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Abstract. In this paper we propose a solution to the model–based fault diagnosis problem for the class of non–linear dynamic
systems subjected to be described by a Takagi–Sugeno fuzzy model. A fuzzy observer is designed to estimate the system’s state
vector and to derive a diagnostic signal–residual. The residual is generated by the comparison of the measured and the estimated
outputs. The proposed scheme has been satisfactorily tested in simulation and in a real–time benchmark given by a Two–Tank
Hydraulic System.
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1. Introduction

Although the automation of processes by means of
automatic control has allowed the reduction of the ex-
position of human operators to potentially hazardous
manual operations, repetitive tasks and unsafe environ-
ments, it does not avoid the appearance of fault events,
since faults in their components are inherent problems
associated with the physical nature of dynamic systems.
An immediate consequence of the appearance of faults
are the negative effects on the system performance.
Thus, the availability, cost efficiency, reliability, operat-
ing safety and environmental protection are very impor-

∗Corresponding author. E-mail: toledo@gdl.cinvestav.mx
(B. Castillo-Toledo); stefano.digennaro@univaq.it (S. Di Gennaro);
janzurez@jupiter.umich.mx (J. Anzurez-Marin).

1 Work supported by the Consejo Nacional de Ciencia y Tecnologı́a
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tant characteristics in modern control systems. For crit-
ical safety systems, the consequences of faults can be
extremely serious in terms of human mortality, environ-
mental impact and economic losses. Therefore, there is
an increasing need of schemes of supervision and fault
diagnosis to increase the reliability of such systems.

Many of the initial works related to fault diagnosis
deal with fault detection in linear systems. A variety of
techniques have been used to deal with the problem, e.g.
non–linear approaches and artificial intelligence tech-
niques. In the last decade, robust techniques of fault
diagnosis have been studied and several applications
can be found in the literature [4], [7], [6], [1], [14].

The different methods related to fault diagnosis can
be gathered in three areas: signal analysis–based or sta-
tistical methods; input/output information knowledge–
based methods and model–based methods [13], [16],
[7], [8]. The signal analysis–based methods use statis-
tical techniques or data mining. These have been used
in applications of Power Electrical Systems, where a
fault–free power system is compared in line with the
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current system. In the following, one can determine
if the faults appear in the power electrical system by
means of statistical analysis. The Principal Component
Analysis (PCA) is the best known statistical technique,
and has been widely used in the industrial process mon-
itoring. This technique allows reducing the dimension
of the plant model by using linear dependencies among
the variables of the model [11]. The input/output infor-
mation knowledge methods are classification methods.
The most used example of this technique is the Artifi-
cial Neural Network (ANN). An ANN exhibits suitable
characteristics to deal with the fault diagnosis problem,
due to its learning capability and its ability of model-
ing an uncertain non–linear process. The model–based
approach to fault diagnosis in dynamic processes has
been receiving considerable attention since the begin-
ning of the 1970s, both in the research context and in the
domain of applications on real processes [4], [13]. The
main idea of the model–based approach is the determi-
nation of faults, appearing in a dynamic system, from
the comparison of available measurements to a prior
information, represented by its mathematical model.
From this process, comparison signals, known as resid-
uals, are generated. These signals provide information
about the faults in the system. In this paper, we follow
this approach.

A structure commonly accepted for the model–based
fault diagnosis is shown in Figure 1. In this scheme,
the residual generation subsystem provides a diagnos-
tic signal, the residual, which depends only on the faults

Fig. 1. General structure of the model–based fault diagnosis

and not on the inputs, while in the decision making sub-
system, the residuals are examined regarding the likeli-
hood of a fault. A decision rule is then applied to deter-
mine if the fault appears. A threshold value is generally
used to guarantee robustness.

Most of the model–based fault diagnosis methods
are based on linear system models and, traditionally,
the fault diagnosis problem for non–linear dynamic
systems is analyzed in two steps: first, the model is
linearized around a desired operating point, and then
a specific linear technique is applied to generate a
diagnostic signal, e.g. Kalman filters, observers, parity
relations, parameter estimation, etc. [4], [11]. However,
since the behavior of many engineering systems ex-
hibits nonlinearities, nonlinear models are more likely
to be necessary for FDI purpose, since linear models
are only valid in a local region around an equilibrium
point. Motivated by this reason, in the last years many
efforts have been made for the use of non–linear system
techniques for fault diagnosis. For nonlinear systems,
one difficulty results from the presence of non mea-
sured states, and two different approaches for dealing
with this problem have been proposed, namely elimina-
tion and estimation. The estimation, through dynamical
observers, has been addressed for example in [9], [17],
[12], among many others. In particular, in [10] a decou-
pling strategy for a non–linear system is used to derive
several subsystems, containing information about spe-
cific faults of the system in consideration. Once these
subsystem are determined, a Luenberger fuzzy observer
is implemented to generate the residuals. Parametric
variations are not considered in this approach. In [6] a
fuzzy observer is used to reconstruct the fault, rather
than to detect its appearance through a residual signal.
On the other hand, the results presented in [1] involve a
fuzzy multiple observer, where the single components
are fuzzy observers having the form presented in [19].
This multiple observer is capable of reconstructing the
state and output vectors of a system, when some inputs
are unknown. It is worth noting that, in this specific
approach, the fault information is not distinguishable
through the residuals.

A fault diagnosis method using only output informa-
tion could give incorrect information on the faults, when
the inputs of the system change. A way to circumvent
this problem, affecting the model–based fault diagnosis
methods, is to use the residual–generation concept, in
which the inputs and outputs are used to generate a fault
indicator.

In this paper, we propose a model–based approach
with fuzzy observers in order to deal with the fault
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diagnosis problem. Roughly speaking, the proposed ap-
proach consists of obtaining a Takagi–Sugeno fuzzy
model [18] of the non–linear system, and then design-
ing fuzzy observers to estimate the system state vector.
The diagnostic signal–residual is finally generated by
the comparison between the measured and the estimated
outputs. This approach allows determining a diagnos-
tic signal which is insensible to parametric variations in
a neighborhood of the nominal parameter values, and
sensible only to the fault signal.

The paper is organized as follows: In section 2 some
basic concepts on fault diagnosis theory, the problem
definition and a way to solve it are shown. In section 3
we describe an application example. In section 4 we re-
port the simulation and experimental results, and finally
in section 5 we present some conclusions.

2. Observer–based fault diagnosis

In general, a fault will be considered as a change in
the behavior of the system due to external inputs ex-
ceeding the limits of a pre-specified tolerance. There-
fore, the fault diagnosis concept will be referred to as
the problem of detecting and locating the fault, namely,
not only merely recognize the presence of a fault, but
also identify on which component of the system the
fault has appeared. This is formally defined as the Fault
Detection and Isolation (FDI) problem.

A traditional approach to fault diagnosis is based
on hardware redundancy methods, which use multi-
ple range sensors, actuators, computers and software to
measure and/or control a particular variable. It is possi-
ble however to use different measured values and their
combinations instead of duplicating each component
individually to smooth the conflict between the relia-
bility and the cost due to the additional components.
This is the concept defined as functional or analytical
redundancy or model based approach, because it takes
advantage of the redundant analytical relationships be-
tween several measured variables in the monitored pro-
cess [11].

The major advantage of the model–based approach
is that no additional hardware is needed in order to
perform the fault detection and identification algo-
rithm since the analytical redundancy uses a mathemat-
ical model of the original system. The resulting signal
r(t) = y(t)− ỹ(t) generated from the comparison of the
measured and the estimated outputs is called symptom
or residual. The absolute value of this residual should
be close enough to zero when the system is in normal

operating condition, namely should enter in a finite time
TB a ball BB of radius B of the origin, while should di-
verge from zero, and leaveBB in finite time, when a fault
f (t) occurs in the system. Therefore, this property of
the residual can be used to determine whether or not an
abnormal behavior should be considered as a fault [5],
[8], i.e. the residual must satisfy the following condition

|r(t)|≈ 0 if f (t) = 0 (normal operation)

|r(t)|� 0 if f (t) �= 0 (faulty operation).

We say that the residual is sensitive to a specific set of
faults. In this sense, a desirable property of the residual
is to be insensitive or robust to parametric variations in
a neighborhood of the nominal values, namely, these
parametric variations should not be confused with a
fault.

Figure 1 shows that an essential problem in the
model–based FDI is the generation of the diagnostic
signal–residual, because if the algorithm that generates
the residuals is not correctly designed, important in-
formation about the faults could be lost. This has moti-
vated the study and proposal of different methods for the
residuals generation, like Kalman filters, Luenberger
observers and fuzzy observers [11]. In particular, the
observer–based approach consists of the appropriate
construction of an observer of the states of the system,
generally in a fault–free situation, which provides an
estimation of the output of the system that is compared
with the measured output in order to generate the resid-
uals to be used to detect a fault. The residual generation
scheme is depicted in Figure 2. The basic idea is to elim-
inate every input component from the output so that the
output depends only on the component related to the
fault, i.e., to construct a fuzzy observer which provides
a desirable estimation of the output of the system, to

Fig. 2. Residual generation scheme with fuzzy observer
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generate a residual which allows the proper identifica-
tion of the fault and its localization by means of some
suitable algorithm.

As discussed previously, the model–based approach
needs a mathematical model of the system to be ob-
served. In the case of non–linear dynamic systems, the
design of observers is not in general an easy task due
to the nonlinearities of the model. Several approaches
have been proposed to deal with this important prob-
lem. One of the recent approaches consists of achieving
an approximation of the non–linear system behavior in
terms of an aggregation of linear dynamics calculated
around some interesting points in the state–space, and
then calculate an observer for each linear submodel. In
this context, the Takagi–Sugeno (TS) fuzzy modeling
provides a systematic way of obtaining a set of linear
models that describe, at least locally, the behavior of
the nonlinear dynamics [18].

In the following we develop a method based on output
fuzzy observers. These observers are very useful and
have several advantages, among which the possibility
of working with reduced observation error dynamics, a
finite time convergence for all the observable states and
robustness under parameter variations. More precisely,
let us consider nonlinear system described by

ẋ = f (x, u, d, µ)

y = h(x, µ)
(1)

where x(t) ∈ IRn is the state of the system, u(t) ∈ IRm

is the input signal, d(t) ∈ IRq is an unknown input vec-
tor usually containing external disturbances or signals
reflecting faults affecting the system, y(t) ∈ IRm is a
measurable output signal, and µ ∈ IRν is a vector of the
system parameters subject to change.

The TS fuzzy model is described by a set of fuzzy IF–
THEN rules which represent local linear input–output
relations of a non–linear system. The main feature of
a TS fuzzy model is the ability of expressing the local
dynamic of each fuzzy implication (rule) by a linear
subsystem [18]. In other words, suppose that it is pos-
sible to describe locally the input–output behavior of
system (1) by a TS fuzzy dynamic model described by
the following r rules

Plant rule i:

IF z1 is M1i and · · · and zp is Mpi

THEN Σi:

{
ẋ = Aix + Biu + Eid + δi

yi = Cix + ∆i, i = 1, · · · , r

where z1, · · · , zp are measurable premise variables
which may coincide with some states or a combina-
tion of them, δi, ∆i are functions due to the vari-
ation of the parameter vector µ with respect to the
nominal value µ0, Ai, Bi, Ei, Ci are the nomi-
nal matrices, i.e. corresponding to µ = µ0, Mji

are the fuzzy sets and the linear subsystems are ob-
tained from some knowledge of the dynamics on the
process.

For a given triplet (x, u, d), the aggregate fuzzy
model is obtained by using a singleton fuzzifier, prod-
uct inference and center of gravity defuzzifier, resulting
in the following description

ẋ =
r∑

i=1

ωiAix +
r∑

i=1

ωiBiu +
r∑

i=1

ωiEid +
r∑

i=1

ωiδi

y =
r∑

i=1

ωiCix +
r∑

i=1

ωi∆i

(2)

where ωi is the normalized weight for each rule calcu-
lated from the membership functions for zj in Mji and
satisfying ωi = ωi(z) ≥ 0 and

r∑
i=1

ωi(z) = 1 (3)

with z = (
z1 · · · zp

)T .
For this system, we can formulate the Observed–

Based Fault Detection and Isolation Problem (OFDIP)
which consists of finding an observer

ξ̇ = γ(ξ, u, y)

ŷ = θ(ξ)

such that the absolute values of the residuals converge
in a finite time TB to a ball BB of radius B of the
origin, when the system is in normal operating con-
dition, while leave BB in finite time when a fault oc-
curs in the system. Moreover, the residuals have to
be insensitive to parametric variations in a neighbor-
hood of the nominal values of the parameters of the
system. In the following section we will determine
such an observer considering a family of sliding mode
observers.
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2.1. Sliding mode fuzzy observers for the
Takagi–Sugeno model

According to the previous section we note that the
requirement of observability of the nonlinear system is
a necessary condition for generating the residuals. Tak-
ing advantage of the TS description of the dynamics of
this nonlinear system, we will assume that it is possible
to construct local observers for each linear subsystem.
This motivates the following assumptions.

(H1) The pairs (Ci, Ai), i = 1, · · · , r, are detectable.
�

(H2) There exist δmax, ∆max such that ‖δi‖ ≤ δmax,
‖∆i‖ ≤ ∆max, for each i = 1, · · · , r. �

We propose the design of an aggregate sliding mode
fuzzy observer structure based on local fuzzy observers,
with each local observer associated with each fuzzy rule
given as

Observer rule i:

IF z1 is M1i and · · · and zp is Mpi

THEN Σ̂i:

{
ξ̇ = Aiξ + Biu + Li(y − ŷ) + ϕi

ŷ = Ciξ, i = 1, · · · , r

where ϕi is a discontinuous vector to be determined
later on. We assume also that the premise variables do
not depend on the estimated state variables.

We use the idea of the Parallel Distributed Compen-
sation (PDC) proposed in [18], where the overall state
estimation is a combination of individual local observer
outputs. The overall observer dynamics will be then a
weighted sum of individual linear observers, namely

ξ̇ =
r∑

i=1

ωiAiξ +
r∑

i=1

ωiBiu +
r∑

i=1

ωiLi(y − ŷ) +
r∑

i=1

ωiϕi

ŷ =
r∑

i=1

ωiCiξ (4)

where the weights are the same as those used in the
aggregate fuzzy model of the nonlinear system (2). To
analyze the convergence of the fuzzy observer, the state
estimation error is defined as e = x−ξ. Using (2) and (4)
we get

ė =
r∑

i=1

r∑
j=1

ωiωjĀije +
r∑

i=1

ωi

[
Eid + δi − ϕi

]

−
r∑

i=1

r∑
j=1

ωiωjLi∆j (5)

with Āij = Ai − LiCj . The convergence of the estima-
tion error is expressed in the following result.

Theorem 2.1. Consider the TS fuzzy model (2), and
suppose that there exist positive definite matrices Ni, Fi

and P satisfying the following linear matrix inequalities
(LMI’s)

AT
i P + PAi − CT

i NT
i − NiCi < 0, i = 1, · · · , n

AT
i P + PAi − CT

j NT
i − NiCj + AT

j P + PAj − CT
i NT

j − NjCi < 0, i < j ≤ r.

(6)

Then, under (H1), (H2), if the faulty signal d satisfies
the condition of normal operation

‖d‖ ≤ db (7)

then there exists a sliding mode fuzzy observer (4), with

ϕi =

⎧⎪⎨
⎪⎩

k‖Ei‖P−1C̄T C̄e

‖C̄e‖ if‖C̄e‖ > ε

k‖Ei‖P−1C̄T C̄e
ε if‖C̄e‖ ≤ ε

(8)

ε > 0 fixed, C̄ =
r∑

i=1
ωiCi, ‖C̄e‖ = ‖y − ŷ‖,

k = Dmax
2κminε

> 0, Dmax = κmax‖Λ−1‖d2
b + ‖Λ−1

δ ‖δ2
max + κ∆,max‖Λ−1

∆ ‖∆2
max

κmin = min
i=1,···,r

‖Ei‖, κmax = max
i=1,···,r

‖Ei‖2, κ∆,max = max
i=1,···,r

‖Li‖2
(9)

guaranteeing practical convergence of the estimation
error in finite time

TB = t0 + ln
(

rδC

B
‖e0‖

)1/α

, r =
√

λP
max

λP
min

, δC =
r∑

i=1

‖Ci‖

(10)
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where t0 is the initial time instant, λP
min, λP

max are the
minimum and maximum eigenvalue of P , with estima-
tion output error bound

B = rε + ∆max. (11)

If the faulty signal d violates the normal operation con-
dition (7), then estimation error exits the ball BB in
finite time and the residual detection is activated. �
Proof. Let us consider the following Lyapunov candi-
date function V = eT Pe, with P = PT > 0. Deriving
this function and using (5) we get

V̇ =
r∑

i=1

r∑
j=1

ωiωje
T (PĀij + ĀT

ijP)e

+ 2
r∑

i=1

ωi

[
eT PEid + eT Pδi − eT Pϕi

]

− 2
r∑

i=1

r∑
j=1

ωiωje
T PLi∆j. (12)

In the following we use the Young inequality

XT Y + YT X ≤ XT ΛX + YT Λ−1Y

for matrices X, Y ∈ IRn×k, and Λ ∈ IRk×k, Λ = ΛT >

0 [21]. Hence, from (12) one gets

V̇ ≤
r∑

i=1

r∑
j=1

ωiωj eT (PĀij + ĀT
ijP)e

+ eT P(Λ + Λδ + Λ∆)Pe

+
r∑

i=1

ωid
T ET

i Λ−1Eid +
r∑

i=1

ωT
i δiΛ

−1
δ δi

+
r∑

i=1

r∑
j=1

ωiωj∆
T
j LT

i Λ−1
∆ Li∆j

− 2eT P

r∑
i=1

ωiϕi (13)

Λ, Λδ, Λ∆ symmetric and positive definite. Under (H1)
and setting Li = P−1Ni, by (6) the first term on the
right–hand side of equation (13) is negative definite.
Let us set

AT
i P + PAi − CT

i NT
i − NiCi = −Qij

with Qij = QT
ij > 0 thanks to the first of (6).

Let us consider first the case of system normal oper-
ation, in which the faulty signal d satisfies (7). Setting

λ = γmin − ρ, ρ = ‖P(Λ + Λδ + Λ∆)P‖
with γmin = min

i,j=1,···,r
λ

Qij

min, λ
Qij

min the minimum eigen-

value of Qij , using (3), from (13) one works out

V̇ ≤ −λ‖e‖2 + Dmax − 2eT P

r∑
i=1

ωiϕi

where (H2) and (9) have been used. Note that one can
fix the matrices Λ, Λδ, Λ∆ so that ρ < γmin.

We have now to distinguish two cases, due to the fact
that the observer (4) may determine an error e such that
‖C̄e‖ > ε or ‖C̄e‖ ≤ ε. In the first case, choosing the
functions ϕi as in (8), for ε < ‖C̄e‖ ≤ ‖C̄‖‖e‖

V̇ ≤ −λ‖e‖2 + Dmax − 2k

r∑
i=1

ωi‖Ei‖eT C̄T C̄e

‖C̄e‖
≤ −λ‖e‖2 + Dmax − 2kκminε = −λ‖e‖2.

Therefore, using standard arguments [15], for ‖e‖ >

ε/‖C̄‖ one obtains that the error satisfies

‖e‖ ≤ r

(
‖e0‖e−α(t−t0) + ε

‖C̄‖

)
where α = λ/(2λP

max), e0 is the error at time t0. Hence,
during the normal operation and under bounded pa-
rameter variations, the error is uniformly ultimately
bounded with bound b = rε/‖C̄‖, i.e. one obtains the
practical convergence of the estimation error. It is easy
to check that the estimation error enters the ball of radius
b in a finite time tb = t0 + ln(‖C̄‖‖e0‖/ε)1/α. Note that
‖C̄‖‖e0‖/ε > 1. Finally, from (2), (4) and using (H3)

‖C̄e‖ = ‖y − ŷ‖ =
∥∥∥∥∥

r∑
i=1

ωiCie +
r∑

i=1

ωi∆i

∥∥∥∥∥
≤ r

(
‖C̄‖‖e0‖e−α(t−t0) + ε

)
+ ∆max

namely, during the normal operation and under bounded
parameter variations, C̄e = y − ŷ is uniformly ulti-
mately bounded with bound (11), after a finite time

T̄B = t0 + ln

(
r‖C̄‖

rε + ∆max

‖e0‖
)1/α

≤ t0

+ ln

(
rδC

rε + ∆max

‖e0‖
)1/α

= TB, ‖C̄‖ ≤ δC
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and hence after a finite time (10). Note that TB > t0
for ∆max < r(δC‖e0‖− ε) (recall that here we consider
‖e0‖ > ε/‖C̄‖ > ε/δC). This means that the maximal
parameter variation has to be small enough so that the
ball BB does not contain the point e0.

In the second case, when ‖C̄e‖ ≤ ε, taking ϕi as
in (8)

V̇ ≤ −λ‖e‖2 + Dmax − 2k

r∑
i=1

ωi‖Ei‖eT C̄T C̄e

ε

≤ −λ‖e‖2 + Dmax − 2kκmin
‖C̄e‖2

ε

= − (1 − ϑ)λ‖e‖2

+ Dmax

ε2

[
ε2 − eT

(
C̄T C̄ + ε2ϑλ

Dmax

Im×m

)
e

]

≤ −(1 − ϑ)λ‖e‖2

for ‖e‖≥ ε√
λR

max

, with ϑ ∈ (0, 1), and λR
max the maxi-

mum eigenvalue of the matrix

R = C̄T C̄ + ε2ϑλ

Dmax

Im×m.

Therefore, during the normal operation and under
bounded parameter variations, the error e is uniformly
ultimately bounded with bound b′ = rε/

√
λR

max ≤ b,

as well as the output error C̄e = y − ŷ is uniformly ul-
timately bounded with bound B′ = r ε‖C̄‖/√λR

max +
∆max ≤ B, since ‖C̄‖/√λR

max ≤ 1.
In conclusion, in both cases ‖C̄e‖ > ε, ‖C̄e‖ ≤

ε the estimation output error remains bounded with
bound (11) during the normal operation. During faulty
operation, condition (7) is violated, and the convergence
analysis is not valid anymore, and it is not possible to
ensure that the error enters or remains in the ball BB,
and the fault can be detected after a finite time (10). �

Remark. The proof of this theorem allows the con-
struction of the fuzzy observer (4). As clear from the
proof, the design parameters are be used to determine a
suitable bound db for the the external signal signal d(t)
in order to be considered a fault. Moreover, if we con-
sider that d(t) can also take into account variations in
the system parameters, it is clear that the observer (4) is
robust against bounded parameter variations satisfying
the normal parameter operation. �

3. Model–based fault detection for two–tank
hydraulic system

The proposed method for fault diagnosis has been
tested on a two–tank hydraulic laboratory system
shown in Figure 3. For comparison purposes, numerical

Fig. 3. The two–tank hydraulic system
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simulations have been carried out using the mathemat-
ical model of the system, and real–time experiments
have been performed on the laboratory system. This
system consists of two interconnected tanks, two ultra-
sonic level sensors, two industrial electro–valves con-
nected at the output of the tanks and a pump providing
constant supply rate.

The hydraulic system has as inputs the voltage sup-
plied to each one of the electro–valves, and as outputs
the liquid levels of each tank. The mathematical model
of the system is described by [2]

ḣ1 = 1

At

(
φe − w1

√
(1 + fs1)h1

)

ḣ2 = 1

At

(
w1

√
(1 + fs1)h1 − w2

√
(1 + fs2)h2

)

ẇ1 = 1

τ
(ke1v1 − w1)

ẇ2 = 1

τ
(ke2v2 − w2) (14)

where hi, wi and vi, i = 1, 2, are the liquid level in the
ith tank, the opening ratio of the ith electro–valve, and
the voltage input to the ith electro–valve, respectively;
At is the transversal area of each tank; τ, ke1, ke2 are the
time constant and the static gains of the electro–valves
respectively; φe is a constant input flow to the tank 1
and fs1 and fs2 model the faults in the level sensors 1
and 2, respectively.

For this system, we have considered faults in both the
level sensors, and the proposed method has been tested.

Fig. 4. Membership functions of the fuzzy model

3.1. Takagi–Sugeno fuzzy model

When modeling a nonlinear system by a Takagi–
Sugeno representation, the number of rules is normally
determined by the required accuracy. In general a large
number of rules leads to a higher accuracy. However,
the complexity of the resulting model should also be
considered. In order to evaluate the fault diagnosis tech-
nique proposed in this paper we have considered two
rules corresponding to the two reference liquid lev-
els: Rule 1 associated with h01 = 0.25 m, h02 =
0.35 m, and Rule 2 associated with h01 = 0.35 m,
h02 = 0.25 m.

For the fuzzy sets associated to the premise variables
z(t), we have chosen the membership functions illus-
trated in Figure 4, where the vector z(t) is formed by
the state variables z1 = h1 and z2 = h2.

From the linearization of the nonlinear model (14)
around the operation points, system (1) can be described
by means a TS fuzzy model (2) with

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− w01

2At

√
h01

−
√

h01
At

0 0

0 −1
τ 0 0

w01

2At

√
h01

√
h01
At

− w02

2At

√
h02

−
√

h02
At

0 0 0 −1
τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Bi =

⎛
⎜⎜⎜⎜⎝

0 0
ke1
τ 0

0 0

0 ke2
τ

⎞
⎟⎟⎟⎟⎠

Ci =
(

1 0 0 0
0 0 1 0

)
, Ei =

⎛
⎜⎝

fs1
0

fs2
0

⎞
⎟⎠ .
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Taking now T = 2.6525 s, At = 0.16 m2 and the
following set of parameters for each operation points
(op1, op2)

op1 =
(

h01 = 0.25 w01 = 0.20795 × 10−3 h02 = 0.35

w02 = 0.20795 × 10−3 ke1 = 0.03528 × 10−3 ke2 = 0.03923 × 10−3

)

op2 =
(

h01 = 0.35 w01 = 0.17574 × 10−3 h02 = 0.25

w02 = 0.20795 × 10−3 ke1 = 0.03083 × 10−3 ke2 = 0.02860 × 10−3

)

we get

A1 =

⎛
⎜⎝

−0.00129 −3.12500 0 0
0 −0.377 0 0

0.00129 3.125 −0.001290 −3.1250
0 0 0 −0.377

⎞
⎟⎠ , B1 =

⎛
⎜⎝

0 0
0.000013302 0

0 0
0 0.000014789

⎞
⎟⎠

A2 =

⎛
⎜⎝

−0.00092 −3.69754 0 0
0 −0.377 0 0

0.00092 3.69754 −0.00092 −3.69754
0 0 0 −0.377

⎞
⎟⎠ , B2 =

⎛
⎜⎝

0 0
0.000011624 0

0 0
0 0.000010783

⎞
⎟⎠

C1 = C2 =
(

1 0 0 0
0 0 1 0

)
, E1 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , E2 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ .

The fuzzy observer (4) is designed to estimate the
system output and generate the diagnostic signal–
residual that indicates whether or not a fault appears.
In this case two local observers are required in the ag-
gregate fuzzy observer. With A1, A2, C1, C2, we solve
the LMI’s (6) and obtain N1, N2 and P , where the gains
Li are obtained from Li = P−1Ni, i = 1, 2, according
with Theorem 1.

Finally, the structured residual set [4] are designed to
be sensitive to a certain group of faults and insensitive
to others. The sensitivity and insensitivity properties
make the faults isolation possible. The ideal situation is
to make each residual sensitive only to a particular fault
and insensitive to all others. For example, system (14)
is sensitive to certain faults (fs1, fs2 ) which cause that
the diagnostic signal–residual to be active or not. This
response pattern is known as fault signature or fault
code and is basically a characteristic of the faults in
the system [11]. For the hydraulic system, the response
pattern is shown in table 1. We observe that a fault in
sensor 1 will only activate the residual 1, and a fault in
sensor 2 will activate the residuals 1 and 3. Residuals 2
and 4 correspond to faults (fw1, fw2) in the electro–
valves 1 and 2, which are not studied here and therefore

in the fault signature matrix their diagnostic signal–
residual is set to 0.

The fuzzy observer–based method has been tested in
the two–tank system both in simulation and real–time.
The initial condition for the system has been chosen as
x0 = (

0.25 0.0 0.25 0.0
)T and has been carried

out around the operating point. In this work we have
considered the case when the sensor measurements are
abruptly interrupted, due possibly to a sensor break-
down.

3.2. Simulations

Using the TS fuzzy model and the proposed fuzzy
observer, the following three cases have been simulated

Table 1
Fault signatures

Faults
Residual fs1 fs2 fw1 fw2 Notes:

r1 1 1 0 0 fs1 fault in sensor 1
r2 0 0 0 0 fs2 fault in sensor 2
r3 0 1 0 0 fw1 fault in actuator 1
r4 0 0 0 0 fw2 fault in actuator 2
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Fig. 5. Simulations: Residuals for a fault–free system

Case 1: Fault–free system. A 25 minutes running time
has been simulated. Figure 5 shows the re-
sponse of the residuals for this case. As it can
be observed, the residuals have not been acti-
vated, as expected, indicating that the system
is indeed free of faults.

Case 2: System with faults. Figure 6 shows the behavior
of residual signals 1 and 3 when an abrupt fault
is introduced in sensor 1 at 10 minutes. As pre-
dicted by the fault signature matrix, only the

Fig. 6. Simulations: Residuals corresponding to a fault in sensor 1

Fig. 7. Simulations: Residuals corresponding to a fault in sensor 2

residual 1 (r1) is activated. Note that the mag-
nitude of the residual 3 is small, therefore we
can assume that the fault appears only in the
sensor 1. In the same way, a fault in sensor 2
has been simulated and the results in Figure 7
show that the respective residual (r3) is acti-
vated.

Case 3: Parametric variations. Here, parametric
changes on the values of Ai and Bi have
been introduced. We observe in Figure 8 that

Fig. 8. Simulations: Residuals of a fault–free system with
parametric variations
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Fig. 9. Experimental results: Residuals of the fault–free two–tank system

Fig. 10. Experimental results: Residuals corresponding to a fault in sensor 1

none of the residuals are activated, showing
that the proposed scheme is robust in face of
parametric variations in a neighborhood of
the nominal values. This is in accordance with
Theorem 1, as already explained in Remark 1.

3.3. Experimental results

We have reproduced in the experimental setup the
three cases taken into account in the simulation section.
In the case of fault–free, the residuals have not been ac-

tivated while the system operates in normal conditions,
as shown in Figure 9.

In the second case, faults in sensors 1 and 2 have been
determined by disconnecting them for a short period.
Figures 10 and 11 show that the respective residuals
activate correctly, allowing the correct detection of the
fault.

Finally, a parametric variation has been induced by
introducing an object into tank 2 and changing the input
flow. Figure 12 shows that the residuals, as expected,
have not been activated, showing that the proposed fault
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Fig. 11. Experimental results: Residuals corresponding to a fault in sensors 1 and 2

Fig. 12. Experimental results: Residuals of the two–tank system with parametric variations

diagnosis algorithm is insensitive to bounded paramet-
ric variations.

4. Conclusions

In this paper, a robust fault detection scheme by
means of fuzzy observers has been proposed. The model
based approach allows constructing such observers and
introduce bounds on the external signals to be consid-
ered a fault. The results obtained through the applica-

tion on a laboratory system, suggest the validity of the
proposed scheme to be robust in face of parametric vari-
ations on the system, i.e. the diagnostic signal–residual
only depends on external inputs or faults appearing in
the system.
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