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1 Introduction

Today’s vehicles are equipped with many electronically controlled systems, whose
integration is rising in complexity with the increasing number of available customer
features and technologies. A way to solve the integration problem can be the
introduction of a hierarchical control structure, where all control commands are
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computed in parallel in one core algorithm, and where the control has to take into
account the interactions among the vehicle subsystems, driver and vehicle.

The key element of integrated vehicle control is that the behaviour of the
various vehicle subsystems has to be coordinated, i.e., subsystems have to behave
as cooperatively as possible in performing the desired vehicle functions. Clearly,
the fully integrated controller will be more complex than the sum of the stand alone
ones, but it will guarantee increased performance and robustness.

Active Safety Systems Integration is one of the main research topics in vehicle
control area. In order to maintain safe handling characteristics of the vehicle, several
active system technologies (active braking, active steering, active differential, active
suspension, etc.) have been developed. All these technologies modify the vehicle
dynamics imposing forces or moments to the vehicle body, which can be generated in
different ways (see e.g., Burgio and Zegelaar, 2006; Karbalaei et al., 2007; Baslamisli
et al., 2007; Ackermann et al., 1995; Malan et al., 1994). An important design factor
to be considered in the standalone or integrated controller design is the actuator
saturations, which limits the maximum obtainable performance. In an integrated
control structure more power is available for control, thus potentially limiting the
saturation occurrences.

In Burgio and Zegelaar (2006), a fully integrated vehicle controller with steering
and brakes is proposed, using the exact feedback linearisation method. The feedback
linearisation control method amounts to canceling the nonlinearities in a nonlinear
system so that the closed–loop dynamics is in a linear form. The main drawback
of this methodology is that performance deteriorates in the presence of parameter
uncertainty or unmodelled dynamics.

Other works on integrated active chassis systems propose integrated control
systems with AFS and direct yaw moment control based on fuzzy logic
control (Karbalaei et al., 2007). In Baslamisli et al. (2007), an active steering control
design method is proposed in order to preserve vehicle stability in extreme handling
situations. Active chassis control systems, guaranteeing the stability performance
in the presence of parameter uncertainty/variation, can be found in Ackermann
et al. (1995) and Malan et al. (1994), where issues on robustness of active steering
systems are addressed.

In this paper we propose an adaptive integrated chassis control for a rear–wheel
drive vehicle, equipped with Active Front Steering (AFS) and Rear Torque
Vectoring (RTV) devices, in the presence of parameter uncertainties. While the
AFS provides additional steering angle over the driver defined one, the RTV gives
asymmetric left/right wheel torque on the rear axle. The uncertain parameters are
the lateral tyre stiffness.

The adaptive linearising controller is designed as follows. Following Borri (2007)
and Bianchi et al. (2009), we first design an adaptive feedback linearisation control of
the vehicle dynamics. Then, making use of a classical control scheme, we will impose
this control as a reference to the actuators, which actively impose the linearising
control. The advantage of the proposed control scheme with respect to a linearising
of the whole dynamics (vehicle plus actuator) is, essentially, that it is less complex
to implement. This results in an easier control structure without the need of the
so–called overparametrisation. Moreover, it is not necessary to measure or evaluate
the derivative of the wheel angle imposed by the driver.

Another goal of the paper is to evaluate the possibility of combining AFS with
RTV to improve vehicle stability in a variety of situations, not only in the presence
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of deviation of the vehicle parameters from the nominal values, but also in situations
of rapid variations of road conditions (dry, wet, iced). This is accomplished by using
the adaptive feedback linearisation technique, where parameter adaptation is used
to robustify the exact cancellation of nonlinear terms.

The paper is organised as follows. In Section 2, the mathematical model of
a vehicle is recalled, and the control problem is set. In Section 3, the adaptive
feedback linearisation technique is applied, and the adaptive controller is designed.
In Section 4, the proposed controller is tested with simulations. Some comments
conclude the paper.

2 Problem setting

The vehicle motion can be in general described as a rigid body moving in the
free space, with 6 degrees of freedom, connected with the ground surface through
tyres and suspensions. This results in a model with high non-linear behaviour and
high coupling effects. For simplicity, we consider the model of a rear–wheel driven
vehicle. The actuators considered in this work are

• Active Front Steer (AFS), which imposes an incremental steer angle on top
of the driver’s input. The control is then actuated through the front axle tyre
characteristic.

• Rear Torque Vectoring (RTV), which distributes the torque in the rear axle,
usually to improve vehicle traction, handling and stability. The control is then
actuated through the rear axle tyre characteristics.

The mathematical model is derived under the following assumptions, which are
verified in a large number of situations and which mitigate the complexity of the
vehicle dynamics

• The vehicle moves on a horizontal plane

• The longitudinal velocity is constant, so that vehicle shaking/pitch motions
can be neglected

• The vehicle has stiff suspensions, so that the vehicle roll can be neglected

• The steering system is rigid, so that the angular position of the front wheels
is uniquely determined by the steering wheel position

• The wheels masses are much lower than the vehicle one, so the steering action
does not affect the position of the centre of mass of the entire vehicle

• The vehicle takes large radius bends and the road wheel angles are ‘small’
(less than 10◦), i.e., the bend curve radius is much higher than the vehicle
width

• The aerodynamic resistance and the wind lateral thrust are not considered

• The tyre vertical loads are constant

• The actuators are ideally modelled.
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As a consequence of the previous assumptions, the height of each point of the vehicle
is kept constant, and the vehicle motion is planar. The resulting model has two
degrees of freedom

m(v̇y + vxωz) = Fy,f + Fy,r
(1)

J ω̇z = Fy,f lf − Fy,rlr + Mz

where the state variables are the vehicle lateral velocity vy (m/s), and the vehicle
yaw velocity ωz (rad/s), and where we have denoted

m Vehicle mass (kg)

J Vehicle inertia momentum (kgm2)

vx Vehicle longitudinal velocity (m/s)

lf , lr Distance from the centre of gravity to the front and rear axle (m)

Fy,f , Fy,r Front, rear tyre lateral forces (N)

Mz RTV yaw moment (Nm).

It is worth noting that the simplification of using a single track model of the
form (1), without the rolling dynamics, to approach the design of a handling and
stability controller is very used in the literature and in the industry applications.
This is justified by the fact that, despite its simplicity, it well captures the real vehicle
major characteristics of interest for the controller design (like the steady state and
dynamic responses of the yaw rate, lateral acceleration, lateral velocity). Obviously,
model (1) with the front/rear axle force characteristics, must be fitted to the vehicle
experimental data.

The front/rear lateral forces

Fy,f = Fy,f (αf ), Fy,r = Fy,r(αr)

depend on the front/rear tyre slip angles (rad)

αf = δ − vy + lfωz

vx
, αr = −vy − lrωz

vx

with δ = δc + δd the road wheel angle (rad), sum of the AFS angle δc (rad) and the
driver angle δd (rad).

The tyre lateral behaviour can be represented by some functions describing the
dependence on the slip angle (see, for instance Pacejka, 2005). The tyres determine
a force in the direction of the slip angles, which contrasts the drift of the wheel,
but this force decreases after a certain value of the slip angle, as in the following
function

Fy,f (αf ) = Cy,fFyn,f (αf )
Fy,r(αr) = Cy,rFyn,r(αr)

where

Fyn,f (αf ) = sin(Ay,f arctan(By,fαf ))
Fyn,r(αr) = sin(Ay,r arctan(By,rαr))
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are normalised tyre functions, and with Ay,f , By,f , Cy,f , Ay,r, By,r, Cy,r positive
experimental parameters. Note that the normalised functions Fyn,f (αf ), Fyn,r(αr)
take into account the variation of the local tyre stiffness with the slip angles, which
is therefore considered in the control design.

The inputs of the vehicle dynamics (1) are the AFS angle δc and the RTV yaw
moment Mz . The former can be computed inverting the function Fy,f . This can
be done up to the tyre saturation point αf,sat and saturating the inverse function
elsewhere, i.e.,

δc =






−δd +
vy + lfωz

vx
+ F−1

y,f (F0), |F0| ≤ Fy,f (αf,sat)

−δd +
vy + lfωz

vx
+ αf,sat, otherwise

(2)

for a given value F0. This allows considering as control input the difference

∆y,f = Fyn,f (αf ) − Fyn,f (αf,d)

αf,d = δd − vy + lfωz

vx

instead of δc, so that equations (1) become

m(v̇y + vxωz) = Cy,fFyn,f (αf ) + Cy,rFyn,r + Cy,f∆y,f

J ω̇z = Cy,fFyn,f (αf )lf − Cy,rFyn,rlr + Cy,f lf∆y,f + Mz. (3)

Therefore, the vehicle dynamics are

v̇y = −vxωz +
1
m

(
Cy,fFyn,f (δd, vy,ωz) + Cy,rFyn,r(vy,ωz)

)
+

1
m

Cy,f∆y,f

ω̇z =
1
J

(
Cy,fFyn,f (δd, vy,ωz)lf − Cy,rFyn,r(vy,ωz)lr

)

+
1
J

Cy,f lf∆y,f +
1
J

Mz. (4)

In Fyn,f , Fyn,r we put in evidence the dependence on vy , ωz , and δd(t).
The AFS and the RTV are imposed by means of appropriate actuators.

We have already noted that the AFS is actuated through the front axle tyres
characteristic, while the RTV is actuated through the rear axle tyres characteristic.
The AFS actuator can be modelled by a simple first-order equation

δ̇c = − 1
τm

δc +
1
τm

δm (5)

where τm is the actuator time constant (s), and δm is its input (rad).
The RTV is imposed by means of rear left and right tyre longitudinal slips

kr,l =
ωr,lrw − vx

vx
, kr,r =

ωr,rrw − vx

vx
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with

Jwω̇r,l = Tr,l − Ta − rwFx,rl

Jwω̇r,r = Tr,r + Ta − rwFx,rr

the rear left/right wheel dynamics, and

rw, Jw Wheel radius (m), inertia momentum (kgm2)

Fx,rl, Fx,rr Rear left/right tyre longitudinal forces (N)

Ta Wheel differential torque (Nm)

Tr,l, Tr,r Left/right wheel tractions (Nm)

ωr Rear wheel angular velocity (rad/s).

In the following we assume vx constant, so that Tr,l # 0, Tr,r # 0. Hence, since
Fx,rl, Fx,rr are odd functions, it is easy to show that kr,l = −kr,r. Finally, denoting
kr = kr,l, and Fx,r(αr, kr) the rear tyre longitudinal force, we obtain the following
simplified RTV dynamics

k̇r = − r2
w

Jwvx
Fx,r(αr, kr) +

rw

Jwvx
Ta

Mz = Fx,r(αr, kr)tv (6)

and with tv the vehicle track. Note that in steady state, Ta = rwMz/tv .
The combined tyre characteristic Fx,r(αr, kr) is assumed to admit the following
factorisation

Fx,r(αr, kr) = px(αr)ϕx(kr)

with ϕx(kr) = Fx,r(0, kr) given by

ϕx(kr) = Cx,rFxn,r(kr), Fxn,r = sin(Ax,r arctan(Bx,rkr))

and where px(αr) is a penality function. Hence, equation (6) can be rewritten as
follows

k̇r = −Cx,rr2
w

Jwvx
px(vy,ωz)Fxn,r(kr) +

rw

Jwvx
Ta

Mz = Cx,rpx(vy,ωz)Fxn,r(kr)tv (7)

where the dependence on vy , ωz in px has been evidenced.
Equations (5) and (7) constitute the actuator dynamics which, along with

equation (4), determine the mathematical model of the system.
The control problem is the following: Given the system (4), (5), (7), and two

target functions vy,ref(t), ωz,ref(t) for lateral velocity and yaw rate, find a control
law ensuring global asymptotic tracking, i.e.

lim
t→∞

vy = vy,ref , lim
t→∞

ωz = ωz,ref



92 D. Bianchi et al.

for all initial conditions vy(0), ωz(0), and in presence of uncertainties on the
parameters Cy,f , Cy,r.

The target or reference signals vy,ref(t), ωz,ref(t) are desired behaviours of the
vehicle, and are bounded functions with bounded derivatives. In the following we
will assume that also the driver angle δd is bounded.

3 Adaptive feedback linearisation

The parameters of the vehicle dynamics that can be known with uncertainty, or may
be subject to variations are the stiffness Cy,f , Cy,r of the front/rear tyres.

In this section we first design an adaptive feedback linearisation control of
the dynamics (4). Then, we will impose this control as reference for the actuator
dynamics.

3.1 Adaptive feedback linearisation of the vehicle dynamics

Introducing the parameters

θ1 = Cy,f , θ2 = Cy,r

equations (4) rewrite

v̇y = −vxωz +
θ1
m

Fyn,f (δd, vy,ωz) +
θ2
m

Fyn,r(vy,ωz) +
θ1
m
∆y,f

ω̇z =
θ1lf
J

Fyn,f (δd, vy,ωz) − θ2lr
J

Fyn,r(vy,ωz) +
θ1lf
J
∆y,f +

1
J

Mz. (8)

or, equivalently,
(

v̇y

ω̇z

)
= f0(vy,ωz) + fT

1 (t, vy,ωz)θ + B(θ)
(
∆y,f

Mz

)
(9)

where

f0(vy,ωz) =
(

−vxωz

0

)
, B(θ) =





1
m
θ1 0

lf
J
θ1

1
J





fT
1 (t, vy,ωz) =





1
m

Fyn,f
1
m

Fyn,r

lf
J

Fyn,f − lr
J

Fyn,r



, θ =
(
θ1
θ2

)
∈ R2.

If θ is known, the law which linearises and decouples the vehicle dynamics (8)
is (Isidori, 1995)

(
∆y,f (t, vy,ωz, θ)
Mz(t, vy,ωz, θ)

)
=

(
B(θ)

)−1(
v − f0(vy,ωz) − f1(t, vy,ωz)θ

)
(10)
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yields to the linear input–state dynamics
(

v̇y

ω̇z

)
=

(
v1
v2

)
= v

where the new input v can be chosen as

v =
(

v̇y,ref
ω̇z,ref

)
+ Ae

A =
(

−kp1 0
0 −kp2

)
, e =

(
vy − vy,ref
ωz − ωz,ref

)
(11)

kp1, kp2 > 0, ensuring the exponential tracking of the bounded references with
bounded derivatives. Note that A is Hurwitz. Note also that the control (10) exists
when θ1/(mJ) %= 0, i.e., when, Cy,f %= 0, as in real cases if the front axle is not
saturating. Note that, up to now, no limitation is assumed on the RTV actuation
Mz .

If θ is uncertain, the adaptive linearisation technique can be exploited (Sastry
and Isidori, 1989), in which θ is replaced with its estimate θ̂, yielding to the control

(
∆y,f (t, vy,ωz, θ̂)
Mz(t, vy,ωz, θ̂)

)
=

(
∆̂y,f,ref

M̂z,ref

)

=
(
B(θ̂)

)−1(
v − f0(vy,ωz) − f1(t, vy,ωz)θ̂

)
(12)

and an appropriate adaption rule ˙̂θ is designed. Since the control (12) exists when
θ̂1/(mJ) %= 0, such an adaptation rule has to constrain these estimations to positive
values. This mathematical condition does not have a direct correspondence on the
estimates of the real parameters, Cy,f , Cy,r since from θ̂1, θ̂2 it is not possible to
determine univocally estimations of the real parameters.

The adaption scheme will improve the performance of equation (10) in the
presence of parameter uncertainty, ensuring the asymptotic stability of the tracking
errors, as shown in what follows. This adaption scheme will be designed under
the standard hypothesis that the θ̇ = 0, namely the parameters may be piece–wise
constant or vary slowly with respect to the plant dynamics. Since

v = f0(vy,ωz) + f1(t, vy,ωz)θ̂ + B(θ̂)
(
∆̂y,f,ref

M̂z,ref

)

using equation (12) in equation (9) one gets
(

v̇y

ω̇z

)
= v + fT

1 (t, vy,ωz)θ̃ +
(
B(θ) − B(θ̂)

) (
∆̂y,f,ref

M̂z,ref

)

= v + Λ(t, vy,ωz, θ̂)θ̃

where θ̃ = θ − θ̂, and

Λ(t, vy,ωz, θ̂) =

(
λ11 λ12

1
m

Fyn,r(vy,ωz) − lr
J

Fyn,r(vy,ωz)

)
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λ11 =
1
m

(
Fyn,f (δd, vy,ωz) + ∆̂y,f,ref

)

λ12 =
lf
J

(
Fyn,f (δd, vy,ωz) + ∆̂y,f,ref

)
.

Considering the expression (11) of the new input, we can rewrite

ė = Ae + Λ(t, vy,ωz, θ̂)θ̃. (13)

To study the stability of the origin of the feedback system (9), (12), (11), let us
consider the candidate Lyapunov function

V (e, θ̃) =
1
2
eT Pe +

1
2
θ̃TΓ−1θ̃

with P = PT > 0 solution of the equation

PA + AT P = −2Q

for a chosen Q = QT > 0. Differentiating along the trajectories of the system, one
gets

V̇ = eT P ė + θ̃TΓ−1 ˙̃θ = −eT Qe + θ̃T
(
ΛT (t, vy,ωz, θ̂)Pe − Γ−1 ˙̂θ

)

since θ̇ = 0. Therefore, setting

˙̂θ = ΓΛT (t, vy,ωz, θ̂)Pe

one gets

V̇ = −eT Qe ≤ −λQ
min‖e‖2 (14)

with λQ
min the minimum eigenvalue of Q. This ensures that the tracking error e and

the parameter error θ̃ are bounded, i.e., e, θ̃ ∈ L∞.
To prove the convergence of e to zero, integrating equation (14) from t0 to t one

obtains

V (t) − V (t0) ≤ −λQ
min

∫ t

t0

‖e(τ)‖2 dτ

and since V (t) > 0

∫ t

t0

‖e(τ)‖2 dτ ≤ V (t0) − V (t)
λQ

min

≤ V (t0)
λQ

min

.

Therefore, for t → ∞
∫ ∞

t0

‖e(τ)‖2 dτ ≤ V (t0)
λQ

min
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i.e., e ∈ L2. Finally, to prove that e is uniformly continuous, one notes that

ė = Ae + Λ(t, vy,ωz, θ̂)θ̃ ∈ L∞

since e, θ̃ ∈ L∞, as already noted, and δd, the references, and their derivatives are
in L∞, by assumption. Applying Barbalat lemma (Marino and Tomei, 1996), one
deduces that

lim
t→∞

e = 0

i.e., the tracking error converges asymptotically to zero.

3.2 Design of an adaptive control scheme considering actuator dynamics

The inputs ∆̂y,f,ref , M̂z,ref given in equation (12) ensure, if applied to the
dynamics (4), the exact asymptotic input–output linearisation and decoupling of
these dynamics. However, to impose such inputs, we need to use the AFS and
RTV actuators described by the dynamics (5), (7). A simple control scheme will be
designed forcing ∆y,f , Mz to ∆̂y,f,ref , M̂z,ref .

The design of the control scheme is obtained considering the following Lyapunov
candidate

V = V +
1
2
e2
δ +

1
2
e2
k

with

eδ = δc − δc,ref , ek = kr − kr,ref

and where the reference angle δc,ref is obtained from

δc,ref =

[
∆̂y,f,ref + Fy,f

(
δd − vy + lfωz

vx

)]−1

−
(
δd − vy + lfωz

vx

)

while the reference longitudinal slip is obtained from second equation of (7)

kr,ref = F−1
xn,r

(
M̂z,ref

Cx,rpx(vy,ωz)tv

)
.

Deriving V along the system dynamics, one obtains

V̇ ≤ −λQ
min‖e‖2 − k1e

2
δ − k2e

2
k + eδ

(
k1eδ − 1

τm
δc +

1
τm

δm − δ̇c,ref

)

+ ek

(
k2ek − Cx,rr2

w

Jwvx
px(vy,ωz)Fxn,r(kr) +

rw

Jwvx
Ta − k̇r,ref

)
.
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Hence, setting

δm = δc + τm
(

− k1(δc − δc,ref) + δ̇c,ref

)

Ta = Cx,rrwpx(vy,ωz)Fxn,r(kr) +
Jwvx

rw

(
k̇r,ref − k2(kr − kr,ref)

)
(15)

one has

V̇ ≤ −λQ
min‖e‖2 − k1e

2
δ − k2e

2
k.

To prove the convergence of e, eδ , ek to zero, with the same arguments of the
previous section, one obtains

∫ ∞

t0

‖e(τ)‖2 dτ +
∫ ∞

t0

‖eδ(τ)‖2 dτ +
∫ ∞

t0

‖ek(τ)‖2 dτ ≤ V(t0)
(min

with (min = min{λQ
min, k1, k2}, i.e., e, eδ, ek ∈ L2. Finally, e, eδ , ek are uniformly

continuous since, from equation (13) and from equations (5), (7) with equation (15),
one has that ė, ėδ, ėk ∈ L∞. Using Barbalat lemma (Marino and Tomei, 1996),
one deduces that

lim
t→∞

e = 0, lim
t→∞

eδ = 0, lim
t→∞

ek = 0.

In the remaining of this section we will show the advantages of the proposed control
scheme with respect to an adaptive linearising control based on the whole dynamics,
i.e. of the vehicle plus actuators, see equations (4), (5), (7)

v̇y = −vxωz +
1
m

(
θ1Fyn,f (δd, vy,ωz) + θ2Fyn,r(vy,ωz)

)
+
θ1
m
∆y,f

ω̇z =
1
J

(
θ1Fyn,f (δd, vy,ωz)lf − θ2Fyn,r(vy,ωz)lr

)

+
θ1lf
J
∆y,f +

Cx,rtv
J

px(vy,ωz)Fxn,r(kr)

δ̇c = − 1
τm

δc +
1
τm

δm

k̇r = −Cx,rr2
w

Jwvx
px(vy,ωz)Fxn,r(kr) +

rw

Jwvx
Ta.

Taking vy , ωz as outputs, it is easy to check that (see Appendix for details)
(

v̈y

ω̈z

)
=

(
F1
F2

)
+ A

(
δm
Ta

)

where the so-called decoupling matrix

A =





θ1
mτm

∂∆y,f

∂δc
0

θ1lf
Jτm

∂∆y,f

∂δc

Cx,rtvrw

JJwvx
px(vy,ωz)

dFxn,r

dkr




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is invertible for Cy,f %= 0. The same conditions should be verified also for a (non
adaptive) version of the controller (10), (15).

With the same arguments of Section 3.1, one works out that the linearising
feedback is (see Borri, 2007; Bianchi, 2008)

(
δm

Ta

)
= A−1

[
−

(
F1

F2

)
+ w

]
(16)

with the new input

w =
(

v̈y,ref − kd1(v̇y − v̇y,ref) − kp1(vy − vy,ref)
ω̈z,ref − kd2(ω̇z − ω̇z,ref) − kp2(ωz − ωz,ref)

)

kp1, kp2, kd1, kd2 > 0, vy,ref , v̇y,ref , v̈y,ref ,ωz,ref , ω̇z,ref , ω̈z,ref , δd, δ̇d bounded.Moreover,
its adaptive version is

(
δ̂m

T̂a

)
= Â−1

[
−

(
F̂1

F̂2

)
+ ŵ

]

˙̂θ = Γ̄Λ̄T P̄





vy − vy,ref

v̇y − v̇y,ref

ωz − ωz,ref

ω̇z − ω̇z,ref





(17)

(note that also w depends on unknown parameters, so that an estimate is necessary),
which exists when θ̂1 %= 0.

F (θ) − F (θ̂) +
(
A(θ) − A(θ̂)

) (
δ̂m

T̂a

)
= Λ̄θ̃

and Γ̄ = Γ̄T > 0 is a gain matrix, P̄ = P̄T is an appropriate positive definite matrix.
With respect to equations (10), (11), (15), the controller (17) has some drawbacks

• It is more complex to implement

• An overparametrisation is necessary, namely also θ4 = θ2
1 , θ5 = θ1θ2, θ6 = θ2

2 ,
θ7 = θ1Cx,r, θ8 = θ1Cx,r, θ9 = Cx,r

2 have to be introduced and estimated, in
order to write the terms linearly with respect the estimation errors

• The control law depends also on δ̇d, which has to be measured or numerically
determined.

This justifies the use of the controller (10), (11), (15).
We conclude this section observing that the proposed controller (12), (11),

(15) depends on the lateral velocity vy . Indeed, this is difficult to estimate.
Various observers for the lateral velocity vy have been proposed in the literature
(see Ungoren et al. (2006), among the others), and can be considered for the
implementation of the controller.
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4 Simulation results

Simulations have been carried out to evaluate the performance of the adaptive
integrated control (12), (11), (15).

The parameters of the vehicle are

m = 1870 kg, J = 3630 kg m2

lf = 1.37 m, lr = 1.52 m, Cx,r = 6400.

The real values of the parameters subject to variation/uncertainty are

Cy,f = 7153, Cy,r = 6845

with superimposed an additive white Gaussian noise d of amplitude 0.02. Their
nominal values are

Cy,f,0 = 8941, Cy,r,0 = 8556.

The following test manoeuvres have been considered

• a step steer of 60◦ performed at 100 km/h, in non-nominal conditions of tyres
and in presence of a wind blast;

• a double step steer of 100◦ at 100 km/h, in non-nominal conditions of tyres.

The references vy,ref , ωz,ref to be tracked have been generated using a standard
single track model, identified according to the plant response, and modified using
the adapted parameters, which have been initialised to the nominal values.

Figures 1–6 refer to the first test manoeuvre. A lateral wind blast from t = 5 s to
t = 10 s is considered and vehicle parameters are subject to variations of the stiffness
Cy,f , Cy,r of the front/rear tyres. It can be noticed that the parameters estimation

Figure 1 Trajectory in the plane: reference (solid), actual trajectory (dash–dot)
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Figure 2 (a) vy,ref (solid), vy (dash–dot) and (b) vy − vy,ref [m/s]

Figure 3 (a) ωz,ref (solid), ωz (dash–dot) and (b) ωz − ωz,ref [deg/s]

is good (Figure 5), and the output tracking is very good (Figures 2 and 3): high
yaw rate values and an agile cornering behaviour. The AFS action (Figure 4(b)
goes in the direction of the driver’s angle (Figure 4(a), on the contrary, the RTV
input (Figure 4(c) contrasts driver’s cornering action, reaching maximum absolute
values of about 800 Nm and a steady–state value of about 500 Nm. It is worth
noting that the magnitude of Ta, defined in equation (15), is physically limited by the
tyre forces. The same limits are the ones which apply to a torque vectoring device.
The maximum differentials torques are typically applied when the differential locks,
and in this case one could reach the limits given by tyres saturations.
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Figure 4 (a) δd [deg]; (b) δc [deg] and (c) Ta [Nm]

Figure 5 (a) θ1 (solid), θ̂1 (dashed) and (b) θ2 (solid), θ̂2 (dashed)

In second case, refer to Figures 7–12. Vehicle parameters are subject to variations of
the stiffness Cy,f , Cy,r of the front/rear tyres. While the non–controlled plant goes
unstable at the first step of the steering manoeuvre (Figure 7, dashed), the adaptive
controller keeps the vehicle stable (Figure 7, dash–dot) and ensures good tracking
(Figures 8 and 9). The parameters are well estimated (Figure 11), and the vehicle
reaches a lateral acceleration of about 0.95 g and the vehicle slip angle is not very
high (Figure 12). The RTV action is against the direction of steering, while the AFS
goes in the direction of the manoeuvre to balance the AD effect (Figure 10).
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Figure 6 (a) Vehicle slip angle: reference (solid), adaptive control (dash–dot) [deg]
and (b) lateral acceleration: reference (solid), adaptive control (dash–dot) [g]

Figure 7 Trajectory in the plane: reference (solid), adaptive control trajectory (dash–dot),
non-controlled trajectory (dashed)

Since the solved control problem regards the tracking of lateral and angular velocity
references, these simulations show that indeed these errors tend exponentially to
zero, as proved analytically. The controller ensures also vehicle stability, namely the
boundedness of the system state variables. This is consequence of the exponential
tracking and of the boundedness of the chosen references. As a matter of fact, and as
shown in the simulations, the first manoeuvre does not highlight a stability problem
but, on the contrary, shows the capability of the proposed controller to robustly
perform (i.e., exponential reference tracking and state variable boundedness), thanks
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Figure 8 (a) vy,ref (solid), adaptive control vy (dash–dot), non controlled vy (dashed)
and (b) vy error of controlled vehicle [m/s]

Figure 9 (a) ωz,ref (solid), adaptive control ωz (dash–dot), non controlled ωz (dashed)
and (b) ωz error of controlled vehicle [deg/s]

to the parameters estimation. Analogously, the second manoeuvre indeed shows
the controller exponential reference tracking and state variable boundedness for the
vehicle in a double step steer manoeuvre.

With the second manoeuvre we are showing with the CAE tool that the vehicle
responds to an aggressive standard driver input showing indeed characteristics of
agility (responsiveness of the state) and stability (the states do not diverge). CAE
tools are nowadays very important, they are gaining always bigger role in the
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Figure 10 (a) δd [deg]; (b) δc [deg] and (c) Ta [Nm]

Figure 11 (a) θ1 (solid), θ̂1 (dashed) and (b) θ2 (solid), θ̂2 (dashed)

design process of chassis control systems. Sure, after having refined the results
in CAE, it is always necessary to test the performance/adjust the design in a
prototype.

We conclude observing that the use of adaptation, ensuring also parameter
identification, is particularly useful because it allows the generation of more effective
reference signals, taking into account the real force that the tyres can actually
exert.
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Figure 12 (a) Vehicle slip angle: reference (solid), adaptive control (dash–dot), non
controlled vehicle (dashed) [deg] and (b) lateral acceleration: reference (solid),
adaptive control (dash–dot), non controlled vehicle (dashed) [g]

5 Conclusions

In this paper an integrated chassis control system has been proposed to improve
vehicle handling and stability. The chosen actuators are active steering and RTV,
even if the proposed approach can be generalised and extended to other actuator
configurations. In this work, it has been shown that AFS and RTV actuators can be
effectively used in conjunction in an adaptive integrated controller, ensuring tracking
of desired references and robustness in presence of parameter variations and external
disturbances.
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Appendix

The expressions appearing in Section 3.2 are given by

F1 =
θ1
m

∂Fyn,f

∂δd
δ̇d +

(
θ1
m

∂Fyn,f

∂vy
+
θ2
m

∂Fyn,r

∂vy
+
θ1
m

∂∆y,f

∂vy

)

φ1 +
(

− vx +
θ1
m

∂Fyn,f

∂ωz
+
θ2
m

∂Fyn,r

∂ωz
+
θ1
m

∂∆y,f

∂ωz

)
φ2 − θ1

mτm

∂∆y,f

∂δc
δc

F2 =
θ1lf
J

∂Fyn,f

∂δd
δ̇d +

(
θ1lf
J

∂Fyn,f

∂vy
− θ2lr

J

∂Fyn,r

∂vy

+
θ1lf
J

∂∆y,f

∂vy
+

Cx,rtv
J

∂px

∂vy
Fxn,r

)
φ1

+
(
θ1lf
J

∂Fyn,f

∂ωz
− θ2lr

J

∂Fyn,r

∂ωz
+
θ1lf
J

∂∆y,f

∂ωz
+

Cx,rtv
J

∂px

∂ωz
Fxn,r

)
φ2

− θ1lf
Jτm

∂∆y,f

∂δc
δc − Cx,r

2tvr2
w

JJwvx
p2

x
∂Fxn,r

∂kr
Fxn,r

φ1 = −vxωz +
1
m

(
θ1Fyn,f + θ2Fyn,r

)
+
θ1
m
∆y,f

φ2 =
1
J

(
θ1Fyn,f lf − θ2Fyn,rlr

)
+
θ1lf
J
∆y,f +

Cx,rtv
J

pxFxn,r.


