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Abstract 

One-dimensional mixed π/conventional arrays of Josephson junctions admit paramagnetic solutions besides the 
standard diamagnetic ones. We analyze the arrays magnetization properties when they show paramagnetism 
varying the parameters controlling the self-field and the length of the array. We show that paramagnetic solutions 
are found in all cases independently on the effect of self-field and, moreover, for small length and negligible self-
field the paramagnetic solution is the lowest energy stable solution. These arrays can be used to model long Grain 
Boundaries (GB) in artificial or intrinsic high-Tc junctions made by unconventional d-wave superconductors.   © 
2003 Elsevier Science. All rights reserved 
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 Paramagnetism in high-Tc compounds was 
discovered in the first half of nineties [1]. Then many 
studies have been dedicated to understand its 
relationship with d-wave symmetry [2], its, soon 
discovered, low-Tc counterpart [3] and experiments 
on low-Tc Josephson junction arrays (JJA) [4,5]. 
Recent results [6,7] indicate that mesoscopic 
Josephson junctions in Grain Boundaries (GB) can 
show paramagnetic effects due to formation of π-
loops at the GB interfaces. A π-loop is formed when 
at least two junctions, one conventional and the other 
one a not conventional π-junction break a 
superconducting loop. π-junctions are consequence of 
d-wave pairing [8]. 
  A Josephson (multi)-junction loop may have 
several magnetization states when magnetic field is 
applied. These can be represented as a normalized 
current flowing in the loop γn,k. Here n is the quantum 
number in the flux quantization expression, k is an 
index, which is 1 if an odd number of π-junctions is 
present in the loop.  For a loop of p identical 
junctions the current γn,k is a solution of: 

( ) )1(221sin ,, 







−−−= knkn fkn

p
βγπππγ  

here β is the SQUID parameter 2πI0L/Φ0 of the loop,  
f=Φe/Φ0 is the frustation [9]. Varying the quantum 
number between n=0 and p-1 gives different 
independent solutions within a 2π phase change. A 
study of Eq.(1) for large β was made in [9]. Here we 
study the small β case, which is interesting when 
mesoscopic π-loops can occur between small 
junctions lining along a GB. Consider for example 
p=2, i.e., the simple π-SQUID. Currents are shown in 
Fig.1a for two values of β. For f=0 the Eq.(1) has two 
solutions corresponding to two spontaneous currents. 
For nonzero magnetic field 0<f<1/2 the positive 
solution is paramagnetic and negative is the 
diamagnetic. The current absolute value is lower for 
paramagnetism giving a lower energy for 
paramagnetism. Symbols in Fig.1a have been 
calculated using a direct numerical integration of π-
SQUID equations without solving Eq.(1) with a root 
finder (see Eq. (2) below). As is seen in the Fig.1a 
the diamagnetic solution is soon left for very small f 
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and the lower energy paramagnetic solution is setting 
on (the left lower corner of Fig.1a is shown in 
Fig.1b). The instability occurs when the energy of 
paramagnetic solution is just equal to minimal energy 
of diamagnetic solution. The system relaxes on the 
minimum energy branch. This is characteristic of 
multi-junction loops and does not occurs in single 
junction loop where there is a single state for β<1. 
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Fig.1 Normalized Loop Current γ as function of frustation f for a π-
loop with p=2, dashed curves show the case β=0.1 and full curves 
β=0.5. Lines represents the (approximate) solution of Eq.(1) within 
o(β3), crosses and circles the same solution evaluated by means of 
direct solution of Eq.(2). Crosses (circles) start on paramagnetic 
(diamagnetic) branch . The lower left corner of (a) is show in (b). 
  

To extend the above theory to arrays we will 
describe the GB as an 1d array of N+1 Josephson 
junctions placed along it. In the simplest extension of 
π-SQUID loop the array is divided into two pieces 
made respectively of a conventional junction and a π-
junction [10,11]. The magnetization can be found 
using the Discrete Sine-Gordon equation [7]: 

where ϕi is the phase of the i-th junction in the array, 
the index k(i) will be 0 for conventional junctions and 
1 for π-junctions, ∆ is the difference operator and σi 
is a Gaussian variable with mean 1. To include 
boundaries we set ϕ0=ϕ1+2πf and ϕN+1=ϕN+2+2πf.  
Can be shown that Eq.(2) for N=1 implies Eq.(1). 
Details on the solution technique for Eq.(2) are given 
in [7]. Typical solutions of Eq. (2) are shown in term 
of local magnetization mi=∆ϕ i/2π−f in Fig.2a for 
N=16. Zero field solutions appear symmetric respect 
to x-axis corresponding to two opposite spontaneous 
currents. Non-zero field solutions develop 
diamagnetic screening currents at the boundary. 
These currents actually add to spontaneous currents 
shifting the solution toward diamagnetism. Fig.2b the 
mean magnetization for N=4 and 16 is reported. The 

mean magnetization follow a decreasing behavior for 
longer arrays. There is a limiting field ηl where 
paramagnetic solution becomes diamagnetic. This 
occurs when diamagnetic screening currents overdue 
the spontaneous magnetization of the system. For 
N=4 we observe the same instability of diamagnetic 
solution found in the single loop. This disappears for 
N=16 indicating that in longer arrays both 
diamagnetic and paramagnetic solutions are stable. 
The relation of this phenomenon with “flat solution” 
instability [11] should be analyzed, but there is no 
apparent connection between them.  
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Fig.2 Local and mean magnetization calculated by means of Eq.(2) 
for N=4 and 16. (a) N=16 local magnetization with β=0.1, dashed 
curves refer to f=0 and full curves to f=0.4. (b) N=4 (circles) and 
N=16 (triangles) mean magnetization, dashed curves refer to β=0.1 
and full to β=0.5.  
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