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Bunching of fluxons by the Cherenkov radiation in
Josephson multilayers

Abstract

A single magnetic fluxon moving at a high
velocity in a Josephson multilayer (e.g.,
high-temperature superconductor such as
BSCCO [1]) can emit electromagnetic waves
(Cherenkov radiation), which leads to
formation of novel stable dynamic states
consisting of several bunched fluxons.
We find such bunched states in numerical
simulation in the simplest cases of two and
three coupled junctions. At a given driv-
ing current, several different bunched states
are stable and move at velocities that are
higher than corresponding single-fluxon ve-
locity. These and some of the more complex
higher-order bunched states and transitions
between them are investigated in detail.

Introduction

o Normally fluxons repel each other.

® But under proper conditions vortex may
emit Cherenkov radiation (1D-arrays [4],
[-losses [5], stacks)

e Oscillating tail may provide an effective
potential for the another fluxon.

e In a stack, fast moving fluxon can emit
Cherenkov pldsmd wave at ¢— < u <y
(and J = 5B < 1 for = 2).
To appreciate this effect we need large
S~ —0.5.

2 Coupled Junctions

SBP model [6]:
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0.817, has a set of minima where the second fluxon

can be trapped

Solution-engineering: ~ from ¢4 p(z) @
4 = 0.3, we construct an ansatz for the
bunched fluxon solution in the form

Oh @) = ¢a(@) + o4 (@ + Ax)
e.g., to trap in n = 1, 2, 3 well, we take

Az =0.9,24 and 3.9.
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The profiles of ¢7(z) in the state [2]0] @ 5 = 0.3,

Varying Az we found that all [1 + 1,[0]
states are stable (up to n = 15)!
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o Velocity in bunched states is higher than
in [1]0] state.

o The tail is longer but has smaller ampli-
tude.

o = F, is the same = Fyis larger. (checked
numerically)

® Each bunched state exists in some inter-
val of . The state [1+1,,|0] with smaller
n “screens” the state with larger n so that
transitions as in 1D arrays are not possi-
ble.

@ small 4 fluxons bunch tighter due
to smaller plasma wavelength at lower
u. When the wavelength (width of the
well) becomes incommensurable with the
fluxon’s width the fluxons de-bunch.

[1]1] state

Trial solution: cross-sum of the shifted and

unshifted solutions:

(@) = ¢a,p(z) + 6p alr + Az)

Az ~ AM. These states arc not stable ex-
cept M =0 [7].

Higher order states

The state bunched fluxons qualitatively
look the same as single fluxon = try to cre-
ate higher order states, e.g.. [2+2|0].
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Current-velocity characteristics of the bunched
states [4]0], [3]0], and [2 + 1]0]

0@y < 0.22[242[0] — [1+1g+15+13]0]
0y < 0.20... — 2% [1+19)0] +2 x

[1+15|0] — (collisions) — 2 x [1+ 15[0]
o 4 [1[0]

Different states as building blocks. Ve-
locities (rather than bias current) should be
equal. We took [2[0] @ 4 = 0.15 and [1]0]
@y = 045. 7 = 0.35 gives [3[0] state,
~0 = 0.3 gives [2 + 11]0] st
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Attempts to construct such states as [4 +
4|0] failed since so many fluxons do not fit
into one well.

3 coupled LJJs
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© The states [0]1 + 1,/]0] are stable

© The states [0+ 1|1/0 + 1] are unstable.

© The states [0]2 + 2|0] are unstable for
M =1, 2, 3 and 5y = 0.20, 0.30, 0.35.

© The state [0[2 + 1/0] =
for 79 = 0.25.

[0]3]0], was stable

Analysis

Asymptotic behavior of the fluxon’s front
and back tails in the linear approximation
@ distances far from fluxon

ol 1) ox explple —ut)]

where  p is a
ber  which can  be found  from:

complex  num-

2
e apu

L
7

p* 2.2
L

® 4-th order algebraic equation = 4 roots.

o The right tail is not oscillating = real
p<0

o The left tail is oscillating: complex p &
Re(p) > 0.

o We found: these roots exists simultane-
ously only for u > ¢ (obvious result).

e Since non-oscillating tails result only in
repulsion between fluxons, while the os-
cillating tail leads to mutual trapping, the
condition

Re(py) < lpr|
can be imposed to secure bunching.

o The fluxon must fit into the well, i.e.,

This is always satisfied
. Bundum5 is possible at u > up > . wy
salculated numerically and for S’ =
J = 0.5, a = 0.04is u, = 0.837.

Conclusion

® The Cherenkov plasma wave creates an ef-
fective potential with many wells, where
the 2nd fluxons can be trapped
forming a bunched state between
fluxons of the same polarity.

o In 2 and 3-fold stack bunched states such
as [141/0], 14 2[0], [2+2/0], [0]1 +1]0]
are stable, while states such as [1]0 4 1]
and [0+ 1]1]0 + 1] are unstable (except
M =0).

e Bunched fluxons propagate at
higher velocity because of lower losses
per fluxon.

o When decreasing the bias current, tran-
sitions between the bunched sta
different separations between fluxons were
not found, but we found a disintegration
of the multi-fluxon states into the states
with smaller numbers of bunched fluxons.

es with

The simulations were performed using
StkJJ
E. Goldobin,
http:/ /www.geocities.com /SiliconValley/
Heights/7318/StkJJ.htm
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A single magnetic fluxon moving at a high velocity in a Josephson multilégey., high-temperature
superconductor such as BSCLCEan emit electromagnetic wavéSherenkov radiation which leads to the
formation of stable dynamic states consisting of several bunched fluxons. We find such bunched states in
numerical simulations in the simplest cases of two and three coupled junctions. At a given driving current,
several different bunched states are stable and move at velocities that are higher than the corresponding
single-fluxon velocity. These and some of the more complex higher-order bunched states and transitions
between them are investigated in detail.

I. INTRODUCTION tional LJJs is described by the sine-Gordon equation which
does not allow the fluxon to move faster than the Swihart
In recent years, a great deal of attention has been attractaglocity and, therefore, the Cherenkov radiation never ap-
to different kinds of solid-state multilayered systems, e.g.pears. In both cases mentioned ab@e discrete system or
artificial Josephson and magnetic multilayers, high-the system with thes term), the perturbation of the sine-
temperature superconductofsiTSS and perovskites, to Gordon equation results in a modified dispersion relation for
name just a few. Multilayers are attractive because it is oftery0S€phson plasma waves and the appearance of an oscillating
possible to multiply a physical effect achieved in one |ayertall. This tall, in turn, resul_ts in an attractive interaction be-
by N (and sometimes by?), whereN is the number of tween fluxons, i.e., bunching. Nevertheless, the mere pres-
layers. This can be exploited for fabrication of solid-state€NCe Qf an oscillating tail is not a sufficient condition for
devices. In addition, multilayered solid-state systems show Runching. . _
variety of physical phenomena which result from the inter- [N this paper, we investigate the problem of fluxon bunch-
action between individual layers. ing in a system of two and three inductively coupled junc-
In this article we focus on Josephson multilayers, the simtions with a primary statg1|0] (one fluxon in the top junc-
plest example of which is a stack consisting of just two longtion and no fluxon in the bottom oper [0[1|0] (a fluxon
Josephson junctiond.JJs. The results of our consideration ©nly in the middle junction of a three-fold stgckVe show
can be applied to intrinsically layered HTS materfatince that bunching is possible for some fluxon configurations and

the Josephson-stack model has proved to be appropriate féPecific range of parameters of the system. In addition, it is
these structures? found that the bunched states radiate less than single-fluxon

In earlier papers® it was shown that, in some cases, aStates, and therefore can move with a higher velocity. Sec-

fluxon (Josephson Vorte){'noving in one of the |ayers of the tion Il presents the results of numerical Simulations; in Sec.
stack may emit e|ectr0magneﬂp|asma waves by means of Il we discuss the obtained results and the feaSIblllty of the
the Cherenkov mechanism. The fluxon together with itsexperimental observation of bunched states. We also derive a

Cherenkov radiation has the profile of a traveling wave Simple analytical expression which shows the possibility of
#(x—ut), having an oscillating gradually decaying tail. the existence of bunched states. Section IV concludes the
Such a wave profile generates an effective potential for anork.

other fluxon which can be added into the system. If the sec-

ond fluxon is trapped in one of the minima of this traveling IIl. NUMERICAL SIMULATIONS

potential, we can get unched statef two fluxons. In such The system of equations which describes the dynamics of

a state, two fluxons can stably move at a small constanjosephson phases®® in two coupled LJ3 and LJ§ is!34
distance from one another, which is not possible otherwise.

Fluxons of the same polarity usually repel each other, even ¢QX S

being located in different layers. - Pi—sin - - Pu=adt—y, (D)
Similar bunched states were already found in discrete Jo-
sephson transmission linsas well as in long Josephson B . .B S
junctions with the so-calle@ term due to the surface imped- Pxx _ 4B sing _ oL = adpt— 2
12 . 2 tt J @2 XX t Vs
ance of the superconductth*?> The dynamics of conven- 1-S 1-S

0163-1829/2000/62)/14147)/$15.00 PRB 62 1414 ©2000 The American Physical Society
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where S(—1<S<0) is a dimensionless coupling constant, point. Since the average fluxon density is not singular in any
andJ=]"/j is the ratio of the critical currents, whike and  point of the junction(otherwise the energy will grow infi-
y=]lj~ are the damping coefficient and normalized bias cur-itely), we conclude that the average dc voltage is the same
rent, respectively, which are assumed to be the same in bofRr any pointx. Therefore, for faster convergence of our
LJJs. It is also assumed that other parameters of the jun@veraging procedure, we can additionally average the phases
tions, such as the effective magnetic thicknesses and capae’"® in Eq. (7) over the length of the stack.
tances, are the same. As has been shown e&flive Cher- After the values ofv*B were found as per Eq7), the
enkov radiation in a twofold stack may take place only if theevolution of the phase$™B(x,t) is simulated further during
fluxon is moving in the junction with smallgii.. We sup- 1 1T time units; the dc voltage¥”® are calculated for this
pose in the following that the fluxon moves in BJivhich  new time interval and compared with the previously calcu-
implies J<1. . ~lated values. We repeat such iterations further, increasing the
Am tge caseN=3, we impose the symmetry condition time interval by a factor of 1.1 until the difference in dc
¢_E¢> , Which is natural when the_fluxon moves in the voltages|V(1.1““T)—V(1.1”T)| obtained in two subse-
middle layer, and, thus, we can rewrite equations from Refquent iterations becomes less than an accucy: 10 %.

13 in the form The particular factor of 1.1 was found to be quite optimal
and to provide for fast convergence, as well as a more effi-

A B
Px — ph—singh— & =apt—v, 3) cient averaging of low harmonics on each subsequent step. A
1-282 " 1-25° ! very small value of this factor, e.g., 1.0fecall that only the

values greater than 1 have meaningnay result in a very
EX _ 25¢QX 5 slow convergence in the case whe(t) contains harmonics
R agi—y. (4)  with period=T. Large values of the factor, e.gz2, would

consume a lot of CPU time already during the second or
Note the factor 2 in the last term on the left-hand <ideS)  third iteration and, hence, are not good for practical use.
of Eq. (4). In the case of three coupled LJJs, we assime  Once the voltage averaging for currents complete, the
=1, since for more than two coupled junctions the Cherencurrenty is increased by a small amouéiy=0.005 to cal-
kov radiation can be obtained for a uniform stack with equatculate the voltages at the next point of the IVC. We use a
critical currents. distribution of the phase@nd their derivativesachieved in
the previous point of the IVC as the initial distribution for
the following point.

) ) A further description of the software used for simulations
The numerical procedure works as follows. For a givencan pe found in Ref. 15.

set of LJJ parameters, we compute the current-voltage char-
acteristic(IVC) of the system, i.eY*B(y). To calculate the
voltagesV”'B for fixed values ofy, we simulate the dynam-

A. Numerical technique

B. Two coupled junctions

ics of the phaseg”B(x,t) by solving Egs.(1) and (2) for For simulations we chose the following parameters of the
N=2 or Egs.(3) and(4) for N=3, using the periodic bound- system:S=—0.5 to be close to the limit of intrinsically lay-
ary conditions ered HTSs,JJ=0.5 to let the fluxon accelerate ab_ove the
S B(x=L)= ¢ B(x=0)+27NAB, (5) and develop Chergnkov radie_lt_ion tail. The velodty is the
smallest of the Swihart velocities of the system. It character-
AB(y— )= B(x=0 6 izes the propagation of the out-of-phase mode of Josephson
x (X=L)=¢,""(x=0), (6)

plasma waves. The value @f=0.04 is chosen somewhat
where NAB is the number of fluxons trapped in 8. In  higher than, e.g., in (Nb-AI-AIQ)y-Nb stacks. This choice
order to simulate a quasi-infinite system, we have choseis dictated by the need to keep the quasi-infinite approxima-
annular geometry with the lengtttircumference of the  tion valid and satisfy the conditioalL>1. A smallere re-
junction L=100. quires a very largé and, therefore, unaffordably long simu-

To solve the differential equations, we use an explicitlation times. So we made a compromise and chose the above

method [expressinge™B(t+At) as a function ofp*B(t)  « value.
and ¢*B(t— At)], treating ¢, with a five-point, ¢, with a First, we simulated the IVQ(y) in the[1]|0] state by
three-point, and¢; with a two-point symmetric finite- sweepingy from 0 up to 1 and making snapshots of the
difference scheme. The spatial and time steps used for thghase gradients at every point of the IVC. This IVC is shown
simulations weredx=0.025 and 6t=0.00625. After the in Fig. 1(a), and the snapshot of the phase gradientyat
simulation of the phase dynamics for=10 time units, we =0.3 is presented in Fig.(f)). As one can see, the Cheren-

calculate the average dc voltage&® for this time interval  kov radiation tail, which is present far>c_, has a se-
as quence of minima where the second fluxon may be trapped.
- 1(T A,B T — A,B 0
VA’B=?f q&{'\'B(t)dt: ¢ )T ¢~ )_ (7) 1.[1+1]0] state
° In order to create a two-fluxon bunched state and check its

The dc voltage at point can be defined as the average num-stability, we used the following “solution-engineering” pro-
ber of fluxons(the flux passed through the junction at this cedure. By taking a snapshot of the phase profiigg(x) at
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FIG. 1. () The current-velocity characteristiq( y) for the fluxon moving in thg 1|0] state(from left to righy. (b) The profiles of the
phase gradient&Q’B(x) in the statg 1|0] at y=0.3, corresponding to the bias poifitshown in fig.(a). The Cherenkov tail, present at
u>c_~0.817, has a set of minima where the second fluxon can be trafmpddhe profiles of¢§'B(x) in the statg 2|0] at the same value
v=0.3 as(b). Two fluxons shown in Fig(c) are almost undistinguishable.

the bias valuey,=0.3, we constructed an ansatz for thethe friction force is larger, but accurate calculations using
Eq. (9) and profiles from Figs. (b) and Xc) show that the

bunched solution in the form

ABX)= dap(X)+ dap(X+AX),

whereAx is chosen so that the center of the trailing fluxon is
placed at one of the minima of the Cherenkov tail. For ex-

®)

friction force acting on two fluxons with the tails shown in
Fig. 4b) is somewhat higher than that for Fig(cL This

result is not surprising if one recalls that, to create the
bunched state, we have shifted fti¢0] state by about half
of the tail oscillation period relative to the other single-

ample, to trap the trailing fluxon in the first, second, andyxon state. Due to this, the tails of the two fluxons add up

third wells, we usedAx=0.9, Ax=2.4, andAx=3.9, re-
spectively. The phase distributio@and derivative con-

structed in this way, were used as the initial condition for
solving Egs.(1) and(2) numerically. As the system relaxed

to the desired statfl+1|0], we further traced thei(y)
curve, varyingy down to 0 and up to 1.

We accomplished this procedure for a setdof values,
trying to trap the second fluxon in every well. Figuré)l

shows that a stable, tightly bunched state of two fluxons i
indeed possible. Actually, all thel+1|0] states obtained

this way have been found to be stable, and we were able
trace their IVCs up and down, starting from the initial value

out of phase and partly cancel each other, making the tail's
amplitude behind the fluxon in the bunched state lower than

of the bias currenty=0.3. For the case when the trailing
fluxon is trapped in the first, second, and third minima, such
IVCs are shown in Fig. 2.

The most interesting feature of these curves is that they
correspond to the velocity of the bunched state thaigher
than that of thg[1|0] state, at the same value of the bias
current. Comparing solutions shown in Figgb)land Xc),
we see that the amplitude of the trailing tail is smaller for the
bunched state. This circumstance suggests the following ex-
planation of the fact that the observed velocity is higher in
the statg 1+ 1/0] than in the single-fluxon one. Because the
driving forces acting on two fluxons in the bunched and un-
bunched states are the same, the difference in their velocities
can be attributed only to the difference in the friction forces.
The friction force acting on the fluxon in one junction is

+oo
Fumer | gubax ©

that in the[1|0] state.

From Fig. 2 it is seen that every bunched state exists in a
certain range of values of the bias current. If the current is
decreased below some threshold value, fluxons dissociate
and start moving apart, so that the interaction between them
becomes exponentially small. When the trailing fluxon sits in
2 minimum of the Cherenkov tail sufficiently far from the
leading fluxon, the IVC corresponding to this bunched state

bias current

2 almost undistinguishable from that of th&|0] state, as

0.6 . r —
4 3
N
0.54 S i
/
0.3 g S
1ol | JJf > ]
0.2 = -
0.1 / c \ 4
0.0 . - .

0.6

T T
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FIG. 2. Current-velocity characteristics of different bunched

stateg 2|0]: the second fluxon is trapped in the first minimum of
the tail (state[ 1+ 1,]/0]), the second minimungstate[ 1+ 1,|0]),

. . . _ and the third minimun(state[1+ 15|01). The y(u) curve for the
and the same holds for the other junction. By just looking af1|0] state is shown for comparison. The phase-gradient profiles

Figs. 1b) and Xc) it is rather difficult to tell in which case corresponding to bias poins—D are shown in Fig. 3.
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6 (a; L generate case of the in-phdde1] state. The stability of this
4] two bunched fluxons ] state was investigated in detail analytically by/@ech-
2] ] Jensen and co-worket, and is outside the scope of this
& ol - ] paper.
he 2] \/ ] Our efforts to create a bound stdtH 1] using the phase
4] 1 in the form(10) with M=1,2 . .. havenotled to any stable
I A A A configuration of bunched fluxons withx#0.
4-: two bunched fluxons - - 3. Higher-order states
) ﬁ_- ] Looking at the phase gradient profiles shown in Fig. 3,
s

» ’VVV\/\/\/\/\A/\/\/\/\/\,J ] one notes that these profiles are qualitatively very similar to

the original profile of the soliton with a radiation tail behind

4 : : 1 it [see Fig. )], with the only difference being that there are

67 () first fluxon———""—"—& ] two bunched solitons with a tail. So we can try to construct

47 second fluxon—""" ] two pairs of bunched fluxons moving together, i.e., get a
2 2] ] [2+2|0] bunched state. As before, the trapping of the trail-
< 07 MWWWV\NWW ] ing pair is possible in one of the minima of the tail generated

-2 . . .

" by the leading pair. To construct such a double-bunched state

: : we employ the initial conditions obtained using E8). at the
67160 first fluxon—"F~ bias pointyy=0.3, using the steady phase distribution ob-
41 second fluxon/ ] tained for the[ 2|0] state aty,=0.3. The shiftAx was cho-

= 2] ] sen in such a way that a pair of fluxons fits into one of the
< 01 \/\N ] minima of the tail. We note that in this case we needed to
2 '.WNVWV\N\NV\/\/ ] vary Ax a little bit before we achieved trapping of the trail-
41 , : , : , ] ing pair in a desired well.
0 10 20 30 Simulations show that the obtain¢@+ 2|0] states are

coordinate, x stable and demonstrate an eveghervelocity of the whole
four-fluxon aggregate. The corresponding IVCs and profiles
are shown in Figs. @) and 4b), respectively. Note that at
v<0.22 the bunched stafg2+2|0] splits first into a[1
+1,+ 15+ 15|0] state(the subscripts denote the well’s num-
‘ber M, counting from the previous fluxgnand at still lower

FIG. 3. The profiles of the phase gradiert®(x) in the[2|0]
states at bias point&—D marked in Fig. 2.

the two fluxons approach the limit when they do not interact
We have found that IVCs favl >3, whereM is the potential ; Lo ;
well’'s number, are indeed almost identical to that of theblas currenty<0.2, they split into two_independerjl

. . +1,|0] and[1+15|0] states. This two states move with
Eﬁhcgg ?;?at?r.algs?t?grgga?rtot; t:r?ebggr?g':;% Zigtixfonzrzgt?]':fﬁteslightly different velocities and can collide with each other
’ r]:1ue to the periodic nature of the system. As a result of the

differentM do nottake place in our system. Thus, we can say . . . .
that the current range of a bunched state with smaWler collisions, these states ultimately undergo a transformation

“eclipses” the bunched states with largit. into two independeritl + 15|0] states. As the bias decreases

The profiles of solutions found for various values of theP€low~0.1, the velocityy becomes smaller than. and the

bias current are shown in Fig. 3. We notice that at the bottont-N€renkov radiation tails disappear. At this point, each of the
of the step corresponding to the bunched state the radiatidrt + 15/0] states smoothly transforms into two independent
tail is much weaker and fluxons are bunched tighter. This i$ 1/0] states. The interaction between these states is exponen-
a direct consequence of the fact that at lower velocities th&ally small, with a characteristic lengt 1 (or A; in physi-
radiation wavelength and the distance between minima bekal unity. We note that the interaction between kinks in the
come smaller, and so does the distance between the two fluxegion u>c_, where they have tails, also decreases expo-
ons. At a low bias current, the radiation wavelength andnentially, but with a larger characteristic lengthe L.
hence, width of the potential wells become very small and The procedure of constructing higher-order bunched
incommensurable with the fluxon’s width. Therefore, thestates can be performed usid@ferent states as “building
fluxon does not fit into the well and the bunched states virblocks.” In particular, we also tried to form the2+ 1|0]
tually disappear. bunched state. Note that if two different states are taken as
building blocks, we need to match their velocities and,
2.[1]1] state hence, the wavelengths of the tail. Thus, we have to combine
two states at the same velocity, rather than at the same bias
current. Since different states have their own velocity ranges,
it is not always possible. As an example, we have con-
structed g 2+ 1|0] state out of 42|0] state aty=0.15 and

The initial condition for this state was constructed in a
similar fashion to th¢ 1+ 1|0] one, but now using a cross-
sum of the shifted and unshifted solutions:

new, = i imi
(X)= a g(X)+ dg a(X+AX). (10) a[1|0] state aty=0.45 using an ansatz similar to EQ).
e e oA These states have approximately the same velaci.95
If for the [1+ 1|0] stateAx were~(A—3)M, M=1,2..., (see Fig. 2 The constructed state was simulated, starting

then in the[1|1] state we have to takAx~\M. We can  from the pointsy=0.3 andy=0.35, tracing the IVC up and
also takeM =0, i.e., Ax=0, which corresponds to the de- down as before. Depending on the bias current the system
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0.6 —T T T
| @) ]
0.5 ]
0.4+ ] FIG. 4. (@ Current-velocity
- . 1 . 4. (@) Current-veloci
1[1,+1,+1 +1 |0]=[4| : .
é 0.3 4 T 110101 . characteristics of the bunched
3 7] e1,41,41)0 64 e stateq 4|0],[3|0], and[2+ 1]0].
8 4] ] Phase profiles of th¢4|0] state
2 024 2] ] and [3|0] state at y=0.3 are
6 1_‘ 2414101 ] % 0 ’VVV\/\/\/\/\/V\/\/\/\V/ shown in(b) and(c), respectively.
B e, [201+(1/0] 2] ;
l c_ I 2 [1+1,+1,101=[3(0] ]
0.0 T T T T T T T T T T T T T T
0.6 0.7 0.8 0.9 1.0 1.1 0 10 20 30
velocity coordinate, x
ends up in different states—namely, in the stfle+1l; =12 3. The profiles of the phase gradients at poiiD

+1,|0] for ¥,=0.3 or in the statd1+1;+1,/0]=[3[0]  are shown in Fig. 6. Qualitatively, bunching in the threefold
for y,=0.35. The IVCs of both states are shown in Fig. 4.system takes place in a similar fashion as that in the twofold
The profiles of the phase gradients are shown in Fig.4  system. Nevertheless, we did not succeed in creating a stable
Our attempts to construct the states with a higher numbeftuxon configuration withM =3, although stable states with
of bunched fluxons, e.g[4+4|0], have failed since four otherM were obtained. We would like to mention that when
fluxons do not fit into one well. We have concluded that sucithe second fluxon was put in the second minimum of the
states immediately get converted into one of the lower-ordepotential to get a state withl =2, the state wittM =1 has
states. been finally established as a result of relaxation. The same
behavior was observed when we put the fluxon initially in
the third minimum; the system ended up in the stgte
_ . _ +1,|0]. For M=4, the behavior was as usual. We tried to
We have performed numerical simulation of E@®.and  vary Ax smoothly, so that the center of the trailing fluxon
(4), using the same technique as described in the previougould correspond to different positions between the second

section. Our intention here is to study the three-junction casgng fourth wells, but in this case we did not succeed in
in which the fluxon is put in the middle junction @ 1|0]

C. Three coupled junctions

statg. All other parameters were the same as in the case 6l ]
of the two-junction system, except for the ratio of the 4 a
critical currentsJ, which was taken equal to 1. This simpl- _ 2 ]
est choice is made because in a systenNof2 coupled % 0 SSRGS -
identical junctions Cherenkov radiation appears in a 2] \/ y
[O]---]0|1]0]- - -|0] state foru>c_~0.765(this pertains to -4 [0|.1+11|0]. e 7_'0'15 ' ' ]
S=-0.5). 64y ' ' ' ' ]
Figure 5 shows the IVCs of the original st4@{1|0], as 4 .
well as IVCs of the bunched statgd|1+1|0], for M 2 .
F OJV\/\/V\/\/\/\/\/ ]
0.6 ——————————— -2 .
] ] L] oo @y=035 1
0.5 6-_ (c) ' ' ' ' \ ]
f £ 44 g
LS EEEEEEREEE N _ 2] ]
B Joito—] % 0] ° ]
3037 2 WWV\’VW ]
K EEEEEEE 4] 011+10] @ y=0.25 ]

o T T r T r
o 61 )
4 ]
0.1—‘/‘/&“} 2] ]

velocity -4 J

= 04es
0.6 0.7 0.8 0.9 1.0 1.1 1 [0]1+1,]0] @ 7= 0.40 ]
. . . . .
10

0 20 30
FIG. 5. Current-velocity characteristics of the stff§1/0], coordinate, x

bunched statg0| 1+ 1,,|0] for three different case$) = 1,2,3, and
the statg 0|3|0]. The profiles of the Josephson phase gradients at FIG. 6. The profiles of the Josephson phase gradi&ﬁ*&(x) in
pointsA-D are shown in Fig. 6 [0]1+1,,|0] states at point&—D marked in Fig. 5.
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obtaining the[ 1+ 15|0] state. Re(p) <|p/| (13
Following the same approach as for two coupled junc-

tions, we tried to construgt0+1|1[0+1] states. As in the  can be imposed to secure bunching. Hayes the root of Eq.

caseN=2, these states were found to be unstable for any12) which describes the lefoscillating tail of the leading

M>0; e.g., they would split into[0[1+1,/0] and [1|  (right) fluxon, andp, is the root of Eq(12) which describes

—1|1]. The state[0|2+2|0] was not stable either foM  the right(nonoscillating tail of the trailing (left) fluxon.

=1,2,3 and the bias currenig=0.20, 0.30, 0.35. (i) The relativistically contracted fluxon must fit into
The state[ 0|2+ 1|0]=[0|3|0], constructed by combin- the minimum of the talil, i.e.,

ing solutions for th¢ 01|07 and[0]|2|0] states moving with

equal velocities, was found to be stable when starting at 5

=0.25 and sweeping the bias current up and down. The de- 77 - U__l (14)

pendencei(y) is shown in Fig. 5. One may note that for the Im(p) 2 '

states[0|2|0] and [0|3|0] the dependence is not smooth.

Indeed, for these states the Cherenkov radiation tail is SQnere/Im(p) is half of the wavelength of the tail-forming

long (~L), that our annular system cannot simulate an infi-radiation (the well’s width, and the expression on the RHS

nitely long system, resulting in Cherenkov resonances whichy gq. (14) approximately corresponds to the contraction of

inevitably appear in the system of a finite perimétér. the fluxon at the trans-Swihart velocities. Although our sys-
tem is not Lorentz invariant, numerical simulations show that
lll. ANALYSIS AND DISCUSSION the fluxon indeed shrink@ot up to zerp when approaching

Because of the nonlinear nature of the bunching problemn® Swihart velocityc . from both sides.
it is hardly tractable analytically. Therefore, we here present Following this approach, we have found that the second
an approach in which we analyze the asymptotic behavior ofondition (14) is always satisfied. The first conditiod3)
the fluxon’s front and trailing tails in the linear approxima- 9ives the following result. Bunching is possible @t-up
tion. This technique is similar to that employed in Ref. 9. We>c_. The value ofu, can be calculated numerically, and
assume that, at distances which are large enough in compafer S=—0.5, J=0.5, anda=0.04 it isu,=0.837. Looking
son with the fluxon’s size, the fluxon’s profile is exponen-at Fig. 2, we see that this velocity corresponds to the bias

tially decaying, point where the 1+ 1),|0] states cease to exist. Thus, our
crude approximation reasonably predicts the velocity range
(X, t)exg p(x—ut)], (11D where the bunching is possible.
wherep is a complex number which can be found by substi-
tuting this expression into Eq¢l) and(2). As a result we IV. CONCLUSION

arrive at the equation
In this work we have shown by means of numerical simu-

p? - sp lations the following.
- —pu—1-apu Tl (i) The emission of the Cherenkov plasma waves by a
-0. fluxon moving with high velocity creates an effective poten-
S¢ p? , o, 1 tial with many wells, where other fluxons can be trapped.
Tl 1-9 —prutT 5T apu This mechanism leads to bunching between fluxons of the

samepolarity.

12) (i) We have proved numerically that in the system of
In general, this yields a fourth-order algebraic equatiortwo and three coupled junctions the bunched states for the
which always has four roots. If we want to describe a solitorfluxons in thesamejunction such ag1+1|0], [1+2|0],
moving from left to right with a radiation tail behind it, we [2+2|0], and[0|1+ 1|0] are stable. The states with fluxons
have to find the valuep among the four roots which ad- in different junctions like{1|0+ 1] and[0+1|1|0+1] are
equately describe the front and rear parts of the soliton. Beaumerically found to be unstablexcept for the degenerated
cause the frongright) part of the soliton is not oscillating, it caseM =0, when[1|1] is a simple in-phase state
is described by Eq11) with real p<<0. The rear(left) part (iii) Bunched fluxons propagate at a substantially higher
of the soliton is the oscillating tail; consequently it should bevelocity than the corresponding free ones at the same bias
described by Eq(11) with complexp having Rep)>0, the  current, because of lower losses per fluxon.
period of oscillations being determined by the imaginary part (iv) When decreasing the bias current, transitions be-
of p. Analyzing the fourth-order equation, we conclude thattween the bunched states with different separations between
the two necessary types of the roots coexist only tior fluxons were not found. This behavior differs from what is
>c_, which is quite an obvious result. known about bunched states in a discrete systémaddi-

To analyze the possibility of bunched state formation, welion, a splitting of multifluxon states into the states with
consider two fluxons situated at some distance from eachMaller numbers of bunched fluxons is observed.
other. We propose the following two conditions for the two
fluxons to form a bunched state.

(i) Since nonoscillating tails result only in repulsion be-
tween fluxons, while the oscillating tail leads to mutual trap-  This work was supported by Grant No. G0464-247.07/95
ping, the condition from the German-Israeli Foundation.
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