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Abstract— The magnetic behavior of Multiply Connected Superconductors (MCS) can be 

described analyzing the simplest loop structures containing Josephson junctions: conventional 

loops with all conventional Josephson junctions and π-loops with an odd subset of π-

junctions. These last are unconventional Josephson junctions in which the coupling has the 

reversed sign and appears in the ceramic materials as consequence of d-pairing. Among MCS 

the magnetic behavior of large β two-dimensional Josephson Junction Arrays (JJA) is based 

on the single loop behavior. Solving full mutual inductance Josephson junction square array 

equations with and without π-loops show that the mutual inductance coupling influence the 

distribution of π/conventional loops without altering substantially their single loop 

magnetization. The JJA mean magnetic behavior in low field can be recovered using a simple 

energy approach based on the single loop solutions avoiding the solution of the array full 

equations. Also we draw some consequences on the behavior of more complex MCS as high-

TC ceramics and their observed paramagnetic susceptibilities (Paramagnetic Meissner Effect).  

 

 



INTRODUCTION 

 A two-dimensional Josephson junction array (JJA) is a special realization of a two-dimensional multiply 

connected superconductor (MCS). Classical arrays are made of a mesh of N identical loops with a fixed 

number of Josephson junctions per loop [1-3] (see Fig.1). Many studies have modeled high-Tc 

superconducting ceramics by means of  low-Tc Josephson junction arrays founding their assumptions on the 

granular nature of such superconductors [4,5]. The magnetization properties between JJA and high-Tc 

ceramics could be related at least qualitatively [6]. Anyway the disordered nature of most high-Tc ceramics 

would make difficult a quantitative comparison of the magnetization properties. A more realistic MCS model 

of high-Tc ceramics would be not made of all identical loops or with loops with the same number of 

junctions.  

An example of qualitative relation is the Paramagnetic Meissner Effect (PME) that was found first in field 

cooled HTC ceramic materials [7], then in low-Tc samples [8] and finally in the JJA [9]. PME also raised a 

debate on the role of d-wave superconductivity in the paramagnetic high-Tc ceramics. The paramagnetic 

response was ascribed to the presence of unconventional junctions, i.e.,  π-junctions, due to the d-wave 

pairing [10]. In ref.s [11-12] we have shown by means of numerical simulations how there is no need of π-

junctions to obtain a paramagnetic response from a JJA: is the MCS nature of array that generates the 

paramagnetic response. On the other hand we have simulated array with π-junctions showing that there are at 

best only subtle differences between a conventional array and an array containing a mixture of conventional 

and π-junctions (see Fig.1) [13].  

These results however show that the magnetization of the array is strictly connected to the properties of 

single loop made of p Josephson junctions [11-13]. In this paper we will show how we can obtain 

magnetization properties of a JJA making some simple assumption on the energy behavior of single loop 



states in the mean field generated by other loops. We also briefly discuss the implications on the magnetic 

behavior of high-Tc materials that could explain some of the phenomena at the basis of their macroscopic 

mean magnetization.  

 

II. THE SINGLE LOOP SOLUTIONS 

 We assume that a single loop is made of p Josephson junction with equal critical current I0 and total self-

inductance L. Under such hypothesis the flux quantization rule and the total flux expression Φ=Φx+Li 

implies that static current states are solutions of the equation [14]:  

( )







−−−= nn fkn

p
βγπππγ 221sin                                                   (1) 

here β is the SQUID parameter equal to 2πLI0/Φ0 with Φ0 the flux quantum; γn=i/I0 is the normalized current; 

n is the quantum number [15]; f is the frustation equal to Φx/Φ0 with Φx the external flux; finally k is an 

integer which is 1 if the array contains an odd number of unconventional π-junction. In the following we 

assume that β is large. Numerically we set it to 30 as in ref.s [9,11]. This assumption will simplify the search 

for the solutions of Eq.(1) because implies that lowest energy (n=0,1) stable solutions can be written in the 

form: 

  γn = −An f + Bn                                                                       (2a) 

with 
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Solutions can be classified in diamagnetic or paramagnetic according to the sign of current: negative current 

implies Φ<Φx so the solution is diamagnetic, positive current implies Φ>Φx and the solution is paramagnetic. 

For conventional loops n=0 is a diamagnetic solution and n=1 is paramagnetic. Lowest energy states are 

always diamagnetic if k=0, i.e., there are no π-junctions, and f<1/2. As illustration of this we show in Fig.2a 

the two lowest energy solutions for the p=4 loop. For f<1/2 the diamagnetic solution have the lower current 

and so the lower energy. For f>1/2 the situation is reversed [11]. The addition of a π-junction to the four-

junction loop changes the solutions as shown in the same Fig.2a. Now at zero frustation there are two energy 

degenerate spontaneous current [16] solutions given by ±Bn/2. With f different from zero the paramagnetic 

solution n=0 is now the lowest energy solutions until f=1/2 which corresponds to the zero current solutions. 

For f>1/2 the solutions n=0, which is diamagnetic, is the lowest energy solution [13]. In Fig.2b and Fig.2c we 

report the analogous states for the three, six, twelve and twenty-four junction loops.  

 

III. A MEAN FIELD ANALYSIS OF SINGLE LOOP DISTRIBUTION  

 We study small values of frustation 0<f<1. In this region the behavior of an array with all normal (or all π-

junctions) roughly follows the single loop behavior permitting a better comparison with above single loop 

theory, which is periodic in f [9,11]. On general basis if we have N0 diamagnetic loops and N1 paramagnetic 

loops their total energy is: 



E = N0E0+N1E1+EI                                                                   (3)  

where E0 is the diamagnetic loop energy and E1 is the paramagnetic loop energy.  EI is the interaction energy 

between diamagnetic and paramagnetic loops.  For large values of β both energies En can be put in the 

following simple form [14]: 

En = (1/2)(β/π)(1+(β/4π)(1-Nnζ))γn
2                                                  (4) 

The diamagnetic-diamagnetic and paramagnetic-paramagnetic interaction can be included in E0 or E1. This is 

modeled by the symbol ζ, which is related to mean mutual induction between loops. We assume that 

interaction energy EI will be proportional to the product N0xN1 and to the product of magnetization of 

diamagnetic and paramagnetic loops: 

EI = −ζN0N1m0m1                                                                                                                        (5) 

again we use ζ as coupling coefficient. In the following we assume ζ as a free parameter. By convention we 

assume interaction energy with a minus sign in front of Eq. (5), anyway the sign of ζ will be determined 

below.  

 To find the occupation numbers Nn we minimize the total energy for a given value of frustation f, for the 

simple case of two species of loops, diamagnetic and paramagnetic, this is sufficient to find a solution by 

adding the total loops number conditions N=N0+N1. To understand what happen for different values of ζ we 

can look at the Fig.3, here the total energy was written in function of two variables f and x=N1/N, i.e., the 

fraction of paramagnetic loops. Contour plots in Fig.3a shown the energy on the unit square for ζ=0, i.e., not 

interacting loops. The absolute minimum corresponds always to x=0 (x=1 for f>1/2) because paramagnetic 

(diamagnetic) loop energy is larger and so any paramagnetic (diamagnetic) loop introduced in the system will 

increase the total energy, so the effective distribution is the trivial one with x=0 below f=1/2 and x=1 above 



f=1/2. We observe that positive ζ can only increase the interaction energy, so again the absolute minimum is 

always found at x=0 (x=1).  This result is the simple consequence that a single paramagnetic (diamagnetic) 

loop in a diamagnetic (paramagnetic) sea have an energy cost for the system. In Fig.3b we plot the ζ=−0.1 

case, in this case the interaction energy reduce the total energy and paramagnetic states minimize energy in 

the array. We see that a line of local minima will form roughly along the straight line x=f. As we shown 

below by comparison with numerical simulations of field cooling process in the array, this case fits very well 

with field cooling simulated results. The preference in the field cooled JJA for paramagnetic loops is due to 

presence of diamagnetic currents at boundary of the sample in the field cooled JJA [9,11]. This geometrical 

property implies a negative coupling for the simple non-geometrical energy approach described here. Direct 

analytical expression of the fraction x(f) can be found deriving the energy with respect to x and setting it to 

zero. This function have the simple linear form: x=f+(ξ/ζN)(f-1/2) where ξ=(1/2)(β/π)(1+(β/4π). For ζ=−0.1 

the second term is practically negligible1, thus implying that interaction energy is the dominant term. The 

above theory can be extended without effort to arbitrary uniform p junctions loop arrays as the coefficient An 

and Bn simply factor out and the only change is in the energy normalization.  

 In presence of a subset of π-junctions in the array the total energy will depends also from paramagnetic (or 

diamagnetic) π-junction fraction of total number of π-loops. Moreover there are four terms in the interaction 

energy: diamagnetic with paramagnetic, π−diamagnetic with π−paramagnetic and the mixed terms. There is 

no reason for using again a single parameter ζ for the coupling. Using a two parameters interaction energy we 

are able to find a minima by looking directly to the slices f=const.. We will show the result in sect. V. The 

energy analysis can be extended when we are in presence of a not uniform array with several species of loops, 

                                                 
1 Another term quadratic in f came from direct interaction with the external field, but for small f this correction is also negligible. 
This term can be important in the case of large f.  



i.e., loops with different p’s and possibly the presence of π-loops. The minimization will become 

multidimensional and the number of free parameters increases. We note however that this will be the case 

that better approach a real high-Tc material that is made by different species of loops. A discussion of this and 

others effects in high-Tc MCS will be continued in sect. V. 

  

IV. JJA FULL MUTUAL INDUCTANCE MODEL  

To compare exact results with the above simple theory we simulate a square array of NN ×  square loops 

each carrying four Josephson junctions. The equations describing the array in vector notation read as [11,12]: 
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here ϕr  represents a vector containing the phases of all the junctions in the array; βC= 2πCI0/G2Φ0 is the 

Stewart-McCumber parameter, with C the junction capacitance and G the quasi-particle conductance; K̂ is a 

matrix depending on array geometry and L̂ is the full mutual inductance matrix of the array, i.e., the matrix 

containing mutual inductances of any mesh of the array with all the other mesh. The vector mr  represents the 

mesh magnetization and its expression is: 
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where M
r

 is an integer matrix performing (oriented) sum of the phases of each loop; nr  is an integer vector 

carrying the quantum numbers and f
r

 is the normalized external flux containing the frustation f. Eq. (7) 

represents flux quantization with nr the quantum number. Here quantum numbers are also used to introduce 

noise in the system choosing them randomly distributed [11].  



Details of the integration procedure to simulate field cooling can be found in [12] where also the expression 

of mutual inductance matrix is given. To compare our results with that in literature here we choose βC =65 

[10,12]. We use N=400 as in ref. [12,13] so the array is a square of 20x20 loops. Similar JJA’s are treated in 

[11] with equivalent results in terms of diamagnetic/paramagnetic response. A simulated 2D-magnetization is 

reported in Fig.4, we see two magnetization states for a conventional arrays and four states for an 

unconventional one with a subset of π-loops (about 50%). In Fig.4b,d we report the magnetization histograms 

for the Fig.4a,c. The histograms are peaked at the values of single loop magnetizations with a small spread 

determined by the mutual inductance coupling. The above currents states can be easily related to the loop 

magnetization using mn=(1/2π)βγn.  

 

V. RESULTS AND DISCUSSION 

In Fig. 5a we report the fitting of the theory given in sect. III with the exact distribution evaluated by 

numerical simulations of Eq. (6) for the square array of Fig. 4a. The exact distribution appears to be linear 

implying a large contribution from interaction energy. The fitting parameter ζ is found to be –0.116 using a 

least square linear fit. In Fig. 5b we report the fitting of the theory for four junctions loops with the adding of 

a subset of π-loops (see Fig. 4b). The two-parameter fit is made by using again ζ for the diamagnetic with 

paramagnetic and π−diamagnetic with π−paramagnetic interaction, and another parameter ζm for the mixed 

loops interaction. The number of π-loops was set to N/2. The least square fit will give ζ=−0.0225, and 

ζm=−0.0045. These figures are lower with respect to conventional array implying that similar loops are now 

mixed with different species of loops. Compared with Fig. 5a the fitting in Fig. 5b is poor especially for the 

π-loops, also if the general behavior is well reproduced (also a slightly asymmetry around f=1/2 appears in the 



fit). In presence of π-loops standard deviations due to statistical quantum number realization are typically 

larger, 10% to 15%, due to the increased number of states with respect to conventional arrays where standard 

deviations are from 2% to 5% [12]. In conclusion mean field approach shows how interaction between loops 

is the dominant mechanism to explain the observed magnetization histograms for small magnetic field (f<1). 

An exact prediction of histograms is difficult for the mixed π/conventional array, but the qualitative behavior 

is easily recovered. 

Finally we discuss some implications for the high-Tc ceramics. The loop junction number p can be seen as 

one of factors that will play a role in the modeling of a high-Tc ceramics. It is reasonable that disordered high-

Tc ceramic materials can be described as made of random p junction loops both conventional and π. As 

shown above each loop (conventional or π) have different magnetization states making possible for the 

system have a lot of loop states in the magnetization histogram plot. Anyway for p not larger than 8-10 states 

are again relatively well separated (cf. Fig.2b). This it is evident especially for f=0 or f=0.5. In the first case 

spontaneous currents are present in the sample in zero field. The second case is the dual state: π-loops 

collapse to zero magnetization, whereas conventional loop play the part of symmetric “spontaneous currents”. 

A non-zero field experiment intended to evidence the second situation will be a natural counterpart of the 

first permitting a quantitative estimate of the number of π-loops in the sample [13].     

However loops in disordered materials have also in general different critical currents for the junctions 

making the loop and different loop area. We have shown that weak disorder in critical current do not alter the 

discrete nature of loop states until a spread of 20%. Moreover larger spread in currents imply a large spread in 

the magnetization states, but for f=0.5 a symmetric histogram is again found (see Ref. [13]). The second 

effect is more complex to analyze because it will imply that frustation is different for different loops in the 

array changing not only β, but also the frustation f experienced by the loop in the Eq.(6). This modifies also 



the periodicity in f of single loop solutions because now the period cannot be equal to one for all loops. For a 

large spread of areas (>20%) this further destroy the symmetry of the single loops solutions giving a larger 

interval of values of magnetization. This suggests that the off sample far field magnetic image of the array 

[17] would results in a single Gaussian histogram as observed by Braunisch et al. [7].  
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FIGURE CAPTIONS 

Fig.1. Two-dimensional square four junction per loop Josephson junction array with a random distribution of 

π-junctions. The gray loops represent the π-loops, i.e., loops with an odd number of π-junctions.  

Fig.2. Single loop magnetization states: (a) conventional loop full line p=4, π-loop dashed line p=3+1π; (b) 

other loops full lines conventional loops with p=3, p=6, p=12, p=24, dashed lines π-loops with p=3, p=6, 

p=12, p=24. The slope of the straight lines decreases for larger p according to Eq. (2b). 

Fig.3. Contour plots of the total magnetic energy on the plane (f,x) for n=4 loop: (a) ζ=0; (b) ζ=−0.1. 

Fig.4. Simulated 2D-magnetization via Eq. (6):  (a) magnetic image of a conventional 20x20 array with 

f=0.35; (b) magnetization histogram of a conventional 20x20 array with f=0.35; (c) magnetic image of a 

20x20 array with f=0.35 and 380 π-junctions; (d) magnetization histogram of a 20x20 array with f=0.35 and 

380 π-junctions;  

Fig.5. Concentration of paramagnetic loops in a 20x20 array: (a) conventional array p=4, k=0 circles, full line 

is the fit made using the model of sect. III with ζ=−0.116, dashed line represents the same model with 

ζ=−0.011; (b) mixed π/conventional array p=4 and k=0,1 with about 50% of π-loops, boxes represents the 

concentration of conventional paramagnetic loops, circles the concentration of paramagnetic π-loops, full 

lines is the fit made using the model of sect. III with ζ=−0.0225 and ζm=−0.0045. 



 



0.0 0.5 1.0
-0.2

-0.1

0.0

0.1

0.2

0.0 0.5 1.0

(a)
C

ur
re

nt
 γ

Frustation f

(b)

Frustation f
 

Fig.2 



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

Frustation f

Fr
ac

tio
n 

x

0
0.03750
0.07500
0.1125
0.1500
0.1875
0.2250
0.2625
0.3000
0.3375
0.3750
0.4125
0.4500
0.4875
0.5250
0.6000

 
Fig.3a 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 
 

Frustation f

Fr
ac

tio
n 

x

0
1.222
2.444
3.667
4.889
6.111
7.333
8.556
9.778
11.00
12.22
13.44
14.67
15.89
17.11
18.33
19.56
20.78
22.00

 
Fig.3b 

 



 
Fig.4a,b 



 
Fig.4c,d 



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

Fr
ac

tio
n 

x

Frustation f
 

Fig.5a 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Fr
ac

tio
n 

x

Frustation f
 

Fig.5b 


