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Verification of Hybrid Automata Diagnosability
by Abstraction

Maria D. Di Benedetto, Fellow, IEEE, Stefano Di Gennaro, and Alessandro D’Innocenzo

Abstract—A notion of diagnosability for hybrid systems is
defined, which generalizes the common notion of observability.
We propose an abstraction procedure to translate a hybrid au-
tomaton into a timed automaton, in order to verify observability
and diagnosability properties. We introduce a procedure to check
diagnosability, and show that for the system class of our abstrac-
tion (namely for a subclass of timed automata: the durational
graphs) the verification problem belongs to the complexity class
P. We apply our procedure to an electromagnetic valve system for
camless engines.

Index Terms—Abstraction, automatic verification, diagnos-
ability, hybrid systems, observability, timed automata.

I. INTRODUCTION

T HE increase of functionality offered by today’s controllers
based on embedded systems requires more effort to verify

the controlled system, as a malfunction may yield catastrophic
results. Since most of the plants of interest have continuous dy-
namics, the controlled system has a mix of discrete events and
continuous dynamics, namely it is a hybrid system [1]. The gen-
erality of the hybrid system framework offers flexibility. On the
other hand, this generality makes the development of a general
analysis theory difficult. When analyzing a hybrid system, the
dimension of the state space is often so large that formal verifi-
cation is out of the question due to its computational complexity.
An important technique used to cope with complexity is abstrac-
tion. By abstraction, we create a system with smaller state space
(even finite) that preserves the properties that we want to verify
in the original system.

In this paper, we are interested in the automatic verification
of the observability and diagnosability properties for hybrid au-
tomata. Diagnosability corresponds to failure detection in finite
time. Given a plant, a system is diagnosable if, within a finite
time bound and only using the observable output of the plant,
it is possible to detect that a fault has occurred. We say that a
system has a fault if an execution visits a given faulty subset of
the state space. We discuss in this paper diagnosability of hybrid
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automata, where the output is given by discrete symbols (pos-
sibly unobservable), associated to the discrete transitions. The
concept of diagnosability is tightly related to observability: di-
agnosability generalizes observability. Diagnosability has many
applications in several fields, e.g., the detection of an error in an
air traffic management procedure [2], [3], of failures in auto-
motive systems [4], in a component of an industrial plant, or in
communication systems [5].

Given a plant and a set of faulty states, an important problem
often addressed in the literature is to verify automatically
whether the system is diagnosable. For the class of discrete
event systems (DES), the diagnosability verification problem
was treated in several papers by Lin [6], Frank [7], and Lafor-
tune [8]–[10], and the diagnosability verification problem was
shown to be polynomial. In these papers, since the concept of
time flow is not present in DES, a plant is defined diagnosable
if it is possible to detect a failure after a finite number of transi-
tions since the fault has occurred, rather than after a time delay.
For the class of timed automata, a definition of -diagnosability
has been proposed by Tripakis [11]: a plant is -diagnosable
if it is possible to detect a failure after a time delay bounded
by since the fault has occurred. The diagnosability
verification problem for timed automata was demonstrated to
belong to PSPACE. Diagnosability of hybrid systems was con-
sidered by Fourlas in [4], where a notion of diagnosability was
proposed for input–output automata, diagnosability conditions
were stated, but no complexity analysis was performed. In [12],
a hybrid diagnosis problem was formulated, and qualitative
techniques for diagnosis of continuous systems were proposed.
In [13], a diagnoser and a mode estimation algorithm for hy-
brid automata were presented. The diagnosability verification
problem for general hybrid systems and its decidability and
computational complexity have not been characterized yet by
the scientific community.

In this paper, we tackle the diagnosability verification for
hybrid automata using an abstraction technique. The first con-
tribution of this paper is a procedure for constructing an ab-
straction of a hybrid automaton, which belongs to a subclass
of timed automata called durational graph. A durational graph
is similar to the durational transition graph defined in [14]:
the main difference is that in a durational transition graph the
invariant sets are not defined, and the guards are rectangular
sets defined by limits in the set of relative numbers. Du-
rational graphs are more general than discrete event systems
(where diagnosability verification is polynomial) and less gen-
eral than timed automata (where diagnosability verification be-
longs to PSPACE). Our abstraction procedure is not guaranteed
to be polynomial, but we prove in the electromagnetic valve
case study that it is polynomial in an interesting and nontrivial
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real case. Thus, our abstraction method allows efficient diagnos-
ability verification of hybrid systems for real cases of interest in
engineering applications.

The second and main contribution of the paper is proving that
the -diagnosability verification problem for durational graphs
belongs to the complexity class , as for DESs. In the literature,
the -diagnosability verification problem has been defined as
follows: “Given a system and a fixed value , verify whether

is -diagnosable.” The -diagnosability verification problem
we solve in our paper is more general than the one defined above,
and can be defined as follows: “Given a system , compute the
minimum value such that is -diagnosable.” It is in
fact extremely important to compute the worst case delay for
fault detection. We believe that direct computation of in
polynomial time is a novel and strong result. To give an example,
in Lemma 6 of [11], the minimum value for diagnosability
of timed automata is computed by trying out different values
for using a binary search, and verifying -diagnosability at
each step of the search. This method can be applied to dura-
tional graphs, but it is not efficient since it depends on a binary
search, while our algorithm computes in just one step and
in polynomial time with respect to the cardinality of the state
space.

Our verification algorithm provides a novel, constructive and
nontrivial proof that the computation of reduces to a reach-
ability problem over a set of durational graphs, constructed in
polynomial time starting from the original durational graph. For
this reason, tools like KRONOS [15] and UPPAAL [16] (for
timed automata) and HyTech [17] (for hybrid systems) cannot
be used to compute , and are not comparable to our algo-
rithm. The advantage of our method is a polynomial algorithm
that can be used to compute for durational graphs, while
existing algorithms and tools are not able to do so. The verifica-
tion algorithm can be divided in two parts. The first part handles
unobservable symbols and represents the core of the procedure:
the main issue is dealing with cycles of edges associated with
unobservable edges. The second part deals with systems with no
unobservable transitions, and makes use of product automata al-
gorithms similarly to [11].

We apply our theoretical results to verify diagnosability of an
electromagnetic valve system for camless engines, a device of
interest in automotive applications [18]. The observable output
we use to perform the diagnosis is only given by the hitting times
of the valve with the electromagnets: this corresponds to the use
of low-cost sensors.

The paper is organized as follows. In Section II, we define a
class of non deterministic hybrid automata, we define hybrid ex-
ecutions, and we introduce notations. In Section III, a definition
of diagnosability for hybrid automata is given, which general-
izes the notion of discrete state observability in [19]. The main
contributions of the paper are as follows.

• In Section IV, we propose a procedure to construct an ab-
straction of a hybrid automaton, which belongs to a sub-
class of timed automata called durational graph. We prove
that our abstraction preserves diagnosability.

• In Section V, we prove that the diagnosability verification
problem for durational graphs belongs to the complexity
class P.

In Section VI, we apply our verification procedure to an elec-
tromagnetic valve system for camless engines. Concluding re-
marks are offered in Section VII.

II. BASIC DEFINITIONS AND NOTATIONS

In this section, we introduce a class of non deterministic hy-
brid automata, and define hybrid executions. Then, we intro-
duce a formalism to define the set of executions by means of a
formal timed language. Finally, we define a subclass of hybrid
automata, the durational graph.

Systems that have both discrete and continuous aspects in
their dynamics are called hybrid systems. One prominent the-
oretical framework that is used to model hybrid systems is pro-
posed in [20], where the discrete part consists of a labeled ori-
ented graph, and the continuous part is described by a dynamical
continuous system associated to each discrete state. The inter-
action between the continuous and discrete part is described by
invariant, guard, and reset conditions. We consider here hybrid
automata, that are hybrid systems with autonomous dynamics.
The observable output is only given by discrete output symbols
(possibly unobservable) associated to the discrete transitions,
and the delay between the observed output symbols.

Definition 1 (Hybrid Automaton): A hybrid automaton is a
tuple where:

• is the hybrid state space, where is a finite set of
discrete states and is the continuous state space.

• is the set of initial conditions.
• associates to each discrete state the autonomous

continuous time-invariant dynamics . Given
an initial condition , we define the solution at time ac-
cording to by . The solution is unique
with the assumption that is Lipschitz continuous.

• is a collection of edges, where each edge
is an ordered pair of discrete states: the first component is
the source and is denoted by , while the second com-
ponent is the target and is denoted by .

• is the finite set of discrete output symbols
, where is the unobservable output,

that corresponds to the empty string. is the
output function, that associates to each edge a discrete
output symbol.

• associates to each discrete state an invariant
set , associates to each edge a guard
set , and associates to each edge a
reset map .

This class of hybrid automata is in general nondetermin-
istic. The continuous state evolves following deterministic
dynamics, and the discrete state evolution depends only on
the continuous state according to guards, possibly with non-
deterministic behaviors in the discrete transitions. We denote

the set of the incoming edges in
, and the set of the outgoing

edges from . We call an -edge if , and use
the classical definition of -closure of a discrete state
[21], as the set of discrete states that can be reached from via
a path of -edges. Notice that .
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Referring to [20], we recall the definitions of hybrid time
basis and hybrid execution of a hybrid system. A hybrid time
basis is a finite or infinite sequence of intervals

, we refer to [20] for the properties such intervals
have to satisfy. The number of intervals is the cardinality of
the time basis. A hybrid execution is a triple , where

is a hybrid time basis, and , describe the evolution of the
discrete and continuous state by means of functions
piecewise continuous, and . Functions1 , are de-
fined on the hybrid time basis , take values on the hybrid state
space, and satisfy the continuous and discrete dynamics and
their interactions (invariant, guard and reset). In this paper, we
consider non blocking hybrid automata, i.e., systems such that
all hybrid executions are defined for all time instants. Moreover,
we exclude that infinite transitions might occur in a finite time
interval. More precisely, we do not allow Zeno executions, since
they are generally due to a modeling error or to an inadequacy
of the model.

We now define the set of executions of the discrete state
of a hybrid automaton (and the corresponding observations)
by means of formal timed languages. Let be the set of all
executions of . We associate to each execution

a unique timed string as a sequence of pairs
with cardinality , where

we write without loss of generality and
. Namely, represents an ex-

ecution of the discrete state of , where denotes the discrete
state in the time interval and denotes the dwell time in

. For this reason, we will call an execution, although it
is a timed string. Given an execution , we
introduce the following notations:

• is the discrete state in the time interval of the
execution associated to ;

• is the substring of from index
to ;

• is the time duration of .
Definition 2 (Formal Language of Executions): The timed

language of executions of the discrete state of is given by

Given a subset of discrete states , we define the
language of executions with finite cardinality, such that the last
visited discrete state belongs to :

Given an execution , we define the associ-
ated output string as

The associated observation is obtained from the output
by erasing all (unobservable) symbols and by adding up the
adjacent time delays. For instance, an output string 3, , 4, ,
5, , 2 is observed as 3, , 9, , 2.

1We abuse notation by using the same symbol � or � for an element of � or
� , and here to denote a function.

A timed automaton [22] is a hybrid automaton where the dy-
namics of the continuous variables have constant slope 1 for
each discrete location (each variable is a clock), the initial con-
tinuous state is a singleton set for each discrete location, the
guards are rectangular sets,2 and the reset map for each variable
is either the identity or zero. We call durational graph a timed
automaton characterized by only one clock that is reset to 0 for
all edges.

Definition 3 (Durational Graph): A durational graph is a hy-
brid automaton such
that:

• is the continuous state space;
• for each , the initial condition is given by ;
• for each , the continuous dynamics are defined by

and the set is a rectangular set;
• for each , the set is a rectangular set and

.

This definition implies that a durational graph is uniquely
identified by a tuple . Definitions
of formal languages of executions and observations also hold
for durational graphs. The notations used in this paper are sum-
marized in Table II.

III. DIAGNOSABILITY DEFINITION

Given a hybrid automaton , let be a set of discrete
states that model a failure in : is called faulty set. A -faulty
execution is a trajectory that enters the faulty set at a certain time
instant, and then continues flowing for a time duration .

Definition 4 ( -Faulty Execution): An execution is
-faulty if there exists a finite index , if ,

such that

For any faulty execution , we use the notation to denote
the first faulty state visited by . We define the set of all
-faulty executions, and the set of all faulty

executions. We say that a set is -diagnosable for a system
if it is possible to detect within a delay upper bounded by

whether an execution has visited the faulty set, only using the
observable output. More precisely:

Definition 5: A set is -diagnosable for if and only if

The notion of -diagnosability is more general than discrete
state observability as defined in [19].

Definition 6: [19] A set is observable for if and only if

2A rectangular set in is any subset that can be defined by a finite union of
cartesian products of intervals.
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Proposition 1: is observable if and only if is 0-diag-
nosable.

Proof: By Definition 5 and the fact that , the
result follows.

As a consequence, the results given in this paper also apply
to observability of the discrete state.

Remark 1: If a faulty set is -diagnosable, it is possible to
detect that the faulty set has been visited, but it is not possible
to distinguish which faulty state has been visited. To determine
which faulty state has been visited, we need that for each

the singleton set is -diagnosable.
If a system is diagnosable for some finite , the following

property shows that it is very interesting to compute the min-
imum value for which is -diagnosable.

Proposition 2: Given , the following statements hold:
1) if is -diagnosable, then it is -diagnosable for all

;
2) if is not -diagnosable, then it is not -diagnosable for

all .
Proof: Straightforward by Definition 5.

IV. TRANSLATING HYBRID AUTOMATA INTO TIMED AUTOMATA

In this section, we propose an abstraction procedure that can
be used to verify -diagnosability of hybrid automata. This pro-
cedure can also be useful to verify more general properties that
are not easy to check or are even undecidable for the general
hybrid model, e.g., temporal properties [23]. The abstracting
system is a durational graph as defined in Section II. We pro-
pose an algorithm to construct a durational graph from a given
hybrid automaton , and show that preserves diagnosability
properties.

Consider a hybrid automaton . We define the following sets.
• is the set of

initial continuous conditions associated to the initial dis-
crete state . The non blocking assumption implies
that .

• is the
range of the reset associated to edge . The non
blocking assumption implies that , ,

: i.e., the reset “lands” in the invariant
of the target location.

We construct , that is an abstraction of , as follows. Define
a relation , where

such that

and either

Namely, we relate to each state of one state of
for each incoming edge , and an additional state if

, as illustrated in Fig. 1. In the following, we use the
notation

if
if

Algorithm 1: Let a hybrid automaton
be given. We define a durational

graph as follows:

Fig. 1. Split induced by the relation � . The horizontal arrows indicate an initial
state.

1) ;
2) ;
3) , and either

or ;
4) , define ;
5) , define

(1)

The set consists of all time instants such that there
exists an execution of the continuous state, according to
the dynamics and with initial condition in at time
0, that remains in the invariant set during the time
interval . Notice that the origin always belongs
to , since we have assumed that , ,

, and , .
6) , define

(2)
The set consists of all time instants such that there
exists an execution of the continuous state, according to
the dynamics and with initial condition in at time
0, that enables the transition at time .

The intuition behind the algorithm is the following: we split
each discrete state according to the relation , depending on the
number of incoming edges and initial conditions (Fig. 1). This
split ensures that any discrete state of has only one incoming
edge. The main issue is the computation of the invariant (1) and
guard sets (2) by means of dwell time of the hybrid automaton
in each discrete state. If the continuous dynamics are linear, the
exact computation is possible when the system has a particular
structure [24], [25]. In general, we can compute an over approx-
imation of

(3)

(4)

using approaches that can be found in the literature. The litera-
ture on computational approaches to reach set computation for
hybrid systems is quite rich. If the dynamics are linear but the
computation of the reach set cannot be solved in closed form,
one can obtain approximations of the reach set by resorting to a
number of approaches. The authors in [26] propose a procedure
for automatic verification of safety properties of hybrid systems
with linear continuous dynamics and uncertain bounded input.
The procedure proposed by [27] works for high dimensional
continuous state spaces, but it is not possible to quantify the
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over-approximation error. [28] introduces a procedure to com-
pute a sequence of polytopes (a flow pipe), that are over approx-
imations of the reach sets within specific time intervals. By re-
fining these intervals it is possible to determine approximations
with arbitrary precision. The weak point of this approach is the
increase in the computation time. Another procedure similar to
[28] is presented in [29], where an algorithm to compute a se-
quence of zonotopes3 is proposed. This algorithm is attractive,
because the computation of the flow pipe is considerably faster
for zonotopes than for polytopes [30]. Furthermore, the algo-
rithm can be extended to compute the reach set of systems with
a bounded control input. For the same class of models, [31] pro-
poses a formal approach to compute over-approximating reach-
able sets with ellipsoidal shapes. Related results are [32]–[34]. If
the dynamics are non linear, one can use the approach developed
in [28]. This intensive research has given birth to several verifi-
cation tools for reachability analysis on hybrid systems, such as
d/dt, MATISSE, CheckMate, the Ellipsoidal Toolbox, and many
others. For a more exhaustive review, the reader is directed to
[35]. In particular, we will use the algorithms we proposed in
[36], [37] to apply our abstraction procedure to the case study
of Section VI.

We now focus on the properties of . In the following, if
not clear from the context, we will use a superscript to refer to
system or to system . We show now that the behavior of
embeds the behavior of .

Proposition 3: Given and , for each execution
, there exists an execu-

tion such that ,
, , , and

, , , .

Proof: Consider the execution .
Let : by construction of , . Let

: there exists with
, such that and . The guard

computed as an over approximation (4), and the invariant
computed as an over approximation (3), imply that

, and . By iteration, we construct

an execution such that ,
, , , and

, , , .
Consider now the following assumption.
Assumption 1: Suppose that the guard and invariant sets of

are computed exactly, and the reset functions of the system
are memoryless (the system “forgets” its continuous state when
a transition occurs):

If Assumption 1 holds, not only the behavior of embeds the
behavior of but also vice versa.

Proposition 4: Given and , let Assumption 1 hold. Then
for each execution , there exists
an execution such that ,

3A zonotope is a centrally symmetric polytope, defined by the Minkowski
sum of its line segment generators � � � � � � � � .

, , , and
, .

Proof: Consider the execution .
By construction of , for some , with

. Moreover, for some successor of
and , with . The guard com-

puted exactly (2), and the invariant computed exactly (1),
imply that there exists
and , . Under the assump-
tion that the reset functions are memoryless, we construct by
iteration an execution such that

, , , , and
, , , .

We show now that our abstraction preserves diagnosability
(and thus observability). We recall that Algorithm 1 takes as
input a hybrid automaton , and produces as output a durational
graph and a relation . Given , , and a faulty
set , define:

Proposition 5: Given and , a faulty set is -diagnos-
able for if is -diagnosable for .

Proof: By contradiction, assume that the hypothesis is true
and that is not -diagnosable for . This implies by Defi-
nition 5 that there exists , , and
such that . Let be the first faulty state of . By
Proposition 3, there exist such that and

. Furthermore, and ,
thus . For the same reasoning, it is clear that

. This implies that is not -diagnosable for , that
is a contradiction.

When Assumption 1 holds, Proposition 4 holds. As a conse-
quence, Proposition 5 becomes a necessary and sufficient con-
dition:

Proposition 6: Given and , let Assumption 1 hold. Then
a faulty set is -diagnosable for if and only if is
-diagnosable for .

Proof: Straightforward inverting the reasoning in the proof
of Proposition 5.

V. DIAGNOSABILITY VERIFICATION

In this section, we focus on the diagnosability problem for du-
rational graphs. We propose a verification procedure and deter-
mine its computational complexity. The verification algorithm
consists of two parts. In the first part, the tricky one, we deal with
edges associated to an unobservable output symbol: we propose
an algorithm to construct a durational graph without unobserv-
able outputs, which preserves diagnosability. In the second part,
we propose a verification algorithm for systems that do not gen-
erate unobservable outputs.

Removal of -edges has been discussed for discrete event
systems [38] to study observability properties, and for timed
automata [39] to preserve simulation relations. We proposed
in [19] a procedure to erase -edges from a durational graph,
while preserving observability properties. However, this proce-
dure does not preserve diagnosability since, if a faulty state
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has at least one outgoing or incoming -edge, such state is not
observable, while it might be -diagnosable for some . For
this reason, in order to preserve -diagnosability, it is necessary
to be careful when erasing -edges that have a faulty state as
endpoint.

Let a durational graph and a
destination discrete state be given. Define the set
of all time instants such that there exists an execution of with
time duration that terminates in :

We also write if there exists an execution
such that and , .4

Proposition 7: Given a durational graph and a discrete state
, then can be computed in polynomial time. More-

over, is a rectangular set if and only if all paths of that
connect to do not contain cycles, or there exists at least
one path with cycles where at least one edge is associated to a
non-singleton rectangular interval.

Proof: Given and , consider a non deterministic finite
automaton5 with set of states , initial state , and final
state . The alphabet of is defined as a finite set of rectan-
gular intervals . Namely,
it is the collection of all the guards intersected with the corre-
sponding invariant . The transition relation

of is defined as .
It is easy to show that can be computed from the reg-

ular expression associated to , by applying the following three
rules, where . Equation (1): Replace alternation
by (finite union of rectangular intervals). That is, the al-
ternation of symbols corresponds to the union of the crossing
times. Equation (2): Replace concatenation by (fi-
nite sum of rectangular intervals). That is, the concatenation of
symbols corresponds to the sum of the crossing times. Equation
(3): Replace Kleene star by (infinite union of rectan-

gular intervals). That is, the repetition of symbols corresponds
to the union of crossing times of a cycle, for all .

We need to prove that is a rectangular interval if the
hypothesis of this proposition holds. Clearly, elements 1 and 2
of the list always generate rectangular intervals, since a finite
union or sum of rectangular intervals is a rectangular interval,
and each element of is a rectangular interval. We prove now
that element 3 generates a rectangular interval if and only if

is not generated by all singleton intervals, that is equivalent
to the hypothesis of this proposition. Let

, then

We first prove that there exists a finite value for each
, such that the following holds:

4This happens when there exists an execution that never reaches � .
5For the classical definition of non-deterministic finite automata and regular

expressions, we refer to [21].

The strict inequalities are clearly true for any value of . Since
, , then

Let , : define
by . It is clear that is finite

if and only if . It is also clear that for
, all consecutive time intervals and

overlap; thus, their infinite union gen-

erates the set . Let be the minimum value of
such that , . Thus, can be defined
by a finite union of rectangular intervals:

The following algorithm takes as input a durational graph
and a faulty set of , and produces as output a durational
graph without -edges, a faulty set of , and a faulty func-
tion , that associates to each faulty state
of a rectangular time interval.

Algorithm 2: Given a durational graph
and a faulty set , initialize

, , , and , .
For each unvisited state such that

, and for each such that
, define

and proceed as follows.
1) If , then create a new state to and while

keeping incoming and outgoing edges of .6 For each
, compute from the durational graph induced7

on by the set of states and the set of edges
, with initial state . Compute from

the durational graph induced on by the set of states
and the set of edges

, with
initial state . Set . If

, then add to and set
. Set . Mark as

visited.
2) Compute from the durational graph induced on

by the set of states and the set of
edges

, with initial state . If ,
then add to and set . Set

. Mark as visited.
Finally, set for each

, and erase all states whose incoming edges are all -edges,
then erase all hanging and unobservable edges.

6Namely we duplicate the state � .
7The durational graph induced on a durational graph � by the set of states �

and the set of edges � , is a durational graph where the set of states is � , the
set of edges is � , and outputs, guards, invariants and resets are the same of �
restricted to the sets � , �
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Fig. 2. Example of the split procedure operated by Algorithm 2.

The idea of the algorithm is to preserve all executions
merging the states connected by -edges. The main issue is that
it is sometimes needed to merge together faulty and not faulty
states: in this case, as illustrated in Fig. 2, we consider all paths
that visit the faulty states, and create a new faulty state .
We set with the set of all time instants, such that a fault
can occur starting from and generating only unobservable
outputs. We set the guards of the outgoing edges from
as the set of time instants such that an observable output is
generated, without visiting a faulty state; and we set the guards
of the outgoing edges from as the set of time instants such
that an observable output is generated, visiting a faulty state.
We assume that the guards of are not singleton sets;8 thus,
Proposition 7 implies that the algorithm above constructs a
durational graph, since every edge is associated to a guard that
is a rectangular set. This is true also if there exist cycles of
unobservable edges. In the following result, we formalize some
properties that hold by construction of Algorithm 2.

Proposition 8: Given and :
1) For each execution and for each , there

exist an execution and , such that
.

2) For each execution , there exists an execution
such that .

3) For each execution , for each and for
each , there exists an execution such
that .

4) For each execution , there exists an execution
such that .

We define now the second part of the algorithm, and assume
absence of -edges. The idea for diagnosability verification is
to construct a finite set of durational graphs that embed diag-
nosability properties of . We show how to check if there ex-
ists a (minimum) finite such that the starting system (with
-edges) is -diagnosable, by stating conditions on the structure

of the constructed durational graphs. Given , we first define a
constructive procedure of a product durational graph for
each pair . The following algorithm is similar
to the classical product automaton construction: the difference
is that we stop the exploration when we discover a faulty state in
the first component, and we do not explore pairs of states with
a faulty state in the second component.

Algorithm 3: Given durational graphs
and

, construct the product

durational graph
as follows:

Initialize ,
, ;

8Actually, it is sufficient to assume that in the cycles of unobservable edges,
at least one edge is associated to a guard that is not a singleton set.

For each unvisited state , do:
2.1) For each , ,

, , set ,
, , ,

, , . Mark as visited;
2.2) If , then mark as visited.

Given , , , and any pair in the state space
of , then there exist two executions of and of

with the same timed observation, where the last visited state
of is , while the last visited state of is . This property
is a direct consequence of the classical product automaton con-
struction, and can be formalized by the following proposition.

Proposition 9: Given and :

1) For each pair of executions ,

with ,

there exists an execution
such that ,

and .

2) For each execution ,
, there exists a pair

of executions ,
with

such that ,
and .

We define the set

. Notice that

is the set of pairs such that there exist
two executions with the same timed observation, where
the last visited state of is , while the last visited state of

is . Consider now, for each pair , the product
durational graph obtained using a version of Algorithm
3 where line 2.2 is deleted. By construction, an execution of

models suffixes of two parallel executions of having
the same observation. The first one is a suffix starting from
of a faulty execution of , and the second one is a suffix starting
from of a non faulty execution of . This property is a direct
consequence of the classical product automaton construction,
and can be formalized by the following proposition.

Proposition 10: Given and :
1) Foreach andpairofexecutions

and with
, the index of the first faulty state of

, and , thereexistsanex-

ecution such that
, , ,

, and .

2) For each execution , there ex-
ists a pair of executions ,

with ,
the index of the first faulty state of , and

, ,

, and

.
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On the basis of Propositions 8, 9, and 10, it is now possible
to state necessary and sufficient conditions for -diagnosability
of the original system with -edges.

Theorem 1: Given , is -diagnosable if and only if

(5)

Proof: By contradiction, assume that the hypothesis
is true and that there exists and such
that . This implies that, by
Propositions 9 and 10, there exist with ,
and such that . By
Proposition 8, for all there exist and

, such that . Let ,
then , that is a
contradiction.

By contradiction, assume that the hypothesis is true
and that is not -diagnosable for a given . This
implies that there exist , and
such that . By Proposition 8, there exist

and , such
that . By Propositions 9 and 10 there exists

such that . Furthermore, there exists

such that ,
that is a contradiction.

As a first step of the diagnosability verification, we can check
if may be -diagnosable for a finite value of .

Proposition 11: Given , is -diagnosable for some finite
only if, for all , has the following properties:
1) no edges are associated to a guard set , ;
2) every edge belonging to a cycle is associated to a guard

set .
Proof: For each , an execution can have

an infinite duration only if either a discrete state
is visited forever (Condition 1 is not satisfied), or if there exists
a cycle of edges that can be crossed in a nonzero amount of time
(Condition 2 is not satisfied).

As discussed above, it is interesting to compute the minimum
value for which is -diagnosable. The verification pro-
cedure we propose in this paper does not only allow to verify
-diagnosability for a given but, much more important, also to

directly compute in polynomial time for a given durational
graph .

Theorem 2: Given such that is -diagnosable for some
, the minimum value such that is -diagnosable

is given by

(6)

and can be computed in polynomial time.
Proof: Condition (6) clearly holds by Theorem 1. Com-

puting the maximum duration among all executions for each
system is solvable as follows: let be the cardinality of
the discrete state space of . First construct the set of all
paths that contain no cycles: notice that it is bounded by .
For each path , compute the maximum duration by

. By Proposition 11, all cycles (if any)
have time duration 0. This implies that the maximum duration
among all executions that contain no cycles is also the maximum
duration among all executions in .

As a consequence of the proposed verification algorithm, we
obtain the following new result on verification of diagnosability
of durational graphs.

Theorem 3: The -diagnosability verification problem for the
class of durational graphs belongs to the complexity class .

VI. DIAGNOSABILITY VERIFICATION IN AN ELECTROMAGNETIC

VALVE SYSTEM FOR CAMLESS ENGINES

We apply in this section the proposed abstraction and diag-
nosability verification algorithms to a simple case study, given
by an Electromagnetic Valve System for Camless Engines. The
mathematical model is at the same time simple enough to apply
and test our results, but yet realistic and nontrivial. Camless
electromagnetic valves are devices recently considered to de-
couple the camshaft and the valve lift dynamics, namely to com-
mand the opening and closing phases of the intake and exhaust
valves. The main advantage of these devices is the possibility of
obtaining the optimal engine efficiency in all operating condi-
tions. One of the main open problems is the control of the impact
velocities between the valve and the constraints (typically the
valve seat), which should be sufficiently low in order to elimi-
nate acoustic noises and avoid damages of the mechanical com-
ponents. The problem is complicated by the short time (typically

ms) available at high engine speed to make a transition
between the two valve’s terminal positions, and the constraint in
terms of actuator cost and space limitations. These last aspects
imply that one typical request is the absence of the valve posi-
tion sensor. We consider a simplified model of the electromag-
netic valve, represented in Fig. 3 (see [18], [40], [41] and refer-
ences therein for details). We suppose here to supply only one
electromagnet to complete the opening or closing phase. The
correct behavior of the valve controlled system can be modeled
by the hybrid automaton shown in Fig. 4: corresponds
to the closing phase, to the valve completely close, to the
opening phase, and to the valve completely open. The con-
tinuous dynamics can be described by the following equations:

(7)

describing the motion of the valve and of the connected anchor,
where is the mass. The valve position ranges from
(open valve) to (closed valve). Moreover, an elastic force

, due to some springs and a torsion bar, and a viscous
friction act on the valve steam. Finally, is a disturbance
whose main contribution is due to the force of the exhaust gases
exiting the cylinder, and is the constrain force due to the
valve seat and electromagnet surfaces, and is always zero except
when , when .
The anchor is attracted by the supplied electromagnet to close
and to open the valve by means of the electromagnetic force

(8)
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Fig. 3. Scheme of an electromagnetic valve system.

where , , are some constants, and is the flux of the
supplied electromagnet . The dynamics of is here
neglected for simplicity, since it is much faster than the mechan-
ical ones. Thus, the squared flux can be considered as the con-
trol input of the system, i.e., . The signs of the constants
are such that for the discrete states , , namely
when the valve is closing and the electromagnet 1 is supplied,
while for the discrete states , , namely when
the valve is opening and the electromagnet 2 is supplied. The
discrete dynamics depend on the system state and the
control input , according to the guard sets (defined on arrows
in Fig. 4) and invariant sets (associated to the discrete states in
Fig. 4). The reset functions are all identities. We assume without
loss of generality that the initial hybrid state is , but
our results can be easily extended to more complex sets of initial
states. The output of the system is a discrete symbol associated
to the edges, i.e., or when the anchor hits respectively
electromagnet 1 or electromagnet 2. It follows from [18] that
the PD-like control

, ensures the correct behavior of the valve. Here
, 1, 2, , are the reference values

for appropriately operating the valve.
Setting , when and using

the control above the error dynamics are given by ,
where

(9)

We want to address here the diagnosability problem due to large
parameter variations, which occur in faults of the device we are
considering. In fact, the system parameters , are subject to
abrupt changes due to possible malfunctions. Let , be their

Fig. 4. Hybrid model of the Electromagnetic Valve System � and abstraction
� .

nominal values and , the real ones.
The controller parameters must be chosen to satisfy the
following constraints for the nominal values and :

1) the tracking error goes asymptotically to zero;
2) the norm of the control input is bounded by ;
3) the seating velocity, i.e., the velocity of the valve when ap-

proaching the mechanical constraints, is less than or equal
to an appropriate value .

From the first assumption we obtain , .
Setting and the maximum velocity

error admissible, from the second we obtain

(10)

which can be translated as

(11)

, , , see Table I.
For the third assumption, note that the raising time for the error
dynamics is , where to obtain
a fast response, namely

(12)

Hence, the velocity error has to satisfy
, thus obtaining

(13)

A solution to (12) and (13) exists since . Con-
ditions (11), (12), and (13) for , define the set of
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TABLE I
ELECTROMAGNETIC VALVE SYSTEM PARAMETERS

TABLE II
SUMMARY OF NOTATIONS

controller parameters ensuring the correct behavior. A pair in
this set is for instance .

We assume that can vary in the interval , where
corresponds to (the springs are broken). Moreover,

we assume that can vary in the interval : in
other words, the viscous friction can increase up to of
the nominal value, and can decrease up to of the nominal
value. We define .

When change, the controller may not ensure the correct
valve behavior. In fact, the variations are allowed to
belong to a set , but when they exit this set a faulty
behavior occurs. In order to determine , let us set

in (10), (12), (13), with , :

with .
We assume that may abruptly belong to a faulty

value in . In that case, the corresponding dy-
namics of the controlled system switch to the faulty dynamics,
modeled in Fig. 4 by the hybrid automaton . The dynamics
of each discrete state of is the same as in , except for
the value of the parameters . The sudden change of the
system parameters to a faulty value may occur at any time in-
stant from discrete states , and is associated to an unob-
servable output. The overall model takes into account the
fault occurrence as illustrated in Fig. 4: we assume that the
system does not return to a correct behavior once it switches to
a faulty behavior. Although is an autonomous hybrid system,
it is slightly different from the model in Definition 1, since

can be viewed as continuous disturbances that non
deterministically assume values in or , and deter-
mine a correct or faulty behavior. However, since the guards
are 1-D and the dynamics linear, we can construct our dura-
tional graph abstraction by applying the Matlab algorithm we
developed in [36], including the system parameters in the state
space and considering and as sets of initial con-
ditions. Thus, erasing -edges by means of Algorithm 2, it is
possible to construct the durational graph shown in Fig. 4.
In order to determine the guards of , we compute the
minimum and maximum time for the anchor to touch electro-
magnet 1 starting from electromagnet 2 and vice versa, consid-
ering for the guards of the non-faulty states
and for the guards of the faulty states. The
invariant sets can be defined by
for each discrete state of . The construction of yields the
faulty set and the faulty function de-
fined as follows: , , ,

. It is easy to check that there exists a fi-
nite such that is -diagnosable only if the following logical
formula holds:

which is true if and only if . Using the Matlab
algorithm developed in [36] we compute ms
and ms, thus .
Namely, if the components of the valve system admit parame-
ters uncertainty within the set , then is not -diag-
nosable for any , and it is not possible to detect faults in finite
time. In other words, the diagnosability verification procedure
has given a negative answer. However, there may exist a subset

which is diagnosable. In this case, one can
re-design the control system (e.g., by replacing some mechan-
ical components of the valve) so that the parameter uncertainty
lies in . A control system designed like this is guaranteed
to be diagnosable.

For this reason, searching for a diagnosable subset of faulty
behaviors can be viewed as a support to the
design of the control system. In particular, the search for a diag-
nosable set (e.g., by a trial-and-error process), may yield
to the maximal faulty set (or an approximation of it) such that
the system is diagnosable.

For our valve system, we defined
, as illustrated in Fig. 5.

According to the faulty set , we compute
ms: thus, and is -diagnos-

able for some finite . Using Theorem 2, one obtains that the
minimum value such that the set is -diagnosable
is ms.

We can conclude that if the control system is designed so that
parameters uncertainty lies in the set , then faults cannot
be diagnosed in finite time. However, if the control system is
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Fig. 5. Faulty sets.

designed so that parameters uncertainty lies in the set ,
then faults can be diagnosed within 4.96 ms.

VII. CONCLUSION

We proposed a novel verification procedure for checking di-
agnosability for a hybrid automaton whose output is a timed
string taking values on a finite set. We proposed a definition
of -diagnosability that generalizes the notion of observability.
To verify this property, which is not easy to check and may be
even undecidable for a general hybrid model, we proposed an
abstraction procedure. The abstracting system belongs to a sub-
class of timed automata, which is called durational graph. We
also proposed a novel algorithm to construct a durational graph

, from a given hybrid automaton , and showed that it pre-
serves diagnosability. We proposed a novel algorithm to check
diagnosability on durational graphs and to directly compute the
minimum value for which a system is -diagnosable, and
proved that the verification problem belongs to the complexity
class P. Theoretical results were applied to an electromagnetic
valve system for camless engines.

Our current work is concerned with the extension of our diag-
nosability definition to hybrid (continuous and discrete) faulty
sets, in order to model more complex faults, and with the char-
acterization of the distance between trajectories of the original
hybrid system and trajectories of the durational graph abstrac-
tion, using the notion of approximate bisimulation.
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