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Outline

• Introduction to Josephson-junction
arrays

• Our arrays

• Resonances in discrete Josephson
transmission lines

• Laser models

• Conclusions
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Why arrays?

V
ν = 2eV/h
2e/h ~ 483GHz/mV
P ~ 1 nW

Synchronization?
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How do junctions synchronize?

• Lumped arrays λ/2

• Coupling through external load

Z L
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• Overdamped junctions
(efficiency 1-5%)

A. K. Jain et al. Phys. Rep. 109, 310 (1984)
P. Hadley et al., Appl. Phys. Lett. 52, 1619 (1988)
S. P. Benz et al., Appl. Phys. Lett. 58, 2162 (1991)
K. Wiesenfeld et al., J. Appl. Phys. 76, 3835 (1994)
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Our arrays: A puzzle for the
standard synchronization picture

• Distributed arrays λ

• Synchronization: analogies with
lasers

- threshold to coherent state
- characteristics of steady state emission

• Underdamped junctions
- bonus: efficiency up to 33%!
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Where does the resonance come from?

L /2T

TC TC T

L /2T

R J

C J

Circuit model for 1 column*

* A. B. Cawthorne et al., PRB 60, 7575 (1999) 

LT = 2.1 pH;    CT  = 11 fF;
CJ  = 0.6 pF;     RJ= 300 Ω (sub-gap)
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Where does the resonance come from? II

L /2T

TC TC T

L /2T

C J

0Z 0Z 
1 2

2Z0 = 1 − z2LTCJ

izC J
+

(1 − z2LTCJ )
2

z2CJ
2 − 4

(1 − z2LTCJ )
z2C JCT

1/2

z2 = 1
LTCJ

e Z0 = 0
Im(Y1,2 = 0)

Resonance frequency: ν = ω/2π ~ 142 GHz 

1/R J = 0
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Propagation properties

L /2T
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Experimental facts

• 2D arrays show a resonance at k = 0

• the resonance frequency does not
depend on array length or external
load

• no resonance could be measured in
1D arrays

• no resonance could be measured in
arrays with shorted horizontal
junctions
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Power dissipated in the load

                   If all the junctions are synchronized: 

                    PL =
< (NAVAC)2 >
(NTRJ + RL)2 RL

                   For RL = NTRJ e PL =
NA

2 < VAC
2 >

4NTRJ

total number
of junctions=NT

I RL

~ VAC
Rj

Rj

active

inactive
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Typical chip

5 mm
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Array 3X36
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Array 4X36
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Our Best results at 150 GHz

Maximum detected power:

Array 3x131
PAC = 0.4 µW
DC-AC efficiency= 11%

Maximum DC-AC efficiency:

Array 4x6
PAC = 0.25 µW
DC-AC efficiency= 32%



Center for Superconductivity Research                                                 University of Maryland

Models for the coherent state

I

LRES

[1] [2]

[1] D. R. Tilley, Phys. Lett. 33A, 205 (1970)
[2] G. Filatrella et al. Phys. Rev. E, 61, 2513 (2000)   

:For an array of M junctions

                       free-field energy for n photonsH = ’Wn

            electrostatic energy due to+’zSm Nm

                             pair imbalance Nm, ’z = 2eV

           interaction of      −2’n1/2 Sm gm cos(vm −am)
                             supercurrents with radiation field



Center for Superconductivity Research                                                 University of Maryland

Tilley’s predictions

I

H = ’W + ’z Sm Nm − 2’n1/2 Sm gm cos(vm − am )
            

in steady-state e Øn
Øt = 0

         for fixed M         n ≠ PDC

      at the top of the stepsn ≠ M2



Center for Superconductivity Research                                                 University of Maryland

Analogy with lasers
D. Rogovin and M. Scully, Phys. Rep. 25C, 175 (1976)

R. Bonifacio, F. Casagrande, and M. Milani, Lettere al Nuovo 

Cimento, 34, 520 (1982). 

2eV=hν
2

1
hν

Two-level atoms Josephson junctions

N2 > NThreshold NA > NThreshold

in steady state

                                                                         n } P INPUT n } PDC

                                                  n } (Pr essure)2 n } M2

density of atoms density of active junctions
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Conclusions
• very high DC-AC efficiency (32% !)

• maser behavior (threshold, steady-state
coherent emission)

Future work

• Increase output power

• Linewidth measurements

This publication is based (partly) on the presentations made at the European Research
Conference (EURESCO) on "Future Perspectives of Superconducting Josephson Devices:
Euroconference on Physics and Application of Multi-Junction Superconducting Josephson
Devices, Acquafredda di Maratea, Italy, 1-6 July 2000, organised by the European Science
Foundation and supported by the European Commission, Research DG, Human Potential
Programme, High-Level Scientific Conferences, Contract HPCFCT-1999-00135.
This information is the sole responsibility of the author(s) and does not reflect the ESF or
Community's opinion. The ESF and the Community are not responsible for any use that
might be made of data appearing in this publication.


