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We address the problem of a relativistic particle in a periodic asymmetric potential of the
ratchet type. As a solid state realization of such a particle, we consider a single ux quantum
in a long annular Josephson junction embedded in an inhomogeneous magnetic �eld. De-
terministic (non thermal) regime is numerically investigated and compared with theoretical
results. The ratchet velocity of the relativistic uxon has been found qualitatively di�erent
from the one known for a nonrelativistic particle.
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Motion in a periodic potential lacking reection sym-
metry, known as a ratchet potential [1], has attracted a
considerable interest in the last years. Though the main
interest was initially in the thermal ratchet [2{8], recently
the deterministic ratchet [8,9] has also been addressed.
The net unidirectional motion exhibited in ratchet po-
tentials is the key feature potentially interesting for ap-
plications. Magnetic ux cleaning [10] in superconduct-
ing �lms, uxon diodes [11] or voltage recti�er are an
example of proposed applications of the ratchet e�ect.
In Josephson junctions systems, a voltage-recti�er [12]
based on a three-juntions SQUID and a uxons ratchet
[13] based on especially engineered arrays have been the-
oretically and experimentally [14] investigated.
Until now, principally nonrelativistic regime of

particles in ratchet potentials has been addressed. Here
we address an experimentally controllable way to study
both nonrelativistic and relativistic regime of a particle
in a ratchet potential. To this purpose, we consider a well
known [15] solid state example of a relativistic particle:
a single ux quantum in a long Josephson junction. To
apply an e�ective ratchet potential to the uxon in the
junction we consider the inhomogeneous �eld generated
by a control current passing in a properly shaped control
line deposited on the top of the long junction. Main top-
ics presented here concern the equation of motion, the
depinning currents, the velocity-force relation, and the
ratchet velocity of the uxon forced by a square wave
drive in the deterministic (non thermal), principally over-
damped regime.
Field-induced sawtooth ratchet| The model for a long,

unidimensional junction in an inhomogeneous �eld h(x)
is [16,17]

'xx � 'tt � sin' � �'t =
@h

@x
� � � �ac(t) (1)

where ' is the quanto-mechanical phase di�erence, x
is the length normalized to the Josephson penetration
length �J , and t is the time normalized to the inverse
of the plasma frequency !J = c=�J , with c the max-

imum velocity of electromagnetic waves in the junc-
tion (Swihart velocity). The � term accounts for the
quasiparticle current, the sin' term accounts for the
Josephson current, 't is proportional to the instantan-
eous voltage, � is the dc bias current I [see Fig. 1(a)]
normalized to the critical current I0, �ac is an ac normal-
ized bias current, and h is the magnetic �eld normalized
to the critical �eld B0 = 4��JJ0=c of the junction. For
the annular geometry shown in Fig. 1(a) the x coordinate
in Eq. (1) means a curvilinear coordinate and h means
the radial component of the external �eld. Moreover, for
this geometry the boundary conditions of the perturbed
sine-Gordon equation Eq. (1) are

'x(0) = 'x(l); (2a)

'(l) = '(0) +m2�; (2b)

where the integer m is the number of ux quanta
trapped in the junction.
To generate an inhomogeneous magnetic �eld we can

feed with a control current Ic

FIG. 1. (a) A way to apply a sawtooth magnetic �eld to a
long annular Josephson junction. (b) The e�ective potential
and force experienced by a uxon when the sawtooth �eld is
turned on.

a control line of variable width W (x) deposited on the
top of (and insulated from) the junction, as it is shown
in Fig. 1(a). In such a case, we generate a �eld
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h(x) =
cl

2w(x)
(3)

where c is the control current normalized to the critical
current of the junction, l is the length of the junction
normalized to �J , and w(x) is the width of the control
line normalized to the physical width of the junction.
From relation (3) a control line with a width [see

Fig. 1(a)] varying as

W (x) =

(
WmaxWminrL

WminrL+(Wmax�Wmin)x
0 < x < rL

WmaxWmin(1�r)L
Wmax(1�r)L�(Wmax�Wmin)(x�rL)

rL < x < L
;

where Wmax = maxx fW (x)g andWmin = minx fW (x)g ;
gives us the sawtooth normalized �eld

h(x) =

�
h0 +

c
r
x 0 < x < rl

h0 + cl � c
(1�r)(x � rl) rl < x < l ; (4)

where

h0 =
cl

2

1

wmax
; c =

c(wmax � wmin)

2(wmaxwmin)
: (5)

The corresponding forcing term in the Eq. (1) is then

@h

@x
= f(x) =

� c
r

0 < x < rl
� c

(1�r) rl < x < l : (6)

We remark that though here we focus on the so-called
"rocking ratchet" [2], potentially all known ratchets can
be easily realized in our physical system. For example
a "ashing ratchet" [4,6] could be realized if an ac con-
trol current were used. Moreover, the thermal problem
could also be indagated if the thermal noise of the dc bias
current were considered or an arti�cially colored current
noise were added on purpose.
Equation of motion|A uxon with center of mass �(t)

travelling in the junction with velocity
�

�= u is described
by

' = 4arctan e(x��) (7)

where  = 1=
p
1� u2 is the relativistic factor. Follow-

ing the classical energetic approach [18], the equation of
motion for �(t) is obtained inserting solution (7) in the
power-balance equation

dHSG

dt
= �

Z l

0

'tdx�
Z l

0

f(x)dx � �

Z l

0

'2
tdx; (8)

where

HSG =

Z l

0

�
1

2
'2
x +

1

2
'2
t + 1� cos'

�
dx:

The resulting equation is

4

�

�
1� u2

��3
2
du

dt
+

4�

�

up
1� u2

= F0(�) + F (�); (9)

with

F0(�) = �
4

2�
arctan

�
sinh(l=2)

cosh ((� � l=2))

�
; (10a)

F (�) = �c
r

4

2�
arctan

�
sinh(rl=2)

cosh ((� � rl=2))

�

+
c

1� r

4

2�
arctan

�
sinh ((1 � r)l=2)

cosh [ (� � (1 + r)l=2)]

�
: (10b)

For very long junctions the forcing terms simpli�e in

FIG. 2. (a) Current-voltage (force-velocity) characteristic
of the junction with one trapped uxon when the ratchet po-
tential is o� (open circles) or on (solid circles). (b) The critical
and depinning currents versus the normalized control current.
The points are numerical results, the lines are analytical res-
ults.

F0(�; l !1) = � 0 < x < l; (11a)

F (�; l !1) � F (�) =

� �c
r

0 < x < rl
+ c

1�r rl < x < l
: (11b)

A plot of the e�ective force F (�) and the corresponding
potential acting on the uxon is given in Fig. 1(b) both
for static ( = 1) and dynamical case.
Restricting ourself to the very long junctions re-

gime, we approximate the forcing terms in Eq. (9) with
Eqs. (11). Moreover, considering quite overdamped (high
� values) junctions to neglect inertial e�ects [du=dt in
Eq. (9)], we can reduce our equation of motion to

4�

�

�

�r
1�

�

�
2
= � @

@�
(��� + U (�)) = � + F (�): (12)

Single uxon depinning currents and ratchet velocity|
In Fig. 2(a) it is shown the e�ect of the sawtooth poten-
tial on the current-voltage [�� < 't >, with < ::: >
spatio-temporal mean] characteristic of a junction with
one trapped uxon. Noticing that the mean voltage gen-
erated by a uxon moving with velocity u is given by
V =< 't >= 2�u=l, and that, from Eq. (12), � means a
force, we can think of the plots in Fig. 2(a) also as force-
velocity characteristic. Results refer to a junction with
l = 60, r = 2=3, and are calculated integrating Eq. (1)
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with forcing term Eq. (6), �ac = 0, and m = 1 in bound-
ary conditions Eqs. (2). As it is seen, when the ratchet
potential is turned on (c 6= 0), the current extension of
the step is reduced, and a current range with zero mean
voltage (zero velocity) appears. The relevant critical cur-
rents ��c and depinning currents ��

d
indicated in Fig. 2(a)

are found using a solution ' = '0 in Eq. (1) and
�

�= 0 in
Eq. (12), respectively.

FIG. 3. (a) The uxon velocity as a function of the bias
current for di�erent values of dissipation �. (b) Ratchet velo-
city of the uxon induced by a square wave ac forcing in the
adiabatic limit. The constant force is � = 0.

The result is

�+c = 1� c
1� r

; ��c = �1 + c
r
; (13a)

�+d =
c
r
; ��d = � c

1� r
: (13b)

A plot of these critical values versus the control current
is given in Fig. 2(b).
The mean velocity of the uxon in the inhomogeneous

forcing is

u � 1

T

Z T

0

�

� dt =
�(T ) � �(0)

T
=

l

T
;

where the revolution period T is

T =

Z T

0

dt =

Z l

0

d�
�

�
:

From Eq. (12) we have

u =
1

r

p
( 4�� )

2
+(���+

d
)2

(���+
d
)

+ (1 � r)

p
( 4�� )

2
+(����

d
)2

(����
d
)

: (14)

So, the full step extension will be analytically described
by the pieces

u(�; c; r) =

8<
:

u(�) �1 + c
r
< � < � c

1�r
0 � c

1�r � � � c
r

u(�) c
r
< � < 1� c

1�r

: (15)

Numerically calculated velocity-current curves are com-
pared with the analytical description Eq. (15) in
Fig. 3(a).
The ratchet velocity [2,10] uR is the velocity of the

particle mediated over the period Tex of an ac drive
�ac(t). If the external drive is a square wave of amplitude
A and period Tex , the ratchet velocity of our uxon in
the "adiabatic" limit (Tex ! 1; !ex ! 0) can be de-
duced by Eq. (14) and Eq. (15) as

uR(A) =

8<
:

0 0 < A < �+d
u(A)=2 �+d < A < ���d
[u(A) + u(�A)] =2 A > ���d

(16)

Analytical prediction Eq. (16) is compared with numer-
ical results in Fig. 3(b). The static (I), active (II), and
overdriven (III) regions typical [2] of the ratchet e�ect can
be recovered in the plot. As a qualitative di�erence with
respect to non-relativistic particles, the active region for
our uxon shows a deviation from the quasi-linear trend
[2], [8], [10] exhibited in non-relativistic motion. The re-
lativistic nature (i.e., the approaching of a limit ratchet
velocity due to the existence of a limit velocity in our
system) is more and more pronounced

FIG. 4. (a) Modi�cation of the current-voltage character-
istic of the uxon induced by a square wave drive in the adia-
batic limit. (b) Same as in (a) but here we are not in the
adiabatic limit. The ratchet voltage (velocity) at � = 0 for
this drive is shown in the inset.

as � values are lowered. As it is seen, when full re-
lativistic regime is achieved [� = 0:02 in Fig. 3(b)] the
ratchet velocity versus forcing drive amplitude takes the
peculiar form of a window centered in the active region.
In other words, the ratchet velocity of a particle in full

3



relativistic regime is almost independent on the forcing
amplitude in the active region and vanishing small other-
wise. As a further consideration, inspection of Fig. 3(b)
shows that the e�cience of this kind of Josephson uxon
diode is maximized in the relativistic regime.
In the adiabatic limit, the ratchet velocity as a func-

tion of �, in other words the modi�cation of the current-
voltage characteristic due to a square wave forcing, can
be constructed piecewise using Eq. (14). For A < Acr =
(�+d � ��d )=2 we have

uR(�;A) =

8>>>>><
>>>>>:

[u(�+A)+u(��A)]
2 � < ��d �A

u(�+A)
2 ��d � A < � < ��d + A

0 ��d + A < � < �+d �A
u(��A)

2 �+d � A < � < �+d + A
[u(�+A)+u(��A)]

2 � > �+d + A

(17)

while for A > Acr we have

uR(�;A) =

8>>>>><
>>>>>:

[u(�+A)+u(��A)]
2 � < ��d �A

u(�+A)
2 ��d � A < � < �+d �A

[u(�+A)+u(��A)]
2 �+d � A < � < ��d +A

u(��A)
2 ��

d + A < � < �+
d +A

[u(�+A)+u(��A)]
2 � > �+d + A

:

(18)

The modi�cation of current-voltage curves induced by
a square wave forcing of increasing amplitude described
by Eqs. (17) and (18) is shown in Fig. 4(a). As it is
expected, a crossing of the zero current axis at a ratchet
voltage VR = 2�uR=l is found. In Fig. 4(b) we report
the numerical result obtained for a faster square wave
forcing: synchronized

FIG. 5. Trajectory of the center of mass of the uxon under
the e�ect of the ac drive for two di�erent amplitudes of the
square wave. The e�ective potential seen by the uxon is
included as a guide for eyes. The angular frequency of the
drive is !ex = 0:001 � 2�, and the bias current is � = 0.

current steps appear at voltages Vm;n = (m=n)!ex,
with m;n integers. This voltage quantization phe-
nomenon accounts for the synchronization of the uxon
motion with the m � th harmonic or the n � th subhar-
monic of the ac drive. Obviously also the ratchet velocity

(voltage) at � = 0 is now quantized [8], [13]. Same general
trend shown in Fig. 4 was found in numerical simulations
performed with a sinusoidal ac drive.
Finally, in Fig. 5 we show the time evolution of �(t)

at two values of the amplitude A of the square wave
forcing. In the left panel the amplitude A falls in the
active ratchet region, while in the right panel A falls in
the overdriven region. As it is seen, the resulting net
motion is unidirectional in both cases, but the advance
in one period Tex is only marginal when we are in the
overdriven region.
In summary, we considered the problem of a relativ-

istic particle in a ratchet potential and we individuated a
physical realization for such a particle in a uxon trapped
in a long annular Josephson junction embedded in a saw-
tooth magnetic �eld. For very long junctions simple ana-
lytical results have been found, concerning the depin-
ning currents, the I-V curve and the ratchet velocity of
the uxon under an adiabatic square wave forcing. The
ratchet velocity of our relativistic particle is found qual-
itatively di�erent from the one known for non relativistic
particles. Only simple deterministic, noninertial e�ects
have been discussed here, but the proposed physical sys-
tem could deserve further attention because it allows to
indagate in an experimentally controllable way the phys-
ics of relativistic particles in deterministic or thermal
ratchets.
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