The Paramagnetic Meissner Effect in Josephson Junction Arrays

<u>Aaron P. Nielsen</u>, A. B. Cawthorne, <u>P. Barbara</u>, F. C. Wellstood, C. J. Lobb

Center for Superconductivity Research University of Maryland College Park, MD 20742

F. M. Araujo-Moreira

UFSCar, Sao Paulo, Brazil

R. S. Newrock Department of Physics, University of Cincinnati

M. G. Forrester

Northrop-Grumman Corporation

Support: AFOSR Grant F49620-98-1-0072, Center for Superconductivity Research, UMD

Outline

- Paramagnetic Meissner effect.
- Arrays.
- Bulk susceptibility.
- Single-loop model.
- Scanning SQUID measurements.
- Single loop revisited.
- Possible explanations.

Field cooled BSCCO^{1,2}

¹W. Braunisch *et al.* PRL **68** 1908 (1992)
²J. R. Kirtley *et al.* J. Phys.: Cond. Mat. **10** L97 (1998)

³A. K. Geim *et al*. Nature. **396** 144 (1998)
⁴D. J. Thompson *et al* PRL **75** 529 (1995)
⁵P. Kostic *et al*. PRB **53** 791 (1996)

 π -junctions in d-wave ceramics?

PME observations

Nb -	D.J. Thompson <i>et al.</i> PRL 75 529 (1995)
	P. Kostic et al. PRB 53 791 (1996)
Al -	A.K. Geim et al. Nature 396 144 (1998)
BSCCO -	W. Braunisch et al. PRL 68 1908 (1992)
	J.R. Kirtley et al. J. Phys: Cond Mat. 10 L97 (1998)
YBCO -	S. Reidling et al. PRB 49 13283 (1994)
NCCO -	G. S. Okram <i>et al.</i> J. Phys:Cond Mat. 9 L525 (1997)
HgCCO -	U. Onbasli <i>et al.</i> Phys. Stat. Sol. B 194 371 (1996)

Proposed causes

- *π*-junctions
- Surface effects
- Random pinning
- Non-equilibrium

Bulk susceptibility

 $H_{EXT} = h_{AC} \cos(\omega t)$ $M(t) = h_{AC} \sum [\chi'_{m} \cos(m\omega t) + \chi''_{m} \sin(m\omega t)]$ $M_{1}(t) = h_{AC} [\chi'_{1} \cos(\omega t) + \chi''_{1} \sin(\omega t)]$

Data

(a) h_{AC}=96 mOe, array.
(b) h_{AC}= 7 mOe, array.
(c) h_{AC}=10 mOe, Nb film

Data, loops only

(Nb background subtracted)

Single-loop simulation

 $H_{EXT} = h_{AC} \cos(\omega t)$ $\Phi_{TOT} = \Phi_{EXT} + LI$ $I = I_C \sin \gamma_{ij} + \frac{\Phi_0}{2\pi R} \frac{d\gamma_{ij}}{dt} + \frac{\Phi_0 C}{2\pi} \frac{d^2 \gamma_{ij}}{dt^2}$ $M = \frac{LI}{\mu_0 a^2}$

 $M(t) = h_{AC} \Sigma[\chi'_m \cos(m\omega t) + \chi''_m \sin(m\omega t)]$ $M_1(t) = h_{AC}[\chi'_1 \cos(\omega t) + \chi''_1 \sin(\omega t)]$

Single-loop simulation

(a) $h_{AC} = 5 \text{ mOe}$, loop. (b) $h_{AC} = 29 \text{ mOe}$, loop. (c) $h_{AC} = 69 \text{ mOe}$, loop. (c) $h_{AC} = 118 \text{ mOe}$, loop.

Single-loop simulation

Susceptibility summary

- Nb-AlOx-Nb arrays are paramagnetic
- No π junctions
- Little disorder
- Single-loop: paramagnetic and diamagnetic states
- Is single-loop model enough?
 - C. Auletta *et al.*; Physica C **235-240**, 3315 (1994); Phys. Rev. B **51**, 12844 (1995).
 - F. M. Araujo-Moreira *et al.*, Phys. Rev. Lett. 78, 4625 (1997);
 P. Barbara *et al.*, Phys. Rev. B 60, 7489 (1999).

Scanning SQUID Experiment

Sample is field cooled Measured with field turned on

 $\left(\Phi_{total}\text{-} \Phi_{external}\right)/\Phi_0$

Histogram of Flux Values for JJ Array

 $\Phi_{\text{external}}=4.8\Phi_0$

 $\Phi_{external} = 1.2 \Phi_0$

Array Exhibits Paramagnetism For Some Cooling Fields!

M vs. H

Paramagnetic

Diamagnetic

Four Junction Loop

0.8 0 0.6 0.4 0 0 0.2 0 0 $(\Phi_{tot} - \Phi_{ext})/\Phi$ 0 0.0 -0.2 0 0 0 -0.4 0 0 -0.6 0 -0.8 -5 T -10 -15 5 10 0 15 $\Phi_{\text{ext}} / \Phi_0$ Paramagnetic

Single Loop Magnetization

Diamagnetic

Conclusions

What are the differences with π -junction arrays?