
Phase Locking Dynamics

in 2D Josephson Junction Networks with Small Loop Inductances

Wolfram Krech, Michael Basler, Birgit Frank, and Konstantin Yu. Platov
Friedrich Schiller University, Institute of Solid State Physics, Helmholtzweg 5, D-07743 Jena, Germany

Abstract|We discuss some theoretical problems in

connection with external 
ux in hybrid 2D Josephson

networks with junctions attached to the lines in bias

direction only. With very small loop inductances as-

sumed, the junctions within the interferometer con�g-

urations perpendicular to the bias current are strongly

coupled. This way the synchronization of the Joseph-

son oscillations in 2D hybrid arrays reveals a certain

similarity to the well-known phase locking dynamics

in linear Josephson junction chains.

We start with an analysis of phase locking in simple

SQUID cells within the resistively shunted junction

(RSJ) model. Taking into account the 
ux quantiza-

tion, we develop a systematic perturbation method to

investigate the dynamics of cells with small but non-

vanishing loop inductances. These strongly coupled

SQUIDs possess quasi-uniform synchronization with

very small phase shifts between the junctions' oscil-

lating voltages for allmost all values of external 
ux.

Next, we consider the mutual phase locking in arrays

consisting of small-inductance loops coupled via a joint

line transverse to the bias current. It is shown that

in the stable dynamic regime both cells oscillate in an

antiphase mode.

Based on the analytical procedure combining ideas

from small-inductance approximation with those from

slowly varying phase we deduce rigorous results for

ladder arrays and inductively coupled multi-junction

interferometers. Finally, considering hybrid Joseph-

son junction networks with external load impedance

and solving the problem of interplay of long-range and

nearest-neighbour interactions, we demonstrate a pos-

sibility to look for e�ective multi-junction microwave

radiation sources systematically.

I. Introduction

Discrete Josephson junction arrays have been under
consideration as tunable millimetre and sub-mm wave-
length radiation sources for several years now [1]{[3]. A
growing interest has evolved in 2D arrays [4]{[9] because
they should be capable of delivering a larger radiation out-
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Fig. 1. The hybrid Josephson junction array under consideration.
The 2D network consists of N interferometer rows and M columns
shunted by an external load impedance Zs. Loop inductances are
not marked, I0 is the bias current per column.

put and substantially decreasing the oscillation linewidth
compared to their 1D counterparts. In particular, in this
paper we are concerned with hybrid networks contain-
ing N � M junctions attached to the lines in bias di-
rection only (Fig. 1). In order to draw a picture of
the mentioned advantages of networks, we call to mind
the optimum oscillation power Popt which can be de-
livered to a matched load by a linear chain of N � 1
junctions. With su�ciently high frequencies assumed,
� >
� �c = IcRn=�0 (I0 >

� 1:5Ic), this is within the frame
of the RSJ model [10]

P
(N�1)
opt =

1

8
I2cRs; (1)

where the impedance match is achieved by optimizing the
number of junctions,

N = Nopt = Rs=Rn: (2)

Ic and Rn are the critical current and normal resistance
of the (identical) junctions, respectively. Otherwise, if



� �

L
�

L
�

�

L
�

L
�

L
�

O��

O��

Fig. 2. The SQUID cell which can be described with the strong-
coupling method. The symbols l; ', and i� explained in the text
denote scaled loop inductance, 
ux through the SQUID ring, and
circular current, respectively.

only 
uctuations due to thermal noise are considered, the
linewidth �� is [10]

��(N�1) =
1

N

4�

�2
0

RnkBT: (3)

Introducing the substitutions (cf. [3])

Ic !MIc; Rn ! Rn=M; (4)

the relations (1)-(3) are easily generalized to arrive at the
corresponding expressions

P
(N�M)
opt =

1

8
I2cRs; (5)

��(N�M) =
1

NM

4�

�2
0

RnkBT (6)

with

N = Nopt =MRs=Rn (7)

for arrays with N rows and M columns. However, the
scaling (4) is only true if all junctions are unifomly phase-
locked. But the dynamical behaviour of such arrays is
rather complicated, especially, the in
uence of external
magnetic 
ux is not yet completely understood [11], [12].
The presence of a magnetic �eld can cause certain com-
plications, e.g. the coexistence of in-phase and antiphase
coherent states [13]. The values of the loop inductances
play a crucial role in these processes and in synchroniza-
tion dynamics in general. In order to illustrate this fact,
we consider a simple SQUID cell (Fig. 2) with weak cou-
pling [10], [14], i.e.,

l � 2�IcL=�0 � 1: (8)

(l marks the normalized loop inductance.) In this case,
coupling can be neglected in zeroth order with respect
to l�1, and both junctions oscillate with the respective
phases of over-critically biased free junctions,

�1;2 = 2arctan

�
�0

�0 + 1
tan

�
�0s� �1;2

2

��
+
�

2
; (9)
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Fig. 3. Voltage phase shift � vs. normalized external 
ux from
analytical approximation for weak inductive coupling, l � 1 (bias
current i0 = 1.5).

showing an oscillation frequency

�0 = (i20 � 1)1=2 (10)

and constant phases �1 and �2. For the sake of simplicity,
we have introduced the normalized bias current,

i0 = I0=Ic; (11)

which is supposed to ful�ll the condition i0 > 1 here. s
denotes the scaled time,

s =
2e

�h
IcRnt: (12)

Furthermore, we de�ne the normalized external 
ux
through the SQUID loop,

' = 2��=�0: (13)

Looking for lowest-order phase locking solutions [10], [14],
[15],

_� = 0; � = �1 � �2; (14)

one �nds

� �
1

i0(10 + �0)
sin � = ': (15)

(The dot (�) means di�erentiation with respect to the di-
mensionless time s (12).) For usual operation regimes
with i0 ' 1:5 this results in an approximately linear rela-
tion between � and ', as indicated in Fig. 3. This way 2D
networks, in contrast to 1D series arrays, su�er in case of
l > 1 from a high sensitivity to magnetic �elds because of
their intrinsic superconducting loops representing multi-
junction dc SQUIDs. The pronounced dependence (15)
of the mutual phase shift � on the 
ux ' may ultimately
explain the fact why, up to now, the radiation power of



2D arrays [16], [17] was found to be much smaller than
that of 1D arrays [6], [18].
In order to simplify the dynamics of 2D networks in

general, the nonvanishing inductance of the loops should
be minimized, l � 1. To investigate this conception with
respect to its consequences, we perform within the RSJ
model a theoretical analysis of phase locking in strongly
coupled Josephson junction cells (Sec. II). For this pur-
pose, we develop a systematic perturbation method allow-
ing the investigation of phase locking in cells with small
loop inductance. In Sec. III, we consider synchronization
in a simple 2D array consisting of two loops coupled via
an inductive joint line transverse to the bias current. It
is shown that in the stable oscillation regime both cells
oscillate in an antiphase mode. This result is applied to
a study of externally loaded Josephson junction ladder
arrays (Sec. IV). Here a Lyapunov stability condition is
found controlling the realization of the radiating uniform
oscillation regime.
Based on the analytical procedure combining ideas from

small-inductance approximation with those from slowly
varying phase, we deduce rigorous results on inductively
coupled multi-junction interferometers (Sec. V). Finally,
after solving the problem of interplay of long-range and
nearest-neighbour interferometer interactions, we propose
e�ectively operating microwave radiation sources based
on hybrid Josephson junction networks with small loop
inductances in Sec. VI.

II. Phase locking in strongly coupled SQUID

cells

Contrary to most theoretical investigations, which are
mainly based on computer simulations, we concentrate on
approximate analytical results. For the sake of simplicity,
the required calculations are performed by means of com-
mon normalized variables (cf. Sec. I). The advantage of
this designation is usually a better insight into physical
mechanisms in combination with a broader range of ap-
plicability concerning the choice of parameters. However,
we �nd it quite valuable to compare analytical predictions
with numerical results occasionally.
The Josephson dynamics of the SQUID-like cell with

identical junctions shown in Fig. 2 is described by the
basic equations

_�k + sin�k = ik (k = 1; 2) (16)

of the RSJ model in conjunction with conservation of cur-
rent,

2i0 = i1 + i2; (17)

and 
ux quantization,

�2 � �1 � ' + li� = 0: (18)

Here the circular current is de�ned as

i� = i2 � i1: (19)

A. Perturbation scheme for strong inductive coupling

We �nd it convenient to introduce new variables,

� = (�2 + �1)=2; � = (�2 � �1)=2; (20)

providing the set of equations

_� + sin� cos� = i0; (21)

_� + cos � sin� =
1

l
('� 2�): (22)

These equations already indicate that the behaviour of �
is necessarily determined by the bias current i0 and that
of � by the 
ux '. We perform a perturbation expansion
valid for small coupling, l� 1,

� = �0 + l�1 + � � � ; (23)

� = �0 + l�1 + � � � : (24)

Expanding Eqs. (21,22) and balancing equal orders of l,
we arrive at the following set of relations [15], [19]:

_�0 + sin�0 cos �0 = i0; (25)

_�1 + �1 cos �0 cos �0 ��1 sin�0 sin�0 = 0; (26)

2�0 = '; (27)

_�0 + cos�0 sin�0 = �2�1: (28)

At �rst, solving the simpler lowest-order Eqs. (25,27)
and exploiting their results, we obtain, after a lengthy
calculation, the complete solution scheme

�0 = 2arctan

�
�0

i0 + cos '2
tan

�0s

2

�
+
�

2
; (29)

�0 =
'

2
; (30)

�1 =
tan2 '2

2(i0 + cos '
2 cos �0s)

�
i0 cos

'

2
(1 � cos �0s)

+ �20 ln
i0 + cos '

2 cos �0s

i0 + cos '2

�
; (31)

�1 =
1

2
sin

'

2

�0 sin �0s

i0 + cos '2 cos �0s
(32)

with the re-de�nition of the frequency expression (10),

�0 =
�
i20 � cos2

'

2

�1=2
; (33)

suggested by the critical SQUID current, c(') = cos '2 .
After solving the equations for � and � up to the �rst
order, we can go back to the Josephson phases and, �nally,
determine voltages across junctions,

v1;2 = _�1;2 = _�� _�: (34)

This result has several interesting features. First, for any
' there exists a (stable) solution exhibiting phase locking.
Second, the oscillation frequency becomes 
ux-dependent,
which may cause serious consequences for synchronization
in larger arrays. Third, there is a phase shift between
junction voltage oscillations caused by the last term in
Eq. (34) in general.
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Fig. 4. Phase shift � vs. normalized external 
ux ' for strong
inductive coupling (l = 0.1) and medium inductive coupling (l =
1.0) obtained from analytical approximation (i0 = 1.5).

B. Evaluation of phase shift

In general, there is no simple de�nition of phase shift
in cases like this, because of higher harmonics present in
the solution. A plausible approach is to de�ne phase shift
based on the lowest harmonics. For this purpose, we have
to evaluate the �rst coe�cients of the Fourier series

_�1;2 = �+ a1;2 cos �0s + b1;2 sin �0s+ � � � : (35)

After a tedious calculation involving an expansion of a
logarithmic term (cf. (31)) we arrive at

� = �0; (36)

a1;2 =
�0

i0 + �0

�
�2 cos

'

2
� �0 sin

'

2

�
; (37)

b1;2 = b

= l
sin2 '2 cos

'
2

i0 + �0

�
1 +

cos '2
i0

+
�30

4i20(i0 + �0)

�
:

(38)

With these coe�cients known, we can work out the
phase shift between the voltage oscillations,

� = sgn[b(a1 � a2)]�

�

�
� � arccos

�
a1a2 + b2

[b2(a21 + a22 + b2) + a21a
2
2]
1=2

��
+ �

(0 � ' � 2�): (39)

Fig. 4 provides a graphical representation of the phase-

ux dependence based on our analytical approximation.
This approach was accompanied by numerical simulations
exploiting the program PSCAN [20], [21] (Fig. 5). A com-
parison of Figs. 4 and 5 shows that even for l = 1, where
the analytical approximation is no longer valid, results are
quite similar to those of the numerical simulation. The
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Fig. 5. Like Fig. 4, results obtained from numerical simulation.

main conclusion from these �gures is that there is nearly
no phase shift for all ', except in a tiny region around
' = 2� where phase shift rapidly grows to 2�.
For very strong coupling, it is possible to derive a simple

rule of thumb for the width of the small region around
' = �. For this purpose, we rewrite the phase shift as

�(') = arctan(a2=b)� arctan(a1=b); 0 � ' � �: (40)

For l ! 0 the second arctan goes to �
2 , whereas the �rst

one changes its sign at the 
ux '?,

cos
'?

2
�
l

2
�0 sin

'?

2
= 0: (41)

Neglecting higher orders with respect to l, we obtain

'? ' � � i0l: (42)

This provides a simple approximation for the phase of the
cells under investigation,

� ' ��(' � '?) (' � �): (43)

Fig. 6 con�rms that for su�ciently small l the solution is
indeed perfectly approximated by a Heaviside step func-
tion. This approximation might be useful considering
more complicated arrays.

C. Remarks

Real junctions never have identical parameters. The re-
sponse to parameter di�erences becomes particularly im-
portant in large arrays; here we consider junctions hav-
ing di�erent critical currents as well as normal resistances,

Ic1 6= Ic2 ; Rn1 6= Rn2; (44)

under the subsidiary condition

Ic1Rn1 = Ic2Rn2 (45)
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Fig. 6. Phase shift �(') in the vicinity of ' = � for extremely strong
coupling, obtained from analytical approximation (39) (i0 = 1.5).

which is usually satis�ed with a good accuracy as a con-
sequence of the technological process.
Introducing the mean critical current

Ic =
1

2
(Ic1 + Ic2 ) (46)

and the parameter splitting

# = (Ic2 � Ic1 )=(Ic2 + Ic1); (47)

we derive the following modi�ed equations of motion (cf.
(21,22)) for the cell shown in Fig. 2:

_� + sin� cos� =
1

1� #2
i0 �

#

l(1� #2)
(' � 2�);

(48)

_� + cos � sin� = �
#

1� #2
i0 +

1

l(1 � #2)
('� 2�):

(49)

This pair of equations already displays some e�ects quali-
tatively: (i) Up to the �rst order in # there is a correction
of the magnetic 
ux � �i0l#. (ii) There is a correction of
the bias current #('� 2�)=l being of �rst order, too.
Treating loop inductance as well as parameter splitting

as small expansion parameters,

� = �0 + l�10 + #�01 + � � � ; (50)

� = �0 + l�10 + #�01 + � � � ; (51)

we now can perform a perturbative treatment of the sys-
tem (48,49) with respect not only to l � 1 but also to
#� 1. Thus, as a result one �nds that the Fourier coef-
�cients a1;2 (37) are una�ected by small parameter split-
tings #, whereas there is an additional contribution to
b1;2,

b#1;2 = b# = 2#(i0 + cos
'

2
)
sin '

2

i0 + �0
: (52)
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Fig. 7. The in
uence of parameter splitting # on the phase shift �(')
for strong coupling obtained from analytical approximation (at the
top) and numerical simulation (at the bottom); i0 = 1.5, l = 0.1.

The phase shift �(') obtained this way proves a conjecture
on the dominant role of the loop inductance in the strong-
coupling case (Fig. 7). One observes that the phase shift,
being slightly raised generally, is considerably lowered for
' ' �.

III. Antiphase locking in a double cell

There may be several reasons responsible for poor radi-
ation output generated by 2D Josephson junction arrays
(cf. Sec. I). Besides technological problems this can as
well result from the fact that basic mechanisms of phase
locking in 2D networks, despite some interesting results on
several aspects [7], [9], [22], [23], do not yet seem to be fully
worked out theoretically. It is well known, though, that
there is no phase locking in unshunted 2D arrays (with-
out symmetry breaking architectures [17]) in absence of
external 
ux. A theoretical study of the in
uence of a
magnetic �eld using a \master slave mechanism" [22] led
to the conclusion that an external 
ux can indeed lead to
a certain phase locking; however, the de�nite value of the
phase di�erence could not be determined, and stability
was not considered at all.
Let us start here with a simple model con�guration [24],

consisting of two loops coupled via a line transverse to the
bias current (Fig. 8). Despite of its simplicity it is di�cult
enough to show essential features of larger arrays. It is
truly 2D with a possible 
ux entering the loops and an
inductance in the transverse line, as is typically of hybrid
arrays.
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Fig. 8. The Josephson junction double cell with inductive coupling
line.

A. Model of the double cell

Our propositions are as follows (cf. Fig. 8): (i) All junc-
tions are considered to be identical. (ii) Self-inductance
is taken into account while mutual inductances are ne-
glected. (iii) There is no external load. (iv) We exploit a
phase slip technique which has been applied successfully
to 1D arrays before [10], [25], [26]. Their applicability cru-
cially depends on the assumption that the normalized ring
inductance is su�ciently small, l � 1. The dynamics of
the junctions is described by the RSJ equations for the
Josephson phases �ij,

_�ij + sin�ij = iij (i; j = 1; 2); (53)

completed by two 
ux quantization conditions,

�12 � �11 � '� l�i = 0; (54)

�22 � �21 � '+ l�i = 0: (55)

In the following the transverse current playing a crucial
role in the coupling is denoted by �i (see Fig. 8). In addi-
tion, de�ning the circular currents,

i�i = (ii2 � ii1)=2 (i = 1; 2); (56)

�i can be expressed as

�i = i�2 � i�1: (57)

In strong coupling problems of this type it is useful to
introduce (in analogy to Sec. II.A) sum and di�erence
variables,

�i =
1

2
(�i2 + �i1); �i =

1

2
(�i1 � �i2): (58)

By the aid of these variables the problem (53-55) can be
reformulated as

_�i + sin�i cos�i = i0; (59)
_�i + cos �i sin�i = i�i ; (60)

�1 +�2 � ' = 0; (61)

�1 ��2 � l(i�2 � i
�
1) = 0: (62)

This indicates that the voltage sums of both loops are
controlled by the bias current i0 > 1, while the circular
currents control voltage di�erences. Eq. (61) is the 
ux
quantization for the whole array, while Eq. (62) shows
that di�erences in the circular currents spread the 
ux
di�erences in the loops. The transverse current �i can be
obtained from

�i = i�2 � i�1 =
1

2
(�1 ��2): (63)

B. Stable antiphase locking

The system (59-62) is treated perturbatively, assuming
the ring inductance l to be su�ciently small:

�i = �i;0 + l�i;1 + � � � ; (64)

�i = �i;0 + l�i;1 + � � � : (65)

In the lowest order, 
ux quantization provides

�i;0 =
'

2
;

i.e., junctions within both loops oscillate exactly in phase.
The Josephson oscillation itself can be evaluated from Eq.
(59) as

�i;0 = 2arctan

�
�0

i0 + cos '2
tan

�0s � �i
2

�
+
�

2
: (66)

Using Eqs. (60), one determines the circular currents

i�i = sin
'

2
cos �i;0 (67)

with

cos �i;0 = �
�0 sin(�os � �i)

i0 + cos '2 cos(�0s � �i)
: (68)

To summarize, in zeroth order the junctions within each
cell oscillate in phase independently of the value of the

ux. However, the relative oscillation phase between the
cells remains undetermined.
Passing to the next order, we start again from the

Josephson phase di�erences (61-62) inserting the lowest
order result (67). Finally, we get up to the �rst order

�1;2 =
'

2
� sin

'

2
(cos �2;0 � cos�1;0) : (69)

From this result, one can read o� the tranverse current

�i = sin
'

2
(cos �2;0 � cos �1;0) (70)

with the basic harmonic

�i =
4�0 sin

'
2

i0 + �0
cos

�
�0s �

�1 + �2
2

�
sin

�
�2 � �1

2

�
: (71)

We exploit the method of \slowly varying phase" for eval-
uating the Josephson phase sums of the cells. According



to this method, �rst order corrections are put into the
phases �i,

�i = �i(s); (72)

which are supposed to change adiabatically in time (in
comparison to the rf Josephson oscillations). In addition,
we allow for the possibility that the joint synchronization
frequency � be (slightly) di�erent from the autonomous
frequency �0. With these assumptions the voltage sums
can be written as

_�i =
�0(� � _�i)

i0 + cos '2 cos(�s � �i)
: (73)

Inserting this expression into Eq. (59) and neglecting
higher orders in l, after some algebra we arrive at

�0(� � �0 � _�1;2) = �
l

4
�i(s) sin'

�
l

2
i0�i(s) sin

'

2
cos(�s � �1;2):

(74)

To proceed, we average over one oscillation period, con-
sidering �i as roughly constant over this time interval. It
can be shown that only the lowest harmonic (70) of �i con-
tributes. The evaluation of mean values results in the
evolution equations

�0(� � �0 � _�1;2) = �
�0

2(i0 + �0)
sin2

'

2
sin(�1 � �2): (75)

Subtraction gives the so-called reduced equation for the
phase di�erence �1 � �2,

_� = l
i0

i0 + �0
sin2

'

2
sin �; (76)

displaying formally the same structure as the RSJ equa-
tion describing an autonomous junction. It permits two
phase-locking solutions,

�� = 0; �; (77)

describing in-phase or antiphase oscillations of the cells.
Investigation of stability leads to the Lyapunov coe�cient

� = l
i0

i0 + �0
sin2

'

2
cos ��: (78)

As a result, only antiphase oscillations are stable against
small perturbations. To summarize, the following picture
emerges: We know (cf. Sec. II), that the two junctions
within each strongly coupled cell are generally (except for
' ' �) aligned in phase. In addition, both junctions of
cell 1 oscillate in antiphase mode relative to those of cell 2.
Synchronization of the cells in this state is provided by the
alternating current �i, 
owing through the joint transverse

connection and playing the role of an order parameter. It
is obvious that such a state will be nonradiating.
All results described analytically in this section are in

complete agreement with corresponding numerical simu-
lations. These show that the observed antiphase locking is
not bound to the case of small inductances treated analyt-
ically here, but is a general feature of this type of arrays.
If this remains true for larger arrays, which will be under
investigation in the following sections, this might well ex-
plain the low radiation output obtained with 2D arrays
up to now.

IV. Phase locking in Josephson ladder arrays

Here we study the phase locking in 2D arrays of the
ladder type (cf. [27]). For this purpose, we exploit the
speci�c formulation of the lowest harmonic approximation
having proven useful in Sec. III in the study of double-cell
arrays. As a result, we obtain conditions for the stability
of the in-phase (or uniform) oscillation regime required
for outcoupling the maximum radiation output from the
array. Based on results of our previous investigations we
focus on small-inductance cells guaranteeing a small phase
shift within each cell. Thus the main question to be an-
swered here concerns synchronization between cells in bias
direction.

A. Josephson ladders: Basic conception

Fig. 9 shows the scheme of a ladder array of hybrid
type with junctions only attached to the lines in bias di-
rection [7]. We include the e�ect of non-vanishing external

ux as well as non-vanishing inductances in longitudinal
as well perpendicular direction relative to the bias direc-
tion. Moreover, we add an external shunt acting as a load
via which the radiation may be outcoupled from the ar-
ray. Based on the RSJ equations in conjunction with 
ux
quantization within each loop and Kirchho�'s mesh rule
for the external shunt loop we get the following system
of equations descibing an N cell array with i = 1; � � � ; N
referring to cell i:

_�i + cos�i sin�i = i0 �
is
2
; (79)

_�i + cos�i sin�i = i�i ; (80)

and

�i �
'

2
+ (lk + l?)i

�
i �

l?
2
(i�i�1 + i�i+1) = 0; (81)

NX
i=1

��i � rs_i � �s�is �
1

cs
is = 0: (82)

Here we found it convenient to combine Josephson phases
�i1;�i2 within cell i as �i;�i according to rule (58); nor-
malized circular currents are de�ned as i�i = (Ii2�Ii1)=2Ic
(cf. (56)). In general, we have introduced scaled vari-
ables in agreement with guidelines in previous sections.
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Fig. 9. The Josephson junction ladder array under consideration.
l?;k are the array's transverse and longitudinal inductances, while
cs; ls; rs refer to the external shunt's components. The shunt current

ows as indicated through the load.

E.g., the shunt is characterized by the dimensionless ca-
pacitance cs = 2eR2

nIcCs=�h, inductance �s = 2�Ic(Ls +
NLk=2 + L?=2)=�0 (where it is convenient to include
the longitudinal inductances of the array as well) and re-
sistance rs = Rs=Rn with Cs; Ls; Rs being the external
shunt's capacitance, inductance, and resistance as being
indicated in Fig. 9. All junctions are considered as be-
ing identical. The shunt is characterized by its impedance
and phase angle as

zs =j zs j e
i( s�

�

2
); (83)

where

j zs j=

"�
rs +

N

2

�2

+

�
�s� �

1

cs�

�#1=2
; (84)

sin s =
rs +N=2

j zs j
; cos s =

1=cs� � �s�

j zs j
: (85)

B. Stable uniform phase locking

The normalized frequency � contained in the expres-
sions (84,85) relates already to synchronization within the

total ladder con�guration. Indeed, applying the perturba-
tive scheme including the method of slowly varying phase
(along the lines developed in Sec. III) to the equations
of motion (79-82) step by step, we arrive at the reduced
equations

_�i = � � �0

+
l?
2

i0
i0 + �0

sin2
'

2
[sin(�i � �i+1) + sin(�i � �i�1)]

+
1

i0 + �0
cos2

'

2

NX
j=1

sin(�i � �j �  s);

(i = 2; � � � ; N � 1): (86)

Similar equations apply to the boundary cells.
The three terms in Eq. (86) admit of a clear interpre-

tation. The �rst one is independent of the index i and
leads to a frequency correction and as such will not be
of interest in our context. The second characterizes the
e�ect of internal interactions within the array, while the
third one describes the long-range synchronizing e�ect of
the external shunt. The contrary 
ux dependence of these
two terms has remarkable consequences: For vanishing or
nearly vanishing external 
ux, synchronization of the cells
is completely controlled by the external shunt. However,
for 
uxes in the vicinity of � (corresponding to half a 
ux
quantum per cell) the external shunt no longer has any
e�ect. In this case the behavior of the array is controlled
by its internal properties.
Next we combine phases �i as

#i = �i+1 � �i (i = 1; � � � ; N � 1):

This way we obtain reduced equations for the phase dif-
ferences #i,

_#i = �
l?
2

i0
i0 + �0

sin2
'

2
(sin #i+1 � 2 sin#i + sin#i�1)

+
1

j zs j

1

i0 + �0
cos2

'

2

�
cos

�
�i+1 + �i

2
�  s

�
�

� sin
#i
2

NX
j=1

cos �j

+sin

�
�i+1 + �i

2
�  s

�
cos

#i
2

NX
j=1

sin �j

�
: (87)

While we are unable to derive a general solution of this
set of equations here, two important modes can be shown
to exist. (For more detailed investigations see Sec. VI.)
Simple inspection of (87) reveals the existence of the in-
phase mode with

#i = �i = 0: (88)

Closer inspection shows that at least for even N there also
exists an antiphase mode with

#i = �: (89)



In the following, we concentrate on the stability of the
maximally radiating in-phase mode (88). Based on the
Lyapunov ansatz

#i = 0 + �ie
�s; j �i j� 1; (90)

we arrive, via the conventional condition for nontrivial
perturbation amplitudes, at N � 1 Lyapunov exponents,

�k =

�
1� cos

k�

N

�
l?
2
sin2

'

2
+
N cos s
4i0 j zs j

cos2
'

2

(k = 1; � � � ; n� 1); (91)

corresponding to N�1 possible relative oscillation modes.

Eq. (91) represents the main result of the stability con-
siderations. The largest of the Lyapunov exponents limits
the stability of the uniform oscillation mode of junctions
adjacent in bias direction. The �rst term is positive, re-
sulting from the fact that internal interaction attempts to
destabilize this mode. However, as the sign of the second
term depends on the character of the external load, this
tendency can be overcome by adding an inductively dom-
inated external shunt. Stable in-phase oscillations require
ladders with (i) small inductances (ii) being shunted by
an inductive external load.

It should be point outed that the coupling mechanism
between the cells is qualitatively di�erent from the one
within cells: Within cells we have a SQUID-type coupling
(cf. Sec. II) resulting in a 
ux-dependent continuous tran-
sition between the in-phase and the antiphase regime (be-
coming more abrupt the smaller the inductance is). On
the other hand, coupling between cells is governed by a
competition between long-range interaction controlled by
the external load and short-range interaction controlled
by the high-frequency currents 
owing through the hori-
zontal lines. While we did not cover all possible oscillation
regimes, the result (91) indicates a 
ux-dependent point
where the in-phase regime becomes instable.

V. Interaction of coupled interferometers

Thus we have seen that magnetic �elds can in
uence
the phase locking within a 2D array [11], [12] and conse-
quently reduce the maximum output of oscillation power.
In order to �nd a well-suited approach to the dynamics of
general hybrid-type networks (Fig. 1), let us now study
the problems, connected with external 
ux, of a 2 �M
array consisting of two rows (or interferometers), each of
them with M junctions (Fig. 10). Repeatedly, the anal-
ysis is carried out by means of the small inductance per-
turbation scheme already successfully used (Secs. II-IV).
For the sake of simplicity, both identical junctions (with
vanishing capacitances) and identical cell inductances are
presupposed. Without essential loss of generality we as-
sume an even number M of junctions within the inter-
ferometers. This way we are able to replace the earlier
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Fig. 10. The hybrid 2 � M Josephson network consisting of two
coupled interferometers.

de�nitions of sum and di�erence variables (cf. e.g. (58))
by the convenient pairing scheme [28], [29]

�kj = (�kM�j+1 +�kj)=2;

�kj = (�kM�j+1 ��kj)=2 (92)

for the original Josephson variables �kj;�kM�j+1(k =
1; 2; j = 1; � � � ; M2 ).

A. Equations of motion and perturbation treatment

The dynamics of the double interferometer under con-
sideration (Fig. 10) is described by the equations of mo-
tion,

_�kj + sin�kj cos �kj = i0

+
1

2

�
i�k+1j�1 � i

�
k+1j + i�k+1M�j � i�k+1M�j+1

�
+ l�1 (�kj�1 � 2�kj + �kj+1) (93)

and

_�kj + sin�kj cos �kj = i0

+
1

2

�
i�k+1M�j � i

�
k+1M�j+1 + i�k+1j�1 � i

�
k+1j

�
+ l�1 (�kj�1� 2�kj +�kj+1) ; (94)

where the loop currents i�kj have to satisfy the convention
i�k0 = i�kM = 0. Furthermore, we have introduced dummy
variables,

�k0 = �k1; �kM
2
+1 = �kM

2

;

�k0 = �k1+ '; �kM
2
+1 = ��kM

2

;

and the rule that k+1 � 1 applies to k = 2. In addition,
we have to consider the 
ux quantization condition

�kj�1 ��kj + '+ l
�
i�k+1j�1 � i

�
kj�1

�
= 0

(k = 1; 2; j = 2; � � � ;M ): (95)

Now using the straightforward expansion procedure with
respect to the small normalized inductance, l � 1,

�kj = �kj;0+ l�kj;1 + � � � ; (96)

�kj = �kj;0+ l�kj;1 + � � � ; (97)
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+
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Here, the complicated structure of the coupling parame-
ter,

T (M;') =

0
@ M

2X
j=1

sin[(M + 1� 2j)
'

2
]

1
A
2

+2

M

2
�1X

j=1

sin[(M + 1� 2j)
'

2
]

M

2
�1X

�=j

�X
�=1

sin[(M + 1� 2�)
'

2
];

(109)
re
ects the complicated current distribution in the 2�M
network. Finally, averaging over one oscillation period
2�=� and subtracting both Eqs. (108) gives the reduced
equation for the phase di�erence � = �1 � �2,

_� = l
2i0

i0 + �0

T (M;')

M
sin �: (110)

Generalizing the corresponding message of Sec. III, Eq.
(110) admits of two phase-locking solutions,

�� = 0; �; (111)

whose stability is determined by the sign of the coupling
strength T (M;'). Due to the leading �rst term, an in-
spection of expression (109) results in the statement

T (M;') � 0: (112)

Immediately, one calculates for M = 2 and M = 4

T (2; ') = sin2
'

2
� 0

and

T (4; ') = (sin
3'

2
+ sin

'

2
)2 + 2 sin2

3'

2
� 0;

respectively. The result thus obtained is that only an-
tiphase oscillations of both interferometers are stable.

VI. Phase locking dynamics of hybrid N �M
Josephson junction arrays

We have already seen (Sec. IV) that the dynamic be-
havior of ladder arrays with small loop inductances is
quite similar to that of 1D arrays, which have been known
to require an inductive load for obtaining in-phase oscil-
lations [10], [25]. Following this idea, we investigate now
the synchronization of general N �M hybrid Josephson
junction arrays by considering them as 1D chains of N in-
terferometers (Fig. 1). Each interferometer row consists
of M strongly coupled junctions and, therefore, it forms
a homogeneous whole described by the coherent variable
(cf. (106))

_�k =
�0(� � _�k)

i0 + c(') cos(�s � �k)
(k = 1; � � � ; N )

within the phase slip picture. Due to the positive sign of
the coupling parameter (112), the interaction of adjacent

rows causes their mutual antiphase locking. However, we
try to overcome this tendency by adding an external in-
ductive load to the Josephson network. Generalizing some
basic ideas already exploited in Sec. IV, we express the
arising competition between nearest-neighbour and long-
range coupling by means of the following reduced equa-
tions for slowly varying phases,

_�k = � � �0 + �[sin(�k � �k�1) + sin(�k � �k+1)]

+

NX
j=1

sin(�k � �j �  s) (k = 2; � � � ; N � 1); (113)

with the parameters

� =
l?
M

i0
i0 + �0

T (M;'); (114)


 =
1

2 j zs j

1

i0 + �0
c2('): (115)

Similar equations apply to the boundary interferometers
(k = 1; N ).
We note that the short-range coupling strength (114)

contains the transverse cell inductance only, whereas
its long-range counterpart (115) considers via the shunt
impedance zs all inductances being \felt" by the current

owing through the external loop. Furthermore, the con-
dition for an inductively dominated load reads as

cos s < 0: (116)

We must keep in mind that for larger interferometers the
distance between the zeros of the critical current decreases
with increasing number M of junctions (cf. Sec. V.A).
Therefore, from an experimental point of view it is rea-
sonable to con�ne the 
ux through the cell to small values,

j ' j<
2�

M
� 1: (117)

This way an inspection of the coupling strength tells us
that in this operation range its ratio

� =
�



� 1

is small and may serve as expansion parameter of a per-
turbation procedure for determinig phase-locked (or sta-
tionary) solutions, �k = ��k = const., of the system (113)
being reformulated as

E = �[sin(��k � ��k�1) + sin(��k � ��k+1)]

+
NX
j=1

sin(��k � ��j �  s) (118)

with
E = 
�1(� � �0) (119)



describing the detuning of the interferometer frequency,
�0 = (i20 � c2('))1=2, and the network synchronization
frequency, �. Inserting the expansion

��k = ��k;0 + ���k;1; (120)

we �nd in zeroth order the uniform mode (cf. [10], [25],
[26], [31])

��k;0 � ��0 (121)

being stable in the inductive regime as is well-known for
series arrays (116). The �rst-order corrections obey the
equations

cos s

NX
j=1

(��j;1 � ��k;1) = 0 (122)

permitting the solution

��k;1 � ��1 (123)

which provides the zeroth-order solution merely with a
shift,

��k = ��0 + ���1; (124)

i.e., the character of the uniform mode in the hybrid
Josphson network is not a�ected by minor short-range
interactions of adjacent interferometers.

Next, we have to check the stability of this coherent
mode. Based on the Lyapunov ansatz

�k = �k(s) = ��k + �ke
�s; (125)

we derive the linear algebraic system

(� �N
 cos s � 2�
)#i + �
(#i�1 + #i+1) = 0 (126)

for the relative perturbation amplitudes

#k = �k+1 � �k:

The system (126) allows non-trivial solutions only for the
Lyapunov exponents

�k = N
 cos s + 2�


�
1 + cos

k�

N

�

(k = 1; � � � ; N � 1): (127)

The second term on the r.h.s. presents a perturbative
contribution only. With a well de�ned inductive regime
assumed,

j N
 cos s j> 2�
;

the network under consideration operates in a stable uni-
form mode.

VII. Summary and conclusions

We have discussed theoretically possibilites for the real-
ization of mm and sub-mm wavelength radiation sources
based on 2D discrete Josephson arrays. In particular,
we have investigated the problem of phase locking in
N � M hybrid Josephson networks with small loop in-
ductances. Since the basic component of such special ar-
rays is the SQUID-like cell, we have demonstrated the fact
of a merely tiny phase shift between the voltage oscilla-
tions of both junctions. Otherwise, two loops coupled via
a joint line transverse to the bias current oscillate in a
stable antiphase regime. In order to generalize these re-
sults, we have considered the dynamics of N � 2 ladders
and 2 � M multi-junction interferometers exploiting ba-
sic ideas about the interplay of strong and weak coupling
transverse to bias direction and along the current biasing,
respectively. In princple, the coupling within interferome-
ters provides the possibility of nearly in-phase oscillations
of all junctions in the row. On the other hand, coupling
between adjacent interferometers tends to cause antiphase
locking.
This way we found a simple approach to synchroniza-

tion in general N �M hybrid arrays. Adding an induc-
tively dominated load to the network, we have shown the
existence of a uniform mode which is characterized by a
perfect phase locking of all junctions in the array with a
common oscillation phase. The con�guration resembles a
linear design of oscillators (consisting of strongly coupled
interferometers here).
We note the incompleteness of our considerations due

to missing 
uctuation terms in the respective equations
of motion. However, the crucial point is the external 
ux
penetrating a loop. Near the zeros of the critical interfer-
ometer current the uniform mode is lost. This is a serious
problem of large arrays with many columns because the
distance between the zeros at �0=M decreases with in-
creasing number M of junctions per row. Therefore, the
external 
ux has to be suppressed below �0=M so that a
synchronous regime can be maintained.
In principle, this could be achieved by applying a su-

perconducting groundplane close to the array, which may
result in e�ective shielding. However, it is crucial that
no magnetic 
ux is trapped in the groundplane. Trapped

ux may penatrate some of the loops; furthermore, cer-
tain jumps of localized 
ux may result in random noise.
We hope that experimenters may soon overcome the men-
tioned di�culties in order to establish the possibility to
realize e�ective (maximum power) radiation sources up
to the THz-range by means of HTc superconducting net-
works.
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