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In this paper we develop novel results on self triggered control of nonlinear systems, subject to perturbations, and sens-
ing/computation/actuation delays. First, considering an unperturbed nonlinear system with bounded delays, we provide con-
ditions that guarantee the existence of a self triggered control strategy stabilizing the closed–loop system. Then, considering
parameter uncertainties, disturbances, and bounded delays, we provide conditions guaranteeing the existence of a self triggered
strategy, that keeps the state arbitrarily close to the equilibrium point. In both cases, we provide a methodology for the compu-
tation of the next execution time. We show on an example the relevant benefits obtained with this approach, in terms of energy
consumption, with respect to control algorithms based on a constant sampling, with a sensible reduction of the average sampling
time.
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1 Introduction

Wireless networked control systems are spatially distributed control systems where the communication
between sensors, actuators, and computational units is supported by a shared wireless communication
network [9]. The use of wireless networked control systems in industrial automation results in flexible ar-
chitectures and generally reduces installation, debugging, diagnostic and maintenance costs with respect
to wired networks. The main motivation for studying such systems is the emerging use of wireless tech-
nologies in control systems, see e.g. [1], [17] and references therein. Although wireless networks offer
many advantages, communication nodes generally consist of battery powered devices. For this reason,
when designing a control scheme closed on a wireless sensor network, it is fundamental to adopt power
aware control algorithms to reduce energy consumption. An example is notably given by the so–called
intelligent (or smart) tires, equipped with sensors embedded in the tread, giving information on pressure,
road–tire friction, etc. [16], [13], [4]. The sensors are only supplied with the energy provided by the tire
motion, and it is fundamental to trigger wireless transmission only when necessary, to prevent energy
shortage and, possibly, to reduce the probability of information packet losses during the transmission.

With the aim of addressing the above issues in the controller design phase, self triggered control strate-
gies have been introduced in [20], where a heuristic rule is provided to self–trigger the next execution
time of a control task on the basis of the last measurement of the state. In [11], [12], a robust self trig-
gered strategy is proposed, which guarantees that the L2 gain of a linear time invariant system is kept
under a given threshold. In [14] a self triggered strategy distributed over a wireless sensor network is
proposed for linear time invariant systems.

In [18] sufficient conditions for the existence of a stabilizing event–triggered control strategy are
given for nonlinear systems. In [3] the authors propose a self–triggered emulation of the event–triggered
control strategy proposed in [18]. In particular a methodology for the computation of the next execution
time as a function of the last sample is presented, under a homogeneity condition. We extend the previous
results in two directions. These results are extended in [22] to smooth unperturbed nonlinear systems.
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In this paper we consider nonlinear systems perturbed by norm–bounded parameter uncertainties and
disturbances, and affected by bounded delays. Under weaker conditions than those used in [18] we prove
the existence of a self triggered strategy keeping the state in a safe set arbitrarily close to the equilibrium
point, and provide a methodology for computing the next execution time. Given a δ boundary of the
equilibrium point, a sensing/computation/actuation delay bounded by a positive real ∆max and a distur-
bance upper bounded in norm by a class K function ν(δ ), we provide a self-triggering rule to compute
the next execution time as a function of δ and of the bounds ∆max,ν(δ ) on delays and disturbances. This
is the main contribution of the paper: indeed, to the best of the authors’ knowledge, this is the first work
that provides results on self–triggered control for nonlinear systems with uncertainties, disturbances and
delays. Our technique is based on polynomial approximations of Lyapunov functions, and therefore dif-
fers from the one recently developed in [22]. As a consequence an additional contribution of this paper is
providing a novel technique for the computation of the next execution time, which represents an alterna-
tive to [22] for guaranteeing asymptotic stability of unperturbed non-linear systems affected by bounded
sensing/computation/actuation delays.

The paper is organized as follows. In Section 2, we illustrate the mathematical setting and the prob-
lem formulation. In Section 3 we derive results for the asymptotic stability of unperturbed systems. In
Section 4 we consider the safety problem of perturbed systems and provide the main results of the pa-
per. In Section 5, on a significant example, we show that the results obtained introduce strong benefits
in terms of energy consumption, with respect to digital controls based on a constant sampling time, by
reducing the average sampling time. A preliminary version of the results provided in this paper can be
found in [6].

2 Problem Formulation

Consider a generic nonlinear system

ẋ = f (x,u,µ,d) (1)

where x∈Dx ⊂Rn, Dx a domain containing the origin, u∈Du ⊂Rp, µ is a parameter uncertainty vector
varying in a compact set Dµ ⊂Rr, with 0∈Dµ , d is an external bounded disturbance vector taking values
in a compact set Dd ⊂ Rs, with 0 ∈ Dd . In the following, we may refer to (1) as the perturbed system.
Furthermore, we define the nominal (or “unperturbed”) system associated to the “perturbed” system (1)
as

ẋ = f0(x,u)
.
= f (x,u,0,0). (2)

Given a state feedback control law κ : Dx→Du, the closed loop perturbed system is

ẋ = f (x,κ(x),µ,d) (3)

and the closed loop nominal system is

ẋ = f0(x,κ(x)). (4)

We will denote by x(t), t ≥ t0, the solution of the closed loop system (3) (or (4), according to the context),
with initial condition x0 = x(t0). Given a state feedback control law κ it is well–known that, if κ locally
stabilizes the origin of system (4) and if f0(x,κ(x))∈C`(Dx), ` > 1 integer, then there exists a Lyapunov
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function V (x) of class C1(Dx) such that

α1(‖x‖)≤V (x)≤ α2(‖x‖)

∂V (x)
∂x

f0(x,κ(x))≤−α3(‖x‖)∥∥∥∥∂V (x)
∂x

∥∥∥∥≤ α4(‖x‖)

(5)

with α1,α2,α3,α4 ∈K [8], [10], [21].
Moreover, given a state feedback control law κ , we say that system (3) is safe with respect to the set

S ⊆Dx for the time interval T ⊆ R+
0 , if x(t) ∈S , ∀t ∈T .

The feedback control signal u(t) = κ(x(t)) requires continuous measurements of the state of the sys-
tem. We assume that state measurements are available at sampling times tk, which define a sequence
I = {tk}k≥0, and that the applied control is

uI (t) =

{
0 ∀t ∈ [t0, t0 +∆0)

κ(xk) ∀t ∈ [tk +∆k, tk+1 +∆k+1), k ≥ 0
(6)

where {∆k}k≥0 is a sequence of delays, due to the transmission time from the sensor to the controller,
the computation time, and the transmission time from the controller to the actuator. On the basis of this
assumption, we address the following problems.

Problem 2.1 Given a system (2), and a state feedback control law κ such that the origin of (4) is
asymptotically stable with region of attraction Ω ⊂ Dx containing the origin, determine a function
τs : Dx → [τmin,∞),τmin > 0 and a maximum allowed delay ∆max ∈ [0,τmin] such that if the sequence
of sampling instants I is inductively defined by

tk+1 = tk + τs(xk) (7)

and if the delays are such that

∆k ∈ [0,∆max), ∀ k ≥ 0, (8)

then the origin of the closed loop system (4) with control input signal uI (t) as in (6) is asymptotically
stable with region of attraction Ω . �

Problem 2.2 Given a system (1) (resp. (2)), and a state feedback control law κ such that the origin
of (3) (resp. (4)) is asymptotically stable with region of attraction Ω ⊂Dx containing the origin, and an
arbitrary safe set Bδ = {x ∈Rn | ‖x‖< δ} ⊂Ω , δ > 0, determine τs and ∆max as defined in Problem 2.1
such that if I is inductively defined by (7) and if ∆k satisfies (8), then the closed loop system (3) with
control input signal uI (t) as in (6) is safe with respect to Bδ for the time interval [t0,∞). �

In Problems 2.1 and 2.2, the function τs is used to determine the next sampling instant as a function
of the current measurement of the system. The purpose is to obtain a self triggered control system that
is robust with respect to delays bounded by a design parameter ∆max. By choosing the next sampling
instant tk+1 as a function of the current measurement at time tk, we perform sampling only when needed
for guaranteeing asymptotic stability or safety. The aim is to determine a sampling instant sequence I
such that the intersampling time tk+1− tk is as large as possible, in order to reduce transmission power
of the sensing and actuation data transmissions, and to reduce the CPU effort due to the computation of
the control.

As a comparison of the above definitions with the concepts of Maximally Allowable Transmission
Interval (MATI) and Maximally Allowable Delay (MAD) introduced in [7], we can interpret ∆max as the
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MAD, and tk+1− tk = τs(xk)− tk as the local MATI of the system in the time interval [tk, tk+1] on the
basis of the measurement xk = x(tk) of the state x(t) at t = tk.

3 Self Triggered Stabilizing Control

The results developed in this section address Problem 2.1 for system (2), and are based on the following
assumptions to compute the next sampling time as a function τs of the current state of the system.

Assumption 3.1 Assume that

1. f0 ∈C`(Dx×Du), with ` a positive integer sufficiently large;
2. There exists a nonempty set U of state feedback laws κ : Dx→ Du, such that κ ∈C`(Dx) and

the origin of (4) is asymptotically stable, with region of attraction a certain compact Ω ⊂ Dx
containing the origin;

3. The functions α3,α4 ∈K in (5) are such that α
−1
3 ,α4 are Lipschitz. �

The assumption of existence of a stabilizing control (i.e. non–emptiness of the set U ) is not restrictive,
since if the nominal system cannot be stabilized using continuous time measurement and actuation, then
it is clear that the nominal system cannot be stabilized using a digital control with zero–order holders.
The main limitation of Assumption 3.1 is the Lipschitz condition on α

−1
3 (·) and α4(·). We will show

how to weaken this assumption in Section 4, which will be devoted to safety control.

Theorem 3.2 : Under Assumption 3.1, Problem 2.1 is solvable for system (2), and the function τs can
be iteratively computed as a function of the current state of the system and the maximum allowable delay
∆max. �

Proof: We first prove the result for ∆k = 0. Since U is not empty, by Assumption 3.1, we pick a state
feedback control law κ ∈U . Since f0(x,κ(x)) ∈C`(Dx) with ` > 1, there exists a Lyapunov candidate
V (x) that satisfies (5). Choose r > 0 such that the ball Br = {x ∈Ω : ‖x‖ ≤ r} ⊂Ω . For xk ∈ Br,

V̇ =
∂V
∂x

f0(x,κ(xk)) =
∂V
∂x

f0(x,κ(x))+
∂V
∂x

(
f0(x,κ(xk))− f0(x,κ(x))

)
≤−α3(‖x‖)+α4(‖x‖)‖dh‖

(9)

where

dh = f0(x(t),κ(xk))− f0(x(t),κ(x(t)))

can be considered as a perturbation due to the holding.
Under Assumption 3.1, there exists a ζk > 0 such that ẋ = f (x,κ(xk)) has a unique solution over

[tk, tk +ζk]. Hence, we can expand the components dh,i of dh in Taylor series. Consider the ith component
dh,i, i = 1, · · · ,n, of the n–dimensional vector dh. One can expand each component in Taylor series with
respect to t ∈ [tk, tk + ζk], on the right of tk, up to the 2nd term, with Lagrange remainder of the 3rd

term [19]. According to Taylor theorem with Lagrange remainder, there exists t̄i ∈ [tk, t], with x̄i = x(t̄i),
i = 1, · · · ,n, such that

dh,i = ϕ1,i(xk)(t− tk)+ϕ2,i(x̄i,xk)(t− tk)2, (10)

with

ϕ1,i(xk) =
d+dh,i

dt

∣∣∣∣
x(t)=xk

, ϕ2,i(x̄i,xk) =
1
2
d2
+dh,i

dt2

∣∣∣∣
x(t)=x̄i
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and where dn
+(·)
dtn denotes the n–th right derivative. Hence,

‖dh‖ ≤ ‖ϕ1(xk)‖(t− tk)+‖ϕ2(x̄,xk)‖(t− tk)2

where x̄ .
= (x̄1, · · · , x̄n) and

ϕ1(xk)
.
=
(

ϕ1,1(xk), · · · ,ϕ1,n(xk)
)T

ϕ2(x̄,xk)
.
=
(

ϕ2,1(x̄1,xk), · · · ,ϕ2,n(x̄n,xk)
)T

.

Consider the set ΩV (xk)
.
= {x ∈Ω : V (x)≤V (xk)}, and define

M1(xk)
.
= ‖ϕ1(xk)‖, M2(xk)

.
= max

x̄∈ΩV (xk)
‖ϕ2(x̄,xk)‖.

Since f ,κ ∈C` and ΩV (xk) is compact, then M1(xk) is finite for any xk ∈ΩV (xk), and M2(xk) ∈R+ exists
and is finite for any xk ∈ΩV (xk).

Note that there exists a time interval [tk, tk+1] such that tk+1 < tk +ζk and

α4(‖x‖)‖dh‖ ≤ ϑα3(‖x‖) (11)

is satisfied for a fixed ϑ ∈ (0,1). In fact, (11) is satisfied if

α
−1
3

(
1
ϑ

α4(‖x‖)
(
M1(xk)(t− tk)+M2(xk)(t− tk)2))≤ ‖x‖.

Since α
−1
3 and α4 are Lipschitz, then equation (11) is satisfied if

1
ϑ

L
α
−1
3

Lα4‖x‖
(

M1(xk)(t− tk)+M2(xk)(t− tk)2
)
≤ ‖x‖

where L
α
−1
3
,Lα4 > 0 are the Lipschitz constants of α

−1
3 , α4, respectively. The above equation directly

implies that (11) is satisfied if

M1(xk)(t− tk)+M2(xk)(t− tk)2 ≤ ϑ

L
α
−1
3

Lα4

. (12)

Hence, if we define

τs(xk)
.
= max

{
t− tk : (12) is satisfied for each t− tk ∈ [0,τs(xk)]

}
τmin

.
= min

xk∈ΩV (xk)
τs(xk)

and we choose tk+1 = tk +τs(xk), then V̇ (t)≤−(1−ϑ)α3(‖x‖)< 0 for all t ∈ [tk, tk+1] and for all k≥ 0.
This implies that the origin is asymptotically stable. Equation (12) is a second degree inequality in the
form ay2 + by ≤ c, where a,b are non–negative and upper bounded for each xk ∈ Dx, and c is strictly
positive and upper bounded. This trivially implies that τs(xk) is strictly positive for each xk ∈ΩV (xk), and
thus τmin is strictly positive as well. In this way, τs(·) remains defined iteratively for each k ≥ 0. This
completes the proof for ∆k = 0.
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For the case of ∆k > 0, following the same reasoning

V̇ (t) =
∂V
∂x

f0(x(t),κ(xk)) =
∂V
∂x

f0(x,κ(x))+
∂V
∂x

(dh +d∆k)

≤−α3(‖x‖)+α4(‖x‖)‖dh‖+α4(‖x‖)‖d∆k‖

for t ≥ tk +∆k where

dh = f0(x(t),κ(x(tk +∆k)))− f0(x,κ(x))

d∆k = f0(x(t),κ(xk))− f0(x(t),κ(x(tk +∆k)))

can be considered as perturbations due to the holding and to the sensing/computation/actuation delay.
Since also the solution x(t) is Lipschitz, as well as f0 and κ , then

‖d∆k‖ ≤M3∆k, M3 = L f0LκLx

where L f0 , Lκ , Lx are the Lipschitz constants of f0, κ , x. Proceeding for dh as in the previous case, we
conclude that (11) is satisfied if

M1(xk)(t− tk)+M2(xk)(t− tk)2 +M3∆k ≤
ϑ

L
α
−1
3

Lα4

. (13)

Setting ϑ = ϑ1 +ϑ2, with ϑ1,ϑ2 ∈ (0,1), equation (13) implies that the stability condition (11) holds if

M1(xk)(t− tk)+M2(xk)(t− tk)2 ≤ ϑ1

L
α
−1
3

Lα4

, (14)

and

∆k ≤ ∆max
.
=

ϑ2

M3L
α
−1
3

Lα4

. (15)

Defining

τs(xk)
.
= max

{
t− tk : (14) is satisfied for each t− tk ∈ [0,τs(xk)]

}
−∆max

τmin
.
= min

xk∈ΩV (xk)
τs(xk)

and if we choose tk+1 = tk + τs(xk), then V̇ (t) ≤ −(1−ϑ)α3(‖x‖) < 0 for all t ∈ [tk +∆k, tk+1 +∆max]
and for all k > 0. This ensures the asymptotic stability of the origin. ∆max is non-negative, and for ϑ2
sufficiently small tk+1− tk = τs(xk) > ∆max ≥ 0 for each xk ∈ ΩV (xk). Therefore, τmin is strictly positive
as well. This completes the proof. �

Remark 1 : It is worth noting that τmin > 0, as shown in the proof, implies that the time interval between
two sampling instants is lower bounded by the minimum sampling time τmin > 0. As a consequence, the
self-triggering rule is implementable and undesired Zeno behaviors are avoided. �

It should not only be said that the Zeno phenomenon is avoided but simply that the inter-execution
times is strictly positive which is what we (also) want to know before implementing the triggering rule

Remark 2 : The choice of ϑ1 ∈ (0,1) corresponds to a simple tradeoff between larger intersampling
times τs(xk) and robustness with respect to larger delays ∆max. As ϑ1 decreases, τs(xk) decreases and
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∆max increases. This implies that we improve robustness vs delays, paid by stronger sampling require-
ments. �

Remark 3 : When applying the self triggered rule defined in the above theorem in a real scenario,
it is necessary to compute on–line the next sampling time for each time instant tk. This computation
corresponds to solving a second degree equality, which is reasonable in an embedded system. On the
contrary, the functions M1(·) and M2(·) can be determined off–line, and then (numerically) computed
on–line in xk. However, M2(·) might be still difficult to determined in closed form. In this case, one can
define

M2
.
= max

x̄,xk∈Ω

‖ϕ2(x̄,xk)‖

and use it in equation (12) to compute the next sampling time. This new definition clearly implies shorter
sampling times. �

The above remarks also apply to Theorems 4.3 and 4.5 in the following Sections.

4 Self Triggered Safety Control

The main limitation of the results developed in Section 3 is the Lipschitz continuity assumption of
α
−1
3 (·) and α4(·). The following example shows that even exponentially stabilizable systems do not

always satisfy this assumption.

Example 4.1 Consider the system ẋ = Ax+Bu+ f (x,u) = f0(x,u) with

f0(x,u) =
(
−x1 + x2 + x2

1
(1+ x1)u

)
.

Let u = κ(x) = −x2 ∈ U . Consider the Lyapunov candidate V (x) = xT Px, with P solution of the Lya-

punov equation PAc + AT
c P = −Q, with Q = 2I, I the identity matrix, and Ac =

(
−1 1

0 −1

)
. Since

P =

(
2 1
1 3

)
, then λ P

min
∼= 1.382 and λ P

max
∼= 3.618 denote respectively the minimum and the maximum

eigenvalue of P. For ‖x‖ ≤ 2/3, the time derivative of V satisfies

V̇ =−‖x‖2
Q +2|x1|3 +3|x1|x2

2 ≤−2x2
1−2x2

2 +2(2/3)x2
1 +3(2/3)x2

2 ≤−
1
2
‖x‖2

thus the origin is locally exponentially stable, with α1(‖x‖) = λ P
min‖x‖2, α2(‖x‖) = λ P

max‖x‖2, α3(‖x‖) =
‖x‖2/2, α4(‖x‖) = λ P

max‖x‖.
It is clear that, for the chosen Lyapunov candidate, Assumption 3.1 is not satisfied since α

−1
3 (·) is

not Lipschitz. For this reason, on the basis of the previous results, one can not ensure the existence of a
stabilizing self triggered strategy. �

The main technical problem is that, if α
−1
3 (·) is not Lipschitz, the next sampling time τs(xk) goes

to zero as xk approaches the equilibrium point, and this might generate Zeno behaviors. The results
developed in this section address Problem 2.2, both for the nominal system (2) and the generic system (1),
and are based on the following assumption, that does not require α

−1
3 (·) to be Lipschitz.

Assumption 4.2 Assume that f0 ∈C`(Dx×Du), with ` a positive integer sufficiently large. Assume that
there exists a nonempty set U of state feedback laws κ : Dx→Du, such that κ ∈C`(Dx) and the origin
of the system (4) is asymptotically stable, with region of attraction a certain compact Ω ⊂Dx containing
the origin. �
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For system (2) (unperturbed case) we determine a function τs to compute the next sampling time as a
function of the current state of the system and the maximum allowable delay ∆max, such that the closed
loop system applying a self triggered strategy is safe. On the basis of Assumption 4.2, in Theorem 4.3
we provide a different computation of τs providing less conservative (less frequent) sampling instants.

For system (1) (perturbed case), given a δ boundary of the equilibrium point and a disturbance that
is upper bounded in norm by a class K function ν(δ ), we determine a function τs to compute the next
sampling time as a function of the current state of the system and the maximum allowable delay ∆max,
such that the closed loop system applying a self triggered strategy is safe with respect to δ . We remark
that, according to well known results in [8], a locally stable system subject to a bounded disturbance
always satisfies a safety property with respect to δ sufficiently small. Nevertheless neither the computa-
tion of the function τs nor the relation among the safe boundary δ and the disturbance upper bound ν(δ )
are straightforward from the results in [8].

4.1 Unperturbed Systems

The following theorem states that, if a system (2) is asymptotically stabilizable using a continuous time
state feedback control law, then it is always possible to keep the state arbitrarily close to the equilib-
rium point by applying a digital self triggered strategy. Note that, in order to guarantee that the state is
arbitrarily close to the equilibrium point, we need the stabilizability assumption.

Theorem 4.3 : Under Assumption 4.2, Problem 2.2 is solvable for system (2), and the function τs can
be iteratively computed as a function of the current state of the system and the maximum allowable delay
∆max. �

Proof: Using the same reasoning of Theorem 3.2 proof, and directly considering the case ∆k > 0, we
conclude that the following inequality

V̇ ≤−(1−ϑ)α3(‖x‖)+α4(‖x‖)(‖dh‖+‖d∆‖)−ϑα3(‖x‖) ≤−(1−ϑ)α3(‖x‖)

holds when

α4(‖x‖)
(
M1(xk)(t− tk)+M2(xk)(t− tk)2+M3∆k

)
≤ϑα3(‖x‖)

with ϑ ∈ (0,1), and dh, d∆ , M1(xk), M2(xk), M3 defined as in Theorem 3.2. The above inequality holds
if

‖x‖ ≥ η
.
= α

−1
3

(
α4(δ )

ϑ

(
M1(xk)(t− tk)+M2(xk)(t− tk)2 +M3∆k

))
.

This implies, by [8], that there exists b := α
−1
1 (α2(η))> 0 such that ‖x(τ)‖ ≤ b, ∀τ ∈ [tk, t] if xk ∈Bb

and the following holds

α4(δ )
(

M1(xk)(t− tk)+M2(xk)(t− tk)2 +M3∆k

)
≤ ϑα3

(
α
−1
2
(
α1(δ )

))
(16)

where we imposed the constraint b = δ . Equation (16) holds if the following inequalities hold

α4(δ )
(

M1(xk)(t− tk)+M2(xk)(t− tk)2
)
≤ ϑ1α3

(
α
−1
2
(
α1(δ )

))
α4(δ )M3∆k ≤ ϑ2α3

(
α
−1
2
(
α1(δ )

)) (17)
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where we have set ϑ = ϑ1 +ϑ2, with ϑ1,ϑ2 ∈ (0,1) and ϑ1 +ϑ2 < 1. Defining

∆max
.
= ϑ2

α3

(
α
−1
2 (α1(δ ))

)
α4(δ )M3

τs(xk)
.
= max{t− tk : (17) is satisfied for each t− tk ∈ [0,τs(xk)]}−∆max

τmin
.
= min

xk∈Bδ

τs(xk)

and if we choose tk+1 = tk + τs(xk), then (17) holds for all t ∈ [tk +∆k, tk+1 +∆max] and for all k ≥ 0,
with ∆max non-negative. Since M1(xk), M2(xk) and M3 are non–negative and upper bounded for each
xk ∈Bδ , and since α4, α3 ◦α

−1
2 ◦α1 ∈K , then the first of (17) is a second degree inequality in the

form ay2 +by− c≤ 0, where a,b are non–negative and bounded and c is strictly positive and bounded.
Therefore, for ϑ2 sufficiently small, tk+1− tk = τs(xk) > ∆max ≥ 0 for each xk ∈Bδ , and thus τmin is
strictly positive as well. This completes the proof. �

4.2 Perturbed Systems

A generic system (1), subject to disturbances and parameter variations, can be seen as the nominal
system (2), perturbed by the term

dg
.
= g(x,u,µ,d) = f (x,u,µ,d)− f0(x,u)

.
= dg. (18)

Hence, (1) can be rewritten as follows

ẋ = f0(x,u)+g(x,u,µ,d). (19)

Definition 4.4 : Under Assumption 4.2, and given the perturbed system (1) and a safe set Bδ , δ > 0,
we say that the perturbation (18) is δ–admissible if there exists a state feedback control law κ ∈U and
a constant ϑg ∈ (0,1) such that the function g(x,κ(x0),µ,d) satisfies

max
x,xk∈Bδ

d∈Dd
µ∈Dµ

‖g(x,κ(xk),µ,d)‖≤ν(δ )
.
=ϑg

α3

(
α
−1
2

(
α1(δ )

))
α4(δ )

(20)

with α1,α2,α3,α4 as in (5). �

The δ–admissible perturbations are those for which the safety problem with respect to a ball Bδ can be
solved using continuous time measurement and actuation, namely it is a necessary condition to achieve
safety with respect to Bδ using sampled measurements and actuations. Note that in condition (4.4) the
expression of ν(δ ) can be explicitly computed.

The following theorem states that, if a system is asymptotically stabilizable using a continuous time
state feedback control law and the perturbation is δ–admissible, then it is possible to keep the state in a
boundary Bδ of the equilibrium point by applying a digital self triggered strategy.

Theorem 4.5 : Under Assumption 4.2, Problem 2.2 is solvable for system (1) for any δ–admissible
perturbation (18), and the function τs can be iteratively computed as a function of the current state of
the system and the maximum allowable delay ∆max. �

Proof: Using the same reasoning as in the proof of Theorem 4.3, and since the perturbation is assumed



November 12, 2012 15:40 International Journal of Control selfTrigCntrIJC˙12.11.12

10 Taylor & Francis and I.T. Consultant

δ–admissible, we conclude that the following inequality

V̇ ≤−(1−ϑ)α3(‖x‖)−ϑα3(‖x‖)+α4(‖x‖)(‖dh‖+‖d∆‖+‖dg‖)

≤−(1−ϑ)α3(‖x‖)

with dg defined in (18), and dh, d∆ defined as in Theorem 3.2, holds when

α4(δ )
(

M1(xk)(t− tk)+M2(xk)(t− tk)2
)
≤ ϑ1α3

(
α
−1
2
(
α1(δ )

))
α4(δ )M3∆k ≤ ϑ2α3

(
α
−1
2
(
α1(δ )

)) (21)

where ϑ = ϑ1 +ϑ2 +ϑg, with ϑ1,ϑ2,ϑg ∈ (0,1), and ϑ1 +ϑ2 < 1−ϑg, and M1(xk), M2(xk), M3 are as
in Theorem 3.2. Defining

∆max
.
= ϑ2

α3

(
α
−1
2

(
α1(δ )

))
α4(δ )M3

τs(xk)
.
= max

{
t− tk : (21) is satisfied for each t− tk ∈ [0,τs(xk)]

}
−∆max

τmin
.
= min

xk∈Bδ

τs(xk)

and if we choose tk+1 = tk + τs(xk), then (21) holds for all t ∈ [tk +∆k, tk+1 +∆max] and for all k ≥ 0,
with ∆max non-negative. Arguing as in the proof of Theorem 4.3, for ϑ2 sufficiently small, tk+1− tk =
τs(xk)> ∆max ≥ 0 for each xk ∈Bδ , and thus τmin is strictly positive as well. This completes the proof.�

As discussed in Section 3, the choice of ϑ1, ϑ2 and ϑg corresponds to a simple tradeoff between larger
intersampling times (ϑ1), and robustness with respect to larger delays (ϑ2) and perturbations (ϑg).

Remark 4 : Theorems 4.3 and 4.5 prove the existence of a self triggered strategy characterized by the
time sequence I = {tk}k≥0, with tk ≥ τmin > 0 for each k≥ 0, such that the closed loop system satisfies
a given safety specification. Moreover, they provide a formula to explicitly compute the next sampling
time tk+1 as a function of the state xk at time tk.

Although the simulation results, illustrated in Section 5, show strong benefits of the proposed self
triggered strategy with respect to controllers based on constant sampling, the sequence I might be
conservative, in the sense that longer sampling times might be determined, because of the approximations
used in the proof. A trivial way to obtain a less conservative sequence I without introducing more
restricting assumptions is the use of Taylor expansions of order higher than 2.

5 An Example of Application of the Digital Self Triggered Robust Control

Consider the system defined in Example 4.1. As already shown, we can not imply the existence of
a stabilizing self triggered strategy. However, since Assumption 4.2 holds, Theorem 4.3 implies the
existence of a self triggered strategy that guarantees safety for an arbitrary small neighborhood of the
equilibrium point. In particular, since the origin of the system is locally exponentially stabilizable for
‖x‖ ≤ 2/3, we define the safe set Bδ with δ = 10−4 < 2/3. We performed simulations using Matlab,
with initial condition x0 = (10−5,10−5)T ∈Bδ .

When a discrete time control law with constant sampling time greater than 2.1 s is used, the closed
loop system is unstable.

In Figure 1, the closed loop behavior is illustrated when the proposed self triggered control algorithm
is used, with ϑ1 = 0.99 and ϑ2 = 0.009. The closed loop system is not asymptotically stable, but is safe
with respect to Bδ for the time interval [t0,∞). It is interesting to remark that the average sampling time
is 6.2 s, i.e. more than 295% longer than the constant sampling time of 2.1 s (which yields an unstable
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Figure 1. Self triggered control with ϑ1 = 0.99 and ϑ2 = 0.009: (a) x1; (b) x2 vs time
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Figure 2. Sequence of sampling instants I = {tk}k≥0 [s] with ϑ1 = 0.99 and ϑ2 = 0.009

control loop). Thus, using the proposed self triggered control algorithm, we achieve safety reducing
of more than 295% the battery energy consumption, with respect to an unstable control strategy with
constant sampling. However, since we have chosen ϑ2 = 0.009, we can only guarantee robustness with
respect to delays bounded by ∆max = 0.17 ms.

In Figure 3, the closed loop behavior is illustrated when the proposed self triggered control algorithm
law is used, with ϑ1 = 0.5 and ϑ2 = 0.499. The closed loop system is not asymptotically stable, but is
still safe with respect to Bδ for the time interval [t0,∞). However, since we have chosen ϑ1 = 0.5 in
order to be robust with respect to delays, the average sampling time 3 s is more conservative with respect
to the case ϑ1 = 0.99. Nevertheless, the average sampling time is almost 50% longer than the constant
sampling time of 2.1 s (which yields an unstable control loop). Since we have chosen ϑ2 = 0.009, we
can guarantee robustness with respect to delays bounded by ∆max = 9 ms. Thus, using the proposed self
triggered control algorithm, we achieve safety reducing of almost 50% the battery energy consumption,
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Figure 3. Self triggered control with ϑ1 = 0.5 and ϑ2 = 0.499: (a) x1; (b) x2 vs time
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Figure 4. Sequence of sampling instants I = {tk}k≥0 [s] with ϑ1 = 0.5 and ϑ2 = 0.499

with respect to an unstable control strategy with constant sampling, while guaranteeing robustness with
respect to delays bounded by ∆max = 9 ms.

6 Conclusions

We have developed novel results on self triggered control for guaranteeing safety of nonlinear systems
perturbed by norm–bounded parameter uncertainties and disturbances and affected by bounded delays.
Our self triggered algorithm can also be exploited as an alternative to existing techniques for guarantee-
ing asymptotic stability of unperturbed non-linear systems affected by bounded delays. We have showed
on a simple case study that the proposed results provide strong benefits in terms of energy consumption,
with respect to digital controls based on constant samplings, by reducing the average sampling times. As
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a next step of this research line, we aim to tackle more complex case studies, and obtain results for less
conservative sampling time sequences.
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