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Structurally Stable Output Regulation Problem With
Sampled-Output Measurements Using Fuzzy Immersions

J. P. Garcı́a-Sandoval, B. Castillo-Toledo, S. Di Gennaro,
and V. González-Álvarez

Abstract—In this paper, a fuzzy nonlinear ripple-free regulator is pro-
posed to solve the sample-data structurally stable regulation problem for
the case of nonlinear or generalized immersion. This regulator guaran-
tees asymptotic tracking of time-varying references and rejection of distur-
bances while maintaining the closed-loop stability. Such a regulator is based
on a continuous fuzzy error feedback controller, which updates its states
at each sampling period and relies on the existence of an internal model.
The internal model is obtained by determining, if possible, an observable
generalized immersion of the exosystem dynamics. A key feature is that
this immersion allows the generation of all the possible steady-state inputs
for all admissible values of the system parameters. The robustness of the
proposed fuzzy controller, under parameter uncertainties and changes on
disturbance signals, is tested in an illustrative example.

Index Terms—Fuzzy immersion, ripple-free tracking, robust regulation,
sampled-data control.

I. INTRODUCTION

A very interesting problem in control theory is the tracking of
reference signals and the asymptotic rejection of disturbances. This
problem, which is usually called the servomechanism or output regu-
lation problem, involves the design of a controller guaranteeing that
all the trajectories of the closed-loop system are bounded and that
the output-tracking error decays asymptotically to zero [1]. The par-
ticular feature of the problem is the characterization of all possible
exogenous inputs—disturbances, commands, and uncertain constant
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parameters—as the set of all possible solutions of a fixed differential
equation: the so-called immersion. In this setting, any source of un-
certainty is viewed as an uncertainty in the initial condition of a fixed
autonomous finite-dimensional dynamical system, which is known as
the exosystem (see, e.g., the survey paper [2]). In the particular case of
linear systems, in [3], it has been shown that the solvability of a mul-
tivariable regulator problem is equivalent to the existence of a solution
of two linear matrix equations. In the nonlinear case, Huang and Lin [4]
and Huang [5] extended the results established by Francis to the general
case of exosystems for the generation of time-varying references and
disturbances, including the very important case of periodic signals.
They proved that the solvability of the output regulation problem is
equivalent to the solvability of a set of partial differential and algebraic
equations, which are known as regulator or Francis–Isidori–Byrnes
(FIB) equations. Additional studies have been conducted to explore the
problems associated with the output regulation problem, and suitable
solutions have been suggested [6]–[8]. Recently, some extensions of
the regulator theory to the very interesting case of networked systems
have been addressed, where the feedback signal can be obtained via
a real-time shared media network (see [9] and [10] and references
therein).

In all the aforementioned works, an important issue is that the con-
troller guarantees the structural stability of the closed-loop system.
Most efforts have been focused on the design of state or error feed-
back controllers in the presence of parameter uncertainties [4], [5],
[11]–[14]. A new method to design asymptotic stabilizing and robust
control laws for nonlinear systems relies upon the notions of system
immersion and manifold invariance. In particular, in the outstanding
works of Huang et al. and Isidori et al. [4], [5], [11], [15], [16], con-
ditions to solve the structurally stable regulation problem have been
given in terms of this immersion. Isidori [11] has also shown that when
a linear immersion is found, then a linear controller solves the problem.
Later, Huang [17] showed that a linear immersion exists only when the
steady-state input is given by a polynomial of the exosystem states,
while in [15], a general setting of the concept of nonlinear immersion
for the output regulation problem has been formulated. In [18], the con-
struction of a so-called generalized immersion, which is a time-varying
linear immersion that depends explicitly on the exosystem states, has
been proposed.

When dealing with controllers implemented by digital devices and
zero-order holders, it is well known that the sampled version of the
continuous time controller may introduce instability in the closed-loop
system [19]. For the case of continuous systems, a discretized-model-
based controller using a zero-order holder guarantees a zero-output-
tracking error only at the sampling instants. In the intersampling time,
the output-tracking error will generally present a ripple, due to the fact
that the requested steady-state input cannot be reproduced with zero-
order holders, except in the particular case of constant reference signals
and few other cases. To ensure that the state trajectory remains on a
zero-error submanifold also during the intersampling, Castillo-Toledo
and Di Gennaro [14] have developed a structurally stable controller
based on the discretized linear approximation of the original system.
This controller consists of a digital compensator plus a continuous
component, called the exponential holder, and allows the reproduction
of the continuous internal model dynamics, i.e., the correct steady-state
input needed to maintain the output-tracking error to zero. However,
in general, this controller can be explicitly determined only when a
linear immersion is available, since, for nonlinear immersions, an exact
discretization is difficult or even impossible to obtain in closed form.

With the aim of overcoming this obstacle, we propose in this pa-
per, a solution inspired to the fuzzy logic control technique. This
technique, which has been proposed as an alternative to solve con-

trol problems, represents a way of collecting both human knowledge
and expertise to deal with uncertainties in such systems. In particu-
lar, fuzzy methods, based on the computational rule of inference and
approximation, have been extensively applied in a large number of dy-
namic systems [20]–[22]. In the past decade, the Takagi–Sugeno (T–S)
fuzzy models have been incorporated into fuzzy control approaches
to study stability issues. The problem of systematic analysis and de-
sign of fuzzy logic controllers to ensure stability has been addressed
using different approaches [23]–[26]. More recently, the robustness
analysis of a closed-loop system has been tackled with the so-called
fuzzy dynamic model, which is composed by a family of local lin-
ear models smoothly connected through fuzzy membership functions.
Moreover, the robustness properties have been further studied using
various performance criteria, such as D stability, H∞ attenuation, de-
cay rate, etc. [27]–[29]. In both the continuous and the discrete setting,
a common approach to study the stability of the overall fuzzy system
is based on the existence of a positive-definite matrix, which results
from a set of Lyapunov equations related to the local models. For the
particular case of continuous fuzzy systems controlled using sample
data, Nguang and Shi [30] have developed continuous fuzzy control
algorithms using discrete measurements.

On the basis of the previous discussion, in this paper, we propose
the T–S fuzzy modeling to solve the sample-data structurally stable
regulation problem for systems, where only a nonlinear or a general-
ized immersion can be found. A nonlinear robust model-based control
technique has been developed to provide a hybrid fuzzy error feedback
controller, which ensures the boundedness of the output-tracking error
within predefined bounds, while ensuring the stability of the closed-
loop system. The proposed fuzzy controller has been determined for
the case of the Lienard model, and its performance has been tested in
the case of time-varying references and load disturbances.

This paper is organized as follows. In Section II, a brief overview
of the structurally stable regulation theory is given. The main result
of the paper is developed and presented in Section III, while in
Section IV, the implementation of the fuzzy controller on the Lienard
model is presented and discussed. Finally, some remarks conclude the
paper.

II. ROBUST REGULATION PROBLEM FOR NONLINEAR SYSTEMS

Let us consider the following nonlinear system:

ẋ = f (x, u, w, μ) (1a)

ẇ = s(w) (1b)

e = h(x, w, μ) (1c)

where x ∈ R
n , u ∈ R

m are the state and input variables of the plant,
μ denotes a parameter vector, which takes values in a neighborhood
P ⊂ R

r of the nominal ones, and w ∈ R
q represents the state of an

external signal generator—the exosystem—which models the reference
and disturbance signals. Finally, (1c) describes the output-tracking error
e ∈ R

p .
The structurally stable error feedback regulation problem (SSORP)

is defined as the problem of finding, if possible, a dynamic controller
of the form

ż = ϕ(z, w, e)

u = ϑ(z, w)

such that, for all μ ∈ P , the following conditions hold:
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S) Stability: The equilibrium point (x, z) = (0, 0) of the closed-loop
system without disturbances

ẋ = f (x, ϑ(z, 0), 0, μ)

ż = ϕ(z, 0, h(x, 0, μ))

is asymptotically stable in the first approximation.
R) Regulation: For each initial condition (x(0), z(0), w(0)) in a neigh-

borhood of the origin, the solution of the closed-loop system

ẋ = f (x, ϑ(z, w), w, μ)

ż = ϕ(z, w, h(x, w, μ))

ẇ = s(w)

satisfies the condition limt→∞ e(t) = 0.

A complete solution to this problem, given by the following result,
has been provided by Huang and Lin [4], Huang [5], and Isidori [11].

Theorem 1: Assume that the equilibrium point w = 0 is stable in the
Lyapunov sense, and all the eigenvalues of S = ∂s/∂w|w =0 lie on the
imaginary axis. Then, the SSORP is solvable if and only if there exist
mappings

xss = π(w, μ) and uss = γ(w, μ) =

⎛
⎜⎝

γ1 (w, μ)
...

γm (w, μ)

⎞
⎟⎠

with π(0, μ) = 0 and γ(0, μ) = 0, both defined in a neighborhood of
the origin, satisfying the equations

∂π(w, μ)
∂w

s(w) = f (π(w, μ), γ(w, μ), w, μ) (2a)

0 = h(π(w, μ), w, μ) (2b)

for all (w, μ) and such that for each i = 1, . . . , m, the exosystem is
immersed into the system

ζ̇ = ϕ(ζ), ζ ∈ R
d (3a)

γ(w, μ) = ψ (ζ) (3b)

defined on a neighborhood Ξ0 of the origin, with ϕ(0) = 0 and ψ(0) =
0, and the matrices

Φ =
∂ϕ

∂ζ

∣∣∣∣
ζ =0

, H =
∂ψ

∂ζ

∣∣∣∣
ζ =0

(4)

are such that the pair (A0 , B0 ) is stabilizable, and the pair

( C0 0 ) ,

(
A0 −B0H
0 Φ

)
is detectable, where

A0 =
∂f (x, u, w, 0)

∂x

∣∣∣∣ x = 0
w = 0
u = 0

, C0 =
∂h(x, w, 0)

∂x

∣∣∣∣
x = 0
w = 0

B0 =
∂f (x, u, w, 0)

∂u

∣∣∣∣ x = 0
w = 0
u = 0

.

Moreover, the controller solving the problem is given by

ż1 = (A0 + B0K − G1C0 )z1 + G1e

ż2 = −G2C0z1 + ϕ(z2 ) + G2e

u(t) = Kz1 + ψ(z2 ) (5)

where K , G1 , and G2 are calculated such that (A0 + B0K) and

(
A0 − G1C0 −B0H
−G2C0 Φ

)
are Hurwitz.

In general, finding a nonlinear immersion for a nonlinear system
is a very difficult task. However, Huang [17] has shown that a linear
immersion of the form

ζ̇ = Φζ, ζ ∈ R
r

γ(w, μ) = Hζ (6)

can be readily found if the steady-state input is given by a polynomial
of the exosystem state w. In a recent paper, Castillo-Toledo et al. [18]
has shown that this limitation can be relaxed by allowing the immersion
to explicitly depend on the exosystem state w. This way, an extended
class of functions, including trigonometric ones, can be also taken
into account when devising immersion calculation procedures. This
immersion has been called generalized immersion.

When dealing with sample-data measurements, a discretized version
of the controller should be implemented, provided that the exact dis-
cretization of the linear approximation of the system plus the controller
can be found. This scheme, which is called the ripple-free structurally
stable regulation problem (RFSRP), can be formulated as the problem
of finding a dynamic controller, which guarantees the conditions of
stability and regulation similar to S) and R) but using sample data, i.e.,
e(kδ) = h(x(kδ), w(kδ), μ), where δ is the sampling time, and k is a
nonnegative integer. Castillo-Toledo and Di Gennaro [14] have shown
that if an linear immersion similar to (6) for system (1) is found, then
the RFRRP is solvable by the following controller:

zd1 ((k + 1)δ)) = (Ad0 + Bd0Kd − Gd1Cd0 )zd1 (kδ)

+ Gd1ed (kδ)

zd2 ((k + 1)δ)) = −Gd2zd1 (kδ) + eΦ δ zd2 (kδ)

+ Gd2ed (kδ)

u(kδ + θ) = Kdzd1 (kδ) + HeΦ θ zd2 (kδ) (7)

where θ ∈ [0, δ] and Kd , Gd = (Gd1 Gd2 )T render stable the
matrices

(Ad0 + Bd0Kd ),
(

Ad0 −Md0

0 Φd

)
−
(

Gd1

Gd2

)
( Cd0 0 )

respectively, where

Md0 =
∫ δ

0
eA 0 τ HeΦ(δ−τ ) dτ, Φd = eΦ δ

and Ad0 , Bd0 , and Cd0 are given by

Ad0 = eA 0 δ , Bd0 =
∫ δ

0
eA 0 τ dτ B0 , Cd0 = C0 .

Here, the stabilizability and detectability of the pairs

(Ad0 , Bd0 ) and

[(
Ad0 −Md0

0 Φd

)
, ( Cd0 0 )

]
is a necessary condition.

Note that the term eΦ θ in (7) is the internal model exponential holder,
which allows the production of the exact continuous steady-state input.
When only a nonlinear or a generalized immersion is available, the
discretized controller can be constructed if the discretization of the
immersion is exactly calculated. Since this is not always possible, in
this paper, we propose the use of the T–S model and fuzzy observer
design techniques to generate the continuous steady-state input when
only sample-data error measurements and nonlinear or generalized
immersions are available.
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III. REGULATION PROBLEM BASED ON FUZZY IMMERSION

AND SAMPLED-ERROR MEASUREMENTS

The following assumptions are instrumental for the main result of
the paper.

H2: There exists a solution π(w, μ), γ(w, μ) to the FIB equations (2).
H3: There exists a generalized immersion

ζ̇ = φ(ζ, w), ζ ∈ R
d (8a)

uss = γ(w, μ) = ψ(ζ, w). (8b)

We assume that the nonlinear immersion (8a) and (8b) can be de-
scribed by a T–S fuzzy model, namely that the immersion is described
by a suitable aggregation of local linear subsystems, which is defined
as follows:

Plant rule i: IF Z1 is F1 i and · · · and Zp is Fpi

THEN
∑

:
{

ζ̇(t) = Φi ζ(t)
uss,i = Hiζ(t), i = 1, . . . , r

where ζ ∈ R
n is the state, uss,i is the output, and Z1 (·), . . . , Zp (·)

are measurable premise variables, which may coincide with the state
vector ζ or a partial set of this vector through the output signals uss,i (·).
In addition, F1 i are the corresponding fuzzy sets. Thus, for a given
ζ(·), the aggregate fuzzy model may be obtained by using a singleton
fuzzifier, product inference, and center of gravity defuzzifier, namely

ζ̇(t) =
r∑

i=1

mi (ζ, w)Φi ζ(t) (9a)

uss =
r∑

i=1

mi (ζ, w)Hiζ(t) (9b)

where mi (ζ, w) represents the membership function of each one of the
r fuzzy subsets.

The linear subsystems can be obtained using different approaches,
for example, linearizing at some point of interest near the equilibrium
point leads to an approximated description, or using the well–known
sector nonlinearity approach [27] leads to an exact representation of
the nonlinear system (8). In this paper, we will take the later approach.

When considering the fuzzy model of the nonlinear immersion, the
structure of the continuous time controller is similar to that given by
(5), namely

ż1 (t) = (A0 + B0K − G1C0 )z1 − G1e (10)

ż2 (t) = −G2C0 +
r∑

i=1

mi (z2 , w)Φi z2 (t) + G2e (11)

u = Kz1 (t) +
r∑

i=1

mi (z2 , w)Hiz2 (12)

provided that for each i = 1, 2, . . . , r, the following pair of matrices is
detectable [27]:

( C0 0 ),
(

A0 −B0Hi

0 Φi

)
. (13)

Since we are interested in the error feedback regulation using sample
data with a sampling period δ, and the discretization of fuzzy system
(10)–(12) may be still a difficult task, in this paper, we propose the
design of a continuous fuzzy observer, which updates its states at the

sampling instants. The regulation problem with error measurement
(RPEM) can be thus recast as the problem to find a controller

ż = ϕ(z, w, ek )

u = ϑ(z, w)

such that conditions S) and R) hold. To propose a solution to this
problem, we introduce a preliminary result, which is based on the
results of [30].

Lemma 2: Consider the fuzzy system

˙̃x(t) =
r∑

i=1

mi (z)Ãix(t) (14a)

ỹ(kδ) = Cx̃(kδ) (14b)

where x̃ ∈ R
n is the state vector, ỹ ∈ R

p is the output vector mea-
sured at each sampling instant δ, mi , i = 1, . . . , r are the membership
functions, and z are the premise variables. Then, the observer

ξ̇(t) =
r∑

i=1

mi (z)Ãi ξ(t), t �= kδ (15a)

ξ(kδ+ ) = ξ(kδ) − G
[
ỹ(kδ) − Cξ(kδ)

]
, t = kδ (15b)

where ξ(kδ+ ) := limε→0 ξ(kδ + ε) guarantees that limt→∞[x̃(t) −
ξ(t)] = 0 if there exist matrices Q > 0 and R and a constant γ, which
solve the linear matrix inequalities (LMIs)

0 ≤
(

Q − (β + γσ)I Q + RC
Q + CT RT Q

)
(16)

γσI < Q (17)

ÃT
i Q + QÃi ≤ γ[I + σ(ÃT

i + Ãi )] (18)

i = 1, . . . , r

where

σ ≥ eαδ − 1
α

, α ≥
r∑

i=1

∣∣∣λm ax
(
ÃT

i + Ãi

)∣∣∣ (19)

and β > 0 is an arbitrary constant. Moreover, the matrix G can be
chosen as G = Q−1R.

Proof: See the Appendix. �
Remark 3: Note that updating the observer states according to (15b)

is equivalent to resetting the initial condition of the continuous-time
observer at each sampling instant.

Using the result of Lemma 2, it is now possible to design a controller
having the structure of the fuzzy observer (15) to solve the RPEM. The
following, which is the main result of the paper, gives the conditions
for the existence of such a controller.

Theorem 4: Assume immersion (9) exists and the pairs

(A0 , B0 ), (C, Ai ), i = 1, 2, . . . , r

with

C = ( C0 0 ), Ai =
(

A0 −B0Hi

0 Φi

)
are stabilizable and detectable, respectively. Let us assume also that
there exist matrices Q > 0, R, and a constant γ, which solve the
LMIs (16)–(18) for matrices C and Ai . Then, the RPEM is solvable.
Moreover, a controller is given by

ż1 (t) = (A0 + B0K)z1 (t), t �= kδ (20)

ż2 (t) =
r∑

i=1

mi (z2 , w)Φi z2 (t), t �= kδ
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z1 (kδ+ ) = (I + G1C0 )z1 (kδ) − G1e(kδ), t = kδ

z2 (kδ+ ) = z2 (kδ) + G2C0z1 (kδ) − G2e(kδ), t = kδ

u = Kz1 (t) +
r∑

i=1

mi (z2 , w)Hiz2 (t) (21)

where G is calculated as follows:

G =
(

G1

G2

)
= Q−1R.

Proof: To show that the controller solves the RPEM, it will be
shown first that the closed-loop system is asymptotically stable when
w = 0. The first approximation of the closed-loop system (1a) plus the
controller (20) and (21) is given by

ẋ(t) = A0x + B0Kz1 + B0

r∑
i=1

mi (z2 , w)Hiz2

ż1 (t) = (A0 + B0K)z1 , t �= kδ

ż2 (t) =
r∑

i=1

mi (z2 , w)Φi z2 (t), t �= kδ

z1 (kδ+ ) = (I + G1C0 )z1 (kδ) − G1e(kδ), t = kδ

z2 (kδ+ ) = z2 (kδ) + G2C0z1 (kδ) − G2e(kδ), t = kδ

which can be written in compact form as follows:

η̇(t) =
r∑

i=1

mi (η, w)Ψi η(t), t �= kδ

η(kδ+ ) = Γη(kδ), t = kδ, k = 0, 1, 2, . . . (22)

where Γ and Ψi are given by

Ψi =

⎛
⎝A0 B0K B0Hi

0 A0 + B0K 0
0 0 Φi

⎞
⎠ , i = 1, 2, . . . , r

Γ =

⎛
⎝ I 0 0

−G1C0 I + G1C0 0
−G2C0 G2C0 I

⎞
⎠ .

Considering the nonsingular transformation⎛
⎝ I 0 0

−I I 0
0 0 I

⎞
⎠

the ith pair of matrices (Γ, Ψi ) is shown to be similar to the ith pair⎛
⎝ I 0 0

0 I + G1C0 0

0 G1C0 I

⎞
⎠
⎛
⎝A0 + B0K B0K B0Hi

0 A0 −B0Hi

0 0 Φi

⎞
⎠ .

By assumption, the matrix (A0 + B0K) is Hurwitz. Now, if there exist
matrices Q > 0 and R and a constant γ such that the LMIs (16)–(18)
hold for the subsystem

˙̃η(t) =
r∑

i=1

mi (η, w)Ai η̃(t), t �= kδ

η̃(kδ+ ) =
[(

I 0
0 I

)
+
(

G1

G2

)
( C0 0 )

]
η̃(kδ)

then, by Lemma 2, this subsystem has an asymptotically stable equilib-
rium point η̃ = 0. Thus, the aggregated dynamics (22) have an asymp-
totically stable equilibrium point η = 0. For the tracking requirement,
it follows from the FIB equations (2) that when z1 goes asymptotically
to zero, the dynamics of z2 tens to the immersion dynamics (9), and
the steady-state input is equal to

r∑
i=1

mi (ξ2 , w)Hiξ2 (t) = ψ(ξ2 , w) = γ(w, μ)

which is the necessary input making invariant the zero-tracking error
submanifold. �

Remark 5: Note that the main feature guaranteeing the zero-output-
tracking error is the immersion (9a), which incorporates the nonlinear-
ity of the steady-state input.

IV. ILLUSTRATIVE EXAMPLE

Let us consider the Lienard model

ÿ + f (y, μ)ẏ + g(y, d, μ) = u (23)

where f (y, μ) and g(y, d, μ) are smooth functions of the output y,
μ is an uncertain parameter vector, u ∈ R is the input, and d ∈ R

represents a disturbance signal. In particular, we will take g(y, d, μ) =
−a2y + μ1 + μ2d and

f (y, μ) =
1

μ3 + y2

with a a known constant. In state variables, this model can be recast as
follows:

ẋ1 = x2

ẋ2 = −g(x1 , d, μ) − f (x1 , μ)x2 + u.

In order to analyze the performance of the proposed controller, x1 has
to track a reference yr . The exosystem dynamics are chosen to be

ẇ = s(w)

d = R1w

yr = R2w

where w ∈ R
5 , s(w) = ( w2 w3 −c2

1w2 w5 −c2w4 )T , R1 =
( 1 0 0 0 0 ) and R2 = ( 0 0 0 1 0 ). Note that the ex-
osystem describes both the disturbance and the reference signals. It is
also assumed that the signals (w1 , w2 , w3 ) have known oscillation fre-
quency with possible unknown amplitude satisfying c1 > 0. However,
the signals (w4 , w5 ) are assumed to be measurable with c2 �= c1 .

The tracking error for this system is defined as e = x1 − w4 so that,
when e = 0, the steady-state submanifold is described by

x1ss = w4 =: π1 (w)

x2ss = w5 =: π2 (w)

uss = −(a2 + c2
2 )w4 + μ1 + μ2w1 +

w5

μ3 + w2
4
.

where the uncertain parameters are μ = (μ1 , μ2 , μ3 ), with μ3 > 0.
Since the term −(a2 + c2

2 )w4 is known, one chooses to construct an
immersion only for the term

γ̂(w, μ) = μ1 + μ2w1 +
w5

μ3 + w2
4
.
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An observable immersion for this term can be given by the system

ζ̇ = Φ(w4 , ζ)

γ̂(w, μ) = Hζ

where Φ(w4 , ζ) = col{c1ζ2 , c1ζ3 ,−c1ζ2 , c2ζ5 − 2w4ζ
4
4 ,−c2ζ4

− 2w4ζ4ζ5} and H =
(
1 0 0 1 0

)
, while ζ = col{μ1 +

μ2w1 , μ2w2/c1 , μ2w3/c2
1 , w5/(μ3 + w2

4 ), −c2w4/(μ3 + w2
4 )}.

Note that the nonlinearities appear only in the time derivatives of
the states ζ4 and ζ5 , which represent the immersion for the term
w5/(μ3 + w2

4 ). Through an analysis of the magnitude for the nonlinear
term w4ζ4 , it results that it is bounded by −c2 < w4ζ4 < c2 . Then,
the fuzzified version of the immersion can be constructed as follows:

ζ̇(t) =
2∑

i=1

mi (ζ, w)Φi ζ(t)

γ̂(w, μ) =
2∑

i=1

mi (ζ, w)Hζ(t)

where

Φi =

⎛
⎜⎜⎜⎝

0 c1 0 0 0
0 0 c1 0 0
0 −c1 0 0 0
0 0 0 2(−1)i c2 c2

0 0 0 −c2 2(−1)i c2 ,

⎞
⎟⎟⎟⎠ i = 1, 2

m1 (ζ, w) =
c2 + w4ζ4

2c2
, m2 (ζ, w) =

c2 − w4ζ4

2c2
.

However, the linearized matrices for the error observer around the
point (x1s , x2s ) are as follows:

A0 =
(

0 1
a2 − 1

μ 3 n o m

)
, B0 =

(
0
1

)
, C0 = ( 1 0 ).

Then, it is possible to design a controller (20) and (21) with

u(t) = Kz1 (t) − (a2 + c2
2 )w4 +

2∑
i=1

mi (z2 , w)Hz2 (t)

where K , G1 i , and G2 i , i = 1, 2 are calculated to satisfy the conditions
given in Theorem 4.

A. Numerical Simulation Results

The following parameters values have been chosen: δ = 0.25 s,
α = 9, σ = 47.1541, β = 1, and a = 4π/5 s−1 . The nominal values
of the uncertain parameters are μ = (1, 0.4, 0.2). The reference has
been taken as yr = sin c1 t, while the disturbance has been set equal
to 1 − 0.5 sin c2 t, with c1 = 2π/15 s−1 and c2 = π/5 s−1 . The gain
matrices K, G1 , and G2 have been calculated as follows:

Fig. 1. Error for nominal simulation with fuzzy controller.

Fig. 2. Input for nominal simulation.

K = (−86.3165 −3.0000 )

G1 =
(
−99.40
−5.211

)
× 10−2 , G2 =

⎛
⎜⎜⎜⎝

−4.56
1.201
0.7940
−4.230
1.855

⎞
⎟⎟⎟⎠ × 10−3 .

Figs. 1 and 2 show the error and input signals for the closed-loop
system. As expected, the performance of the proposed fuzzy scheme is
satisfactory.

Figs. 3 and 4 illustrate the performance of the proposed fuzzy control
scheme under the influence of parametric variations of 7%, −5%, and
7% on the nominal values of μ1 , μ2 , and μ3 , respectively, which were
introduced at t = 0 s. In addition, at t = 10 s, a variation of −5% on
the value of μ3 , at t = 20 s, a variation of 10% on the value of μ1 ,
and at t = 30 s, a variation of −5% on the value of μ2 , have been
introduced. Fig. 3 shows the output-tracking error, and Fig. 4 shows
the control signal. As it can be observed, the proposed scheme is able
to compensate the parametric variations.
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Fig. 3. Error for parametric variation test.

Fig. 4. Input for parametric variation simulation.

V. CONCLUSION

The main contribution of this paper is the proposal of a structurally
stable regulator when only sample-data output-tracking error measure-
ments are available. This scheme provides an alternative to the classical
continuous-time approach or the discretized regulator, which are not
readily applicable in this situation. The controller design, based on the
concept of fuzzy immersions and composed of an error feedback con-
troller and a fuzzy estimator, allows elimination of the ripple in the in-
tersampling instants and guarantees the stability of the closed-loop sys-
tem. The performance of the regulator has been tested with numerical
simulations, under modeling errors, various uncertainties/variations,
and external disturbances, showing a remarkable performance. These
results suggest the validity of the proposed approach.

APPENDIX

PROOF OF LEMMA 2

Proof: Since x(kδ+ ) = x(kδ), the observer error e = x − ξ has the
dynamics

ė(t) =
r∑

i=1

mi (z)Aie(t), t �= kδ

e(kδ+ ) = (I + GC) e(kδ), t = kδ.

Given the matrix P > 0 and defining the Lyapunov function V (e(t)) =
eT (t)Pe(t), it follows that for t ∈ (kδ+ , (kδ + δ))∫ t

k δ +

d

dλ
V (e(λ)) dλ = V (e(t)) − V (e(kδ+ ))

=
∫ t

k δ +

r∑
i=1

mi (z)eT (λ)
(
PAi + AT

i P
)
e(λ) dλ. (24)

Let us consider now that there exists a constant γ (which may be even
positive) such that

PAi + AT
i P ≤ γI ∀i = 1, 2, . . . , r (25)

then

V (e(t)) − V (e(kδ+ )) ≤ γ

∫ t

k δ +
eT (λ)e(λ) dλ.

Let us consider the Lyapunov function at the sampling instants

V (e(kδ+ )) − V (e(kδ)) = eT (kδ+ )Pe(kδ+ )

− eT (kδ)Pe(kδ)

and combining this equation with (24), one gets

V (e(t)) − V (e(kδ)) ≤ γ

∫ t

k δ +
eT (λ)e(λ) dλ

+ eT (kδ+ )Pe(kδ+ ) − eT (kδ)Pe(kδ).

(26)

Additionally, since ‖e(t)‖2 = eT (t)e(t), then

d

dt
‖e(t)‖2 =

r∑
i=1

mi (z)eT (t)
(
AT

i + Ai

)
e(t).

Let us define α as in (19), namely α ≥
∑r

i=1 |λm ax (AT
i + Ai )|. There-

fore, we get
d

dt
‖e(t)‖2 ≤ α‖e(t)‖2

and ‖e(t)‖2 ≤ ‖e(kδ+ )‖2eα (t−k δ + ) for t ∈ (kδ, (k + 1)δ). Then, the
integral in (26) satisfies the inequality∫ t

k δ +
eT (λ)e(λ) dλ ≤ eα (t−k δ + ) − 1

α
‖e(kδ+ )‖2 .

When t = (k + 1)δ, this inequality becomes∫ (k+1)δ

k δ +
eT (λ)e(λ) dλ ≤ σ‖e(kδ+ )‖2

where σ is given as in (19). Therefore, (26) can be written as follows:

V (e((k + 1)δ)) − V (e(kδ))

= eT (kδ)[(I + GC)T (γσI + P )(I + GC) − P ]e(kδ).

Then, the Lyapunov function decreases in each sampling period if,
given a positive constant β, the inequality

(I + GC)T (γσI + P )(I + GC) − P ≤ −βI (27)
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holds, guaranteeing that limk→∞[x(kδ) − ξ(kδ)] = 0, which implies
that limt→∞[x(t) − ξ(t)] = 0. Letting us define Q = γσI + P > 0,
(27) is equivalent to

(I + GC)T Q(I + GC) − Q ≤ −(β + γσ)I

which (using the Schur complement) produces the LMI (16), with
R = QG. Finally, since, by assumption, (25) holds, in terms of Q, this
inequality becomes (18). �

REFERENCES

[1] A. Isidori, L. Marconi, and C. De-Persis, “Observers as internal models
for remote tracking via encoded information,” Control and Observer
Design for Nonlinear Finite and Infinite Dimensional Systems, vol. 322,
ser. Lecture Notes in Control and Information Sciences. Berlin, Germany:
Springer-Verlag, pp. 3–18, 2005.

[2] C. Byrnes and A. Isidori, “Output regulation for nonlinear systems: An
overview,” Int. J. Robot. Nonlinear Control, vol. 10, pp. 323–337, 2000.

[3] B. Francis, “The linear multivariable regulator problem,” SIAM J. Control
Optim., vol. 15, pp. 486–505, 1977.

[4] J. Huang and C.-F. Lin, “On a robust nonlinear servomechanism problem,”
IEEE Trans. Automat. Control, vol. 39, no. 7, pp. 1510–1513, Jul. 1994.

[5] J. Huang, “Asymptotic tracking and disturbance rejection in uncertain non-
linear systems,” IEEE Trans. Automat. Control, vol. 40, no. 6, pp. 1118–
1122, Jun. 1995.

[6] B. Castillo, “Output regulation of nonlinear systems with more inputs than
outputs,” Int. J. Contr., vol. 57, pp. 1343–1356, 1993.

[7] B. Castillo, S. Di Gennaro, S. Monaco, and D. Normand-Cyrot, “Nonlinear
regulation for a class of discrete-time systems,” Syst. Contr. Lett., vol. 20,
pp. 57–65, 1993.

[8] J. Shi, “Robust output regulator for nonlinear systems,” Int. J. Contr.,
vol. 58, pp. 1347–1360, 1993.

[9] X. Jia, D. Zhang, X. Hao, and N. Zheng, “Tracking control for nonlinear
networked control systems in T-S fuzzy model,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 39, no. 4, pp. 1073–1079, Aug. 2009.

[10] X. Jiang and Q.-L. Han, “On designing fuzzy controllers for a class of
nonlinear networked control systems,” IEEE Trans. Fuzzy Syst., vol. 16,
no. 4, pp. 1050–1060, Aug. 2008.

[11] A. Isidori, Nonlinear Control Systems, 3rd ed. London U.K.: Springer-
Verlag, 1995.

[12] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adapta-
tive Control Design. New York: Wiley, 1995.

[13] R. Marino and P. Tomei, Nonlinear Control Design. Geometric, Adaptative
and Robust. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[14] B. Castillo-Toledo and S. Di Gennaro, “On the nonlinear ripple free
sampled-data robust regulator,” Eur. J. Contr., vol. 8, pp. 44–55, 2002.

[15] J. Huang and Z. Chen, “A general framework for tackling the output
regulation problem,” IEEE Trans. Automat. Control, vol. 49, no. 12,
pp. 2203–2218, Dec. 2004.

[16] A. Serrani, A. Isidori, and L. Marconi, “Semi-global nonlinear output
regulation with adaptive internal model,” IEEE Trans. Automat. Control,
vol. 46, pp. 1178–1194, Aug. 2001.

[17] J. Huang, “Remarks on the robust output regulation problem for nonlinear
systems,” IEEE Trans. Automat. Control, vol. 46, no. 12, pp. 2028–2031,
Dec. 2001.

[18] B. Castillo-Toledo, S. Celikovsky, and S. Di Gennaro, “Generalizad im-
mersion and nonlinear robust regulation problem,” Kybernetika, vol. 40,
no. 2, pp. 207–220, 2004.

[19] S. Monaco and D. Normand-Cyrot, “Minimum phase nonlinear discrete-
time systems and feedback stabilization,” in Proc. 23th Conf. Decis. Con-
trol, Los Angeles, CA, 1987, pp. 979–986.

[20] L. Zadeh, “Outline of a new approach to the analysis of complex systems
and decision processes,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3,
no. 1, pp. 28–44, Jan. 1973.

[21] E. Mamdani and S. Assilian, “Applications of fuzzy algorithms for control
of simple dynamic plant,” Proc. Inst. Elect. Eng. C., vol. 121, pp. 1585–
1588, 1974.

[22] H. Nakanishi, I. Turksen, and M. Sugeno, “A review and comparison of
six reasoning methods,” Fuzzy Sets Syst., vol. 57, pp. 257–294, 1993.

[23] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plication to modeling and control,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Feb. 1985.

[24] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control
systems,” Fuzzy Sets Syst., vol. 45, pp. 135–156, 1992.

[25] K. Tanaka and M. Sugeno, “A robust stabilization problem of fuzzy control
systems and its application to backing up control of a truck-trailer,” IEEE
Trans. Fuzzy Syst., vol. 2, no. 2, pp. 119–134, May 1994.

[26] K. Tanaka, T. Ikeda, and H. Wang, “Robust stabilization of a class of
uncertain nonlinear systems via fuzzy control: Quadratic stabilizability,
H∞ control theory, and LMI,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1,
pp. 1–13, Feb. 1996.

[27] K. Tanaka and H. Wang, Fuzzy Control Systems Design and Analysis, A
Linear Matrix Inequality Aproach. New York: Wiley, 2001.

[28] A. Sala, T. Guerra, and R. Babuska, “Perspectives of fuzzy systems and
control,” Fuzzy Sets Syst., vol. 156, pp. 432–444, 2005.

[29] G. Feng, “A survey on analysis and design of model-based fuzzy control
systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676–697, Oct. 2006.

[30] S. Nguang and P. Shi, “Fuzzy H∞ output feedback control of nonlinear
systems under sampled measurements,” Automatica, vol. 39, pp. 2169–
2174, 2003.


