simplifying
assumption this last equation can be easily discretized.
(H.2). The new control X in the dynamics of Y in (A.3) can be
considered piece-wise constant over the sampling period δ. C
Assumption (H.2) can be considered valid for small sampling

periods δ. Thanks to this assumption, from the third equation
of (A.3) one gets

Y (t) = e−α(t−kδ)Yk + Lm
(
1− e−α(t−kδ)

)
Xk (A.4)

where Yk = Y (kδ), Xk = X(kδ), t ∈ [kδ, (k+ 1)δ). Now, under
(H.1), the integration of the second of (A.3) gives

ω(t) = ωk + µXTk=
∫ t

kδ
Y (ξ)dξ −

1
J
CL,k

∫ t

kδ
dξ (A.5)
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where ωk = ω(kδ), t ∈ [kδ, (k+ 1)δ), and∫ t

kδ
Y (ξ)dξ =

1
α

(
1− e−α(t−kδ)

)
Yk + Lm(t − kδ)Xk

−
1
α
Lm
(
1− e−α(t−kδ)

)
Xk.

(A.6)

Replacing (A.6) in (A.5), one obtains

ω(t) = ωk +
µ

α

(
1− e−α(t−kδ)

)
XTk=Yk

−
1
J
CL,k(t − kδ)

(A.7)

t ∈ [kδ, (k+ 1)δ). Integrating over the sampling period the first
of (A.3), one works out

θ(t) = θk +
∫ t

kδ
ω(ξ)dξ (A.8)

where θk = θ(kδ) and∫ t

kδ
ω(ξ)dξ = ωk(t − kδ)+

µ

α
XTk=Yk

×

[
(t − kδ)+

1
α

(
e−αt − e−αkδ

)
eαkδ

]
−
1
J
CL,k
1
2
(t − kδ)2.

(A.9)

Using (A.9), for t = (k+ 1)δ, (A.8), (A.7) and (A.4) one gets

θk+1 = θk + δωk + a1XTk=Yk −
δ2

2J
CL,k

ωk+1 = ωk + a2XTk=Yk −
δ

J
CL,k

Yk+1 = a0Yk + a3Xk

(A.10)

where

a0 = e−αδ, a1 =
µ

α

(
δ −

1
α
(1− a0)

)
a2 =

µ

α
(1− a0), a3 = (1− a0)Lm.

In the old coordinates, Eq. (A.10) are re-written as

θk+1 = θk + δωk + a1ITk=φk −
δ2

2J
CL,k

ωk+1 = ωk + a2ITk=φk −
δ

J
CL,k

φk+1 = e∆θk= (a0φk + a3Ik)

(A.11)

where e∆θk= = ep(θk+1−θk)= = epθk+1=e−pθk=.
The approximated sampled model of system (A.1) can be

obtained considering the stator current equations in (A.1). More
precisely, the equation for I can be sampled considering the Euler
approximation

Ik+1 = Ik + δ
(
αβφk − pβωk=φk − γ Ik +

1
σ
uk

)
. (A.12)

Finally, the approximated sampled model of the induction motor
is given by (A.11) and (A.12).
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