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Abstract

A connection between the disorder in the critical currents of two-dimensional arrays of Josephson
junctions and the amount of phase-locking of a row to an external microwave signal is proposed. We
have computed the probability of phase-locking as a function of the spread of the critical currents
of the individual junctions. The analytic results are in good agreement with numerical simulations.
The predictions can be also qualitatively compared to the experiments.

PACS. 85.25.Am, 85.25.Cp, 85.25.Na
Keywords: Supeconducting devices, Josephson arrays, Phase-Locking.

Introduction

Phase locking of Josephson Junctions (JJ) to external microwave is nowadays a standard tool to investi-

gate the properties of such nonlinear oscillators. The basic idea is that by studying the phase lock to an

external radiation one can infer on the possibility of spontaneous phase lock among the junctions. The

importance of spontaneous phase lock is twofold: on one hand for applications because the power emitted

by a single junction is not enough for many practical uses [1]. On the other hand, from a theoretical point

of view, the phenomenon of entrainment of disordered oscillators has led to many important discoveries

in nonlinear dynamics [2]. Experiments with external microwave irradiation have been performed [3] and

explained for long Josephson junctions [4] and have been the starting point to understand the more com-

plicated behavior of mutual phase-lock [5, 6]. Series arrays of small Josephson junctions have also been

investigated for many years until a recent result [7] has shown the underlying mathematical structure
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that has allowed to better understand the conditions (and the di±culties) to achieve the phase-locked

state. In Ref. [7] it has been shown that in the weak coupling limit JJ arrays coupled through a resonator

can be mapped analytically onto the Kuramoto model, a general framework for such class of phenom-

ena [8]. Two dimensional arrays of JJ have been proposed to achieve a better phase-locking among the

junctions, when compared to series array. Unfortunately, it appears that some of the problems are still

present in two-dimensional arrays. For instance Wiesenfeld, Benz, and Booi have shown that there is

a transformation that completely decouples the 2D bare arrays in independent oscillators [1]. In spite

of the simplifying assumptions used to perform the transformation (essentially to neglect disorder and

inductive e®ects) a decoupling of 2D arrays in rows weakly interacting [9, 10] or not interacting [11] has

shown good e±cacy when compared with numerical simulations that include, to some extent, inductive

e®ects.

The purpose of this work is to show that following the same scheme used in Ref. [11], namely to

decouple the array in elementary oscillators constituted by rows, it is possible to predict the behavior

of disordered 2D arrays irradiated by a microwave ¯eld. The results obtained have been compared

with numerical simulations of disordered arrays with full mutual inductive e®ects. The behavior here

described has been experimentally investigated with the use of the LTSEM technique [12]. We want to

emphasize that also other studies indicate the relevance of the row decomposition. For instance in a

recent experiment [13] it has shown that individual rows seem capable to phase-lock, so that the whole

system is better described in terms of oscillators constituted by rows than by considering the individual

junctions as elementary oscillators. Also in theoretical investigations, such as those of Barahona and

Watanabe [14], the motion of °uxons across the arrays, in absence of microwave excitations, has been

handled starting from the dynamics of the elementary rows.

The paper is organized as follows: in Section 1 we will describe the model and the basic calculations,

in Section 2 we will compare the analytic results with numerical simulations, in Section 3 we discuss the
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question of the existence of a threshold for phase-locking of junctions in the array, ¯nally in Section 4 we

will discuss some relevant experimental consequences of our model.

1 Statistical analysis

A schematic drawing of a two-dimensional plane array is shown in Fig. 1, Vi;j and Hi;j are the vertical

and horizontal junctions connected to the node i; j, the terms Ih
Ci;j are the corresponding critical currents;

here the indices i = 1; :::; N ; j = 1; :::; M denote the mesh; h = 0; 1 indicates the direction of the branch,

horizontal or vertical, respectively. For convenience we introduce also the dimensionless quantities ±h
i;j ,

they the values assumed by a random variable representing the spread in the critical currents around

their expectation value ¹IC such that:

Ih
Ci;j = ¹IC (1 + ±h

i;j ): (1)

The equations for an N £M array with overdamped junctions accounting also for the mutual inductances

between the branches can be derived as follows. We ¯rst compute the current across a branch Ib
i;j in terms

of the Josephson relation between the phase across the junctions, '. Normalizing the current respect

to the expectation value of the junction critical currents ¹IC and the time respect to ~=2eRI0 (R is the

normal resistance of the junctions due to the quasiparticle tunneling) and in the overdamped limit, it

reads [15]:

Ih
i;j = (1 + ±h

i;j)sin'h
i;j + _'h

i;j ; (2)

here, sin 'h
i;j is the current through the Josephson element, and _'h

i;j is the current through a resistor that

mimics the quasi-particle terms; To satisfy the Kirchho® law for the currents in each node we use the

mesh current Is
i;j that are connected to the branch currents by the relationship (see Fig. 1):

Ih
i:j = ±1;h

¡
Is

i;j ¡ Is
i;j+1 + Iext

¢
+ ±0;h

¡
Is

i;j ¡ Is
i+1;j

¢
(3)
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±i;j is the Kronecker operator, Iext denotes the normalized bias current injected in the top nodes and

extracted from the bottom nodes. If there is an ac bias added to the dc bias the current term can be

written as:

Iext = Ib + Irf cos(!t) (4)

It is more convenient to use a vector ~Ib (whose components are the branch currents Ih
i;j , the LHS of Eq. (3)

and a vector ~Is (whose components are the mesh currents Is
i;j) to rewrite in a matrix form Eq.s (3,4):

~Ib = K̂ ~Is +~° (5)

The °uxoid quantization rule for each mesh gives another set of equations, one for each mesh. Normalizing

the °ux respect to the elementary °ux quantum ©0 = h=2e and with the use of the SQUID parameter

¯L = 2¼L0I0=©0 (L0 is the self-inductance of the SQUID), they read:

1

¯L
§' = ÁT OT (6)

where the sum § spans over the junctions of a mesh, ÁT OT is the total °ux in the mesh due to the external

°ux and to the ¯eld generated by the currents °owing in all meshes of the array. Eq.s (3,6) can be cast into

an implicit [16] or an explicit scheme, [17] (cf. this last reference for a discussion about the performances

of both methods), including mutual inductance terms . The goal of our analysis is to predict for a given

value of °rf the average number of phase-locked junctions. The basic assumptions will be that the system

can be decomposed in rows, and that either a whole row is phase-locked to the external microwave, or

none of the junctions belonging to that row is. This is consistent with the experimental observation made

in Ref. [12] and has also been analytically predicted by [10] for su±ciently small amount of disorder. The

ac radiation on a single junction induces a Shapiro step; the current height ¢° is [18]:

¢° =
°rf

(­2 + 1)1=2
(7)
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and the central point is on the unperturbed IV curve. To compute such unperturbed (i.e., without rf )

curve in presence of disorder we use the same technique of Ref. [11]: we assume that each row for a given

bias oscillates at a frequency ! determined by the row mean critical current:

° =

"
!2 +

1

M

MX

k=1

(1 + ±k)
2

#1=2

: (8)

(Here we indicate ±h
i;j simply by ±k, where k is an index spanning all the junctions in the array.) Note that

being the ±k random variables, ° itself is a random variable, representing the bias at which a row should

be fed so that it oscillates at the given frequency (or voltage) !. For sake of simplicity we assume the

actual bias point of the array to be the center of the phase-locking step (as it was done in the experiments

[12]), i.e., the point where the unperturbed IV of the whole array oscillates at the frequency ­ of the

external microwave, even for zero amplitude of the external drive [see Eq. (8)]. The bias point is therefore

the expectation value, i.e., ¹° = Ib= ¹IC , so at the center of the step is simply (if we assume that the terms ±k

to have zero expectation value , i.e., ¹± = 0, then in the normalization units here adopted the expectation

value of critical current is 1):

¹° = (!2 + 1)1=2: (9)

To achieve voltage-locking of a single row to the frequency ! of the external microwave, the bias should

be:

°! =

"
!2 +

1

M

MX

k=1

(1 + ±k )2

#1=2

(10)

So, for a given set of the parameters, a row will be phase-locked to the external microwave if the random

bias °! will be within the extension of phase-locking range, respect to its expectation value. This happens

with a probability Ppl, when the following condition is satis¯ed:

Ppl = P
µ

j¹° ¡ °! j <
1

2

¹°rf

(!2 + 1)1=2

¶
(11)

where P represents the speci¯c distribution law of the random variables appearing in the parenthesis

and to evaluate the phase-locking range we use again its expectation value obtained using ¹°rf = Irf = ¹Ic.
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Inserting Eq.s (7,10) into condition (11) and expanding to the lowest order in the random variable ±k we

obtain:

Ppl = P
Ã

°rf > j 2

M

MX

k=1

±k j
!

: (12)

We make the further assumption that the ±k are uniformly distributed in the interval [¡²; ²]. The

interpretation of Eq. (12) is then that for a given distribution of the critical currents in a row (a collection

of ±k ) the row is phase locked to the external microwave if the amplitude of the microwave satis¯es the

condition (12). To handle this condition for relatively large values of M we follow the same method used

in Ref.[11], applying the central limit theorem we get that distribution of the deviation from the average

value of the ±k will be a Gaussian random variable, say », with standard deviation ¾ = 2¾0=
p

M , ¾0

being the standard deviation of the distribution of the ±k . For uniform distribution one gets ¾0 = ²=
p

3.

A similar treatment can be also made when we assume a Gaussian distribution of the ±k , in this case

» = 2
M

PM
k=1 ±k is a Gaussian variable with standard deviation equal to 2²=

p
M where ² here is the

standard deviation of original Gaussian distribution.

Now let say that we irradiate the array with a given amplitude of the rf signal °rf, the Eq. (12)

becomes:

Ppl = Puniform (j»j < °rf ) = Erf(°rf ) ¡ Erf(¡°rf ) =
1p
2¼¾

Z +°rf

¡°rf

exp

µ ¡»2

2¾2

¶
d» (13)

where

¾ = ¾uniform =
2²p
3M

: (14)

Similarly for the Gaussian case we have:

¾ = ¾gauss =
2²p
M

: (15)

The number of rows phase locked will simply be on average NPpl, and the probability distribution

binomial. The case M = 2 for uniform distribution can be better handled taking a slightly di®erent

analysis: For this low value of M it is better to assume a Simpson distribution, i.e. the convolution of
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two uniform distribution involved, rather than a Gaussian distribution. In all simulations shown below the

theory with M = 2 refers always to Simpson rather than Gauss distribution when an uniform distribution

of currents is assumed.

2 Numerical results

If our analysis is correct the average fraction of the phase locked rows for a given rf power should be

proportional to the di®erence of cumulative Gaussian distribution (error integral), so the predictions of

Eq.s (13,15) have been checked simulating Eq.s (2-6) using an explicit scheme similar to that used in [17].

Typical simulations are made as follows: random critical currents are extracted from both a uniformly

distribution of amplitude 2² and a Gaussian distribution with standard deviation ². The number of phase

locked rows for a given value of the rf power is counted after a typical transitory time T = 400 normalized

units, then the experiment is repeated with a new realization of random critical currents extracted from

the same distribution. Finally the average fraction of phase locked rows is reported as a function of the

amplitude of the external current drive °rf (i.e. the square root of the microwave power). In Fig.2 are

reported the main results of this paper, in all cases the statistical error associated with the points shown

in the ¯gures range from 5% to 15% (for sake of readability we do not report error bars in the ¯gures).

Simulations are reported for N = 8; 16 and 20, for some values of M for both the uniform and Gaussian

cases. We note that in general the numerical experiments agree with the theoretical estimates, especially

for low values of the disorder. Moreover a good reproduction of theory is always achieved below 80% of

locked junctions. When the curve reaches saturation, eventually the disagreement becomes more evident.

An important factor is however the row number N and its ratio with column number M : for N = 8

and M = 2; 4; 8 the theory is well reproduced but systematic deviations are evident especially for the

two largest M cases (see Fig.2a); for N = 16 a very good agreement is reached indicating that higher

row numbers have a better statistics as can be expected (see Fig.2b,2d). However, if the number of

columns becomes large, as is shown in Fig.2c for M = 12; 16 the agreement becomes worse, especially for
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values of rf-amplitude near saturation. A further increase in row number, N = 20, again implies a better

agreement (compare. again Fig.3c). Between the reasons of disagreement we quote: 1) the estimates of

Eq. (13) are correct only to the ¯rst order in ²; 2) the assumption that phase-locking occurs whenever

the random bias of one row is within the phase-locking range respect to average IV is only approximate;

3) the assumption of simultaneous phase locking of all junctions in the row is only approximate, this

is true especially in the case of arrays with relatively few row. Second order terms are however rather

small (about 1% for the data collected in Fig.2) so this cannot be a relevant source of disagreement.

Point 2) can be a more relevant source of disagreement, but by increasing row number the statistics will

improve, as is shown by di®erence between Fig.2a and 2b,2d. The last point deserves more attention:

from simulation we see that in a disordered array simultaneous phase-locking of all junctions belonging to

the same row is more di±cult for arrays with N . M because row coupling is probably not su±cient to

overcome disorder along the row to reach phase-locking over the whole array. Despite the fact that rows

are supposed statistically independent in the above model, an inspection of the number of phase-locked

rows in the simulations shows that when few phase-locked rows occurs, the array seems unable to lock

the remaining not phase-locked rows. This behavior is also more evident near saturation because the set

of possibly "good" rows to be phase-locked with the increase of signal amplitude will exhaust and the

remaining statistically "bad" rows cannot be locked.

We should point out that the di±cult point to compare the numerical data with the experiments is to

estimate °rf , because the power delivered to the array cannot be easily computed. A possible calibration

might be done measuring the height of the Shapiro steps and then using Eq. (7). Another relevant

characteristic of the experiment is the observed linearity between the applied power and the square of

the number of the phase-locked junctions. In our ¯gure this should correspond to a linear relationship

between the rf-current and the number of phase-locked rows. This linear behavior is compatible with

Eq. (12) or (13), when °uctuations due to the speci¯c realization of the statistics are included. In fact
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one more di±culty to compare the theory with the experiments is that the theory predicts the average

properties of the arrays, while the experiments are obviously performed on single realizations (as will be

discussed in more detail in the next section).

In Fig. 3 we have compared the e®ect of the discreteness parameter ¯L on the system: as a general

rule the array behavior follows the statistical model with a good accuracy if ¯L ranges from 0:5 to 1:5.

For low values of ¯L the hypothesis of independent rows cannot be satis¯ed because all junctions in

the arrays become more tightly coupled, so we expect some deviations from the above theory in the

numerical simulations, as in Fig.3(a) in the case of ¯L = 0:2 with the uniform distribution (similar result

is obtained for Gaussian case). In any case also for such low ¯L values the saturation part of the curve is

well reproduced by statistical approach and maximum observed deviation is about 20%. When mutual

inductances are included it has been found that the e®ect is to decrease the amplitude of the induced

Shapiro steps predicted by Eq. (7) [16]: The amplitude of the Shapiro steps shows a minimum around

¯L ' 4 [17]. This should also be re°ected in the capability of disordered arrays to lock to an external

source, as shown in Fig.3(a), where the numerical behavior signi¯cantly departs from the theoretical one

for values of ¯L approximately higher than 1:5. We presume that for the ¯L ' 4 case the assumption that

all the junctions in each row are phase-locked, used to derive Eq. (8), fails. In fact for high values of ¯L, i.e.

low coupling, this is not anymore true, and this is also evident in Fig.3(b), where the numerical behavior

for extremely high (and presumably unphysical) values of the discreteness parameter clearly shows a

deviation. Nevertheless up to ¯L = 100 there is a monotonic increase of the number of phase-locked rows,

in agreement with the re-increase of the phase-locking region [17].

In Fig. 4 we have checked the prediction of our theory for others values of the amplitude of the

distribution ²unif orm for the uniform distribution case and standard deviation ²gauss . As expected since

Eq. (10) is a linear expansion, the higher ² the worse the agreement between the numerics and the theory.
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3 Threshold

In the experiment of the TÄubingen group [12] a threshold in the minimal amplitude of the external drive to

phase-lock a row was observed. The authors ascribed the e®ect to a \laser type" behavior of superradiant

arrays. Also in the experiment of Barbara et al. [13] it has been found evidence of threshold e®ects.

The appearance of a threshold can be also ascribed to other e®ects, for instance noise in the system can

prevent the appearance of a step before a certain amplitude of the external drive, thus introducing a

threshold in Eq. (7) [20]. Yet another possibility is that the very disorder in the critical currents gives

rise to a threshold. We want to propose a mechanism that can lead to the appearance of a threshold and

is connected with the number of activated oscillators. For the underdamped junctions experiment [13]

an explanation in terms of detuning between the natural frequencies of the oscillators and the cavity has

been proposed [19], underlying that it is possible that the strong interaction between the cavity and the

oscillators is responsible for the sudden increase of the number of phase-locked oscillators once a critical

number of oscillators is activated. In the system under consideration the analysis is greatly simpli¯ed

by the fact that the dynamics of the forcing term (the rf ¯eld) is independent of the dynamics of the

oscillators. To analyze the e®ect of the disorder we can simply assume that when too few rows are active

it can just happen that there are not rows whose bias point °­ is close enough to the frequency of the

external drive, so none of them can be phase-locked.

One more way is to look at what happens if one simulates one experiment at a time, and, to the

contrary of the previously presented simulations, does not average over many realizations the number

of phase-locked rows. So, we report here the average number of rows that must be activated before at

least one is phase-locked at the external ¯eld. We underline that this procedure is more suitable for a

comparison with the observation of a threshold in a speci¯c sample. Summarizing, it is possible that for

a given realization and for su±ciently small values of the driving current it is not possible to phase-lock

any row. When the drive increases, the minimal value at which a row can be phase locked and this value
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of the rf drive will result to be the \threshold".

A quantitative analysis of the e®ect of disorder on the threshold can be performed as follows: the

probability to ¯nd a value of the threshold ° threshold
rf is the probability to not ¯nd any row capable to be

locked, out of the N rows of the array, i.e.:

P (8 rows j»j > °rf ) =

"
1 ¡ 1p

2¼¾

Z +°rf

¡°rf

exp

µ ¡»2

2¾2

¶
d»

#N

: (16)

A similar equation can be written also in the Gaussian distribution case. It is clear that such threshold

goes quickly to 0 for large samples, and disappears in the thermodynamic limit (N ! 1). The numerical

simulations of the array dynamics are compared to Eq. (16) in Fig.5. From this analysis and from

simulations it is clear that the threshold thus obtained is very small compared to the one observed by

Lachenmann et al. [12]. In fact a rough comparison can be done assuming that °rf is proportional to the

square root of the applied power, and then calibrating the amplitude to the power necessary to phase-lock

all the junctions. Doing so, one obtains that the threshold is about 50% of the saturation current, a value

that for an array 10 £10 and an estimated standard deviation of the critical currents of 3% [12] is simply

unrealistic: the probability to fabricate such array is negligibly small. We conclude that presumably the

noise e®ects are dominant for the speci¯c experiment [12].

4 Conclusion

We have showed that the decomposition of two-dimensional arrays in rows is an e®ective technique to

predict the behavior of some disordered arrays irradiated by microwave. With this technique we were

able to connect quantitatively the parameters of the disorder (essentially, the standard deviation of the

random critical currents) with the number of rows phase locked to an external microwave source. A

further practical use of this result might be to estimate the disorder in an array (a quantity that cannot

be estimated easily for 2D arrays) by doing experiments as those performed by [12]. Unfortunately the

estimate is limited by two factors: i) the amount of current actually °owing into the array (°rf in our
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notation) can be estimated only roughly; ii) The relation is true in average , the results of the single

measurements can deviate signī cantly, following a binomial distribution.

In the approach proposed an important factor in determining the response of disordered arrays to

external signal is the ratio between column number M and row number N : arrays with N & M will

phase-lock all their rows faster and easily to an external signal. If con¯rmed by further experimental

work this can be an important information for the design of optimal array based oscillators. We note

that in the experiment performed by Barbara et al. [13] arrays are precisely of the type N & M .

The measurements of [12] took advantage of the unique properties of the LTSEM technique to directly

visualize the phase-locked rows. In the more recent experiment by Barbara et al. [13] on underdamped

arrays placed on a resonator and without external drive it was possible to carry out a similar investigation

taking advantage of the fact that the junctions were underdamped (so from the simple inspection of the IV

it was possible to estimate the number of active oscillators). Although similar in the spirit, it seems that

the theoretical analysis here proposed is very di®erent for the one proposed for the latter experiment [19].

Finally, both experiments have shown a threshold laser-like behavior. We have been able to reproduce a

threshold only due to disorder, by analyzing the ¯nite sample response. The estimate for the threshold

seems to be unrealistically small when compared to the threshold experimentally observed. Still we

believe that there might be cases of entrainment of disordered oscillators to an external drive where a

threshold could appear as the result of ¯nite number of oscillators.
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Figure Captions

Fig. 1. The electrical scheme of 2D arrays.

Fig. 2. The dependence of the fraction of phase locked junctions as a function of the external rf current.

Symbols refer to simulations and solid lines to the theoretical predictions derived by Eq.(13), dotted lines

between symbols are draw as guide for eye. (a) The case of M = 2 (4),4 (°), 8 (¤) horizontal junctions

for an N = 8 array with uniform distribution; (b) the case of M = 2 (4),4 (°), 8 (¤) horizontal junctions

for N = 16 array with uniform distribution; (c) the case of M = 12 horizontal junctions for an N = 16

(}), 20 (O) array in the uniform distribution case; (d) the case of M = 2 (4),4 (°), 8 (¤) horizontal

junctions for an N = 16 array in the Gaussian distribution case. The parameters of the simulations are:

¯L = 1, ²uniform = 0:3, ²gauss = 0:1, ! = 1:0, ¹° = 1:9.

Fig. 3. The dependence of the fraction of phase locked junctions as a function of the external rf current.

The data refer to di®erent values of the coupling parameter ¯L. In (a) we show the lower values (¯L · 2)

and in (b) the higher values (¯L ¸ 2 ). The solid lines represent the predicted behavior derived by Eq.(13)

that does not account for the ¯L dependence, dotted lines between symbols are draw as guide for eye.

The parameters of the simulations are: N = 16, M = 8, ²uniform = 0:3, ! = 1:0, ¹° = 1:9. The symbols

shows the following values of ¯L: 0:2 (}) ,1:0 (°), 1:5 (¤), 2:0 (O) , 5:0 (4), 10 (£), 100 (+). Some
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curves is shown also for the Gaussian case with ²gauss = 0:1, the values of ¯L in this case are: 1:5 (¥), 5

(N).

Fig. 4. The dependence of the fraction of phase locked junctions as a function of the external rf current.

(a) The data refer to di®erent values of the distribution amplitude ²uniform for the uniform distribution

²uniform = 0:1 (¤) and 0:2 (°); (b) the data refer to di®erent values of the standard deviation ²gauss

for the gaussian distribution ²gauss = 0:05 (¤) and 0:15 (°). The solid lines represent the theoretical

prediction of Eq.(13), dotted lines between symbols are draw as guide for eye. The parameters of the

simulations are: N = 16, M = 8, ! = 1:0, ¹° = 1:9.

Fig. 5. The dependence of the probability to ¯nd a threshold as a function of the external rf current.

Symbols refer to simulations for N = 3 (circle) and N = 8 (squares); solid lines represent the behavior

predicted by the theory Eq.(16), dotted lines between symbols are draw as guide for eye. The parameters

of the simulations are: M = 3, ² = 0:3, ¯L = 1, ! = 1:0, ¹° = 1:9.
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