Flux flow in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ grain boundary Josephson junctions

Floriana Lombardi

INFM and University of Napoli Federico II, Italy

F. Carillo, F. Miletto, U. Scotti, F. Ricci, F. Tafuri INFM and University of Napoli Federico II, Italy
Z. Ivanov, T. Claeson
Chalmers University of Technology, Goteborg, Sweden
M. Cirillo
INFM and University of Roma Tor Vergata, Italy

Outline

Observation of linear branches in the IV characteristics of long $Y B a C u_{3} O_{7-\delta}$ step edge Josephson junctions by applying a control current. The observed phenomenology is discussed in terms of flux flow in long Josephson junction
$\vec{『}$ Preliminary results on the appearance of linear branches in long $Y B a C u_{3} O_{7-\delta}$ biepitaxial junction.

YBCO step-edge junction on a perovskite substrate

$\stackrel{\rightharpoonup}{r}$
The grain boundary which nucleate at the top edge of the step is essentially of the Symmetric type
$\vec{\int}$ At the bottom edge instead the grain boundary is mostly of the basal plane type.

Bottom GB

A method to study separately the transport properties of the top and bottom grain boundary

$\vec{\Gamma}$ The step-edge junctions are fabricated using tilted A_{r} ion milling to define the electrodes and the microbridges. Due to the shadowing effect of the step, a continuos YBCO stripe remains along and at the bottom of the step on both sides of the microbridges.
\checkmark This fabrication procedure allows a study of the transport properties of the isolated top $G B$ and a comparison with the properties of the step edge as a whole. Within the accuracy of the measurement the IV characteristic of the top $G B$ is identical to that of the SEJ.
$\boldsymbol{\Gamma}$ The Josephson properties of the the SEJ are therefore determined by the Top Grain Boundary

Layout of the device

We have realized a 4 terminal Josephson device based on a YBCO step edge Josephson junction and two current injection Au/YBCO contacts,
situated at the sides of the junction.

Which is the effect of the control current?

\vec{r} Due to misalignment of the control current, related to the lithographic process, and also to the intrinsic non planar geometry of the step-edge junction, the injection current density is not symmetric with respect to the grain boundary.
$\checkmark I_{\text {cr }}$ induces local non equilibrium in the YBCO electrodes, due to quasi particle injection through the $A u / Y B C O i n t e r f a c e s$
$\sqrt{6}$ Then the current $I_{c r}$ generates a non vanishing magnetic field in the junction plane that adds to that of the bias current.

Josephson current dependence

on the external magnetic field

on the control current

The diffraction pattern taken at 27 K is quite regular with a central maximum and well defined secondary lobes. $\left(\boldsymbol{L} / \boldsymbol{\lambda}_{j}=4\right)$

I_{c} decreases monotonically at increasing $I_{c r}$ (data at $T=27 \mathrm{~K}$). This behaviour is due to the combined action of magnetic field and nonequilibrium.

How to separate the nonequilibrium effect from the magnetic field contribution?

In the figure ($T=4.2 \mathrm{~K}$), the horizontal axes have been set in order to stress out the similarity of the plots of $I c$ vs $I_{c r}$ and of I_{c} vs B at low currents .
The scaling factor is $s=\left(I_{\text {coil }} / I_{c r}\right) \approx 3$ and it is independent on the temperature.

IV characteristics as a function of the control current

\rightarrow For values of $I_{c r}$ larger than about 3 mA at 4.2 K , the IV characteristic clearly exhibits linear branches. The inset shows the same structures after subtracting the background current $I_{b g}=V / R_{N}$.
$\overrightarrow{\sqrt{r}}$ For a fix value of $I_{c r}$ the linear structure appears only on one branch of the IV curve
$\stackrel{\Gamma}{ } \rightarrow$ The linear branches do not appear in presence of an external magnetic field

IV curves for opposite values of the control current

Voltage position of the linear branches as a function of the control current

$\vec{\Gamma}$ Step voltage V_{m} as a function of $I_{c r} . V_{M}$ increases proportionally to $\boldsymbol{I}_{c r}$, with minor deviations at low V_{M} values.
\int The plot of V_{M} vs $I_{c r}$ shows that the 2 mV tunability range of V_{M} leads to a band of $\pm 500 \mathbf{G H z}$ around $1 \mathbf{~ T H z}$. $\stackrel{\Gamma}{ } \rightarrow$ The expression for the linewidth of a Josephson oscillator at a temperature T is given by $\quad \Delta v=\frac{4 \pi k_{B} T}{\Phi^{2}} \frac{R_{D}^{2}}{R_{S}}$ where R_{D} is the dynamical resistance at the bias point , R_{S} is the static resistance corresponding to the same bias point and k_{B} is the Boltzmann constant.For the linear branch shown above we get at $T=4.2 \mathrm{~K}$,
taking $R_{D}=2.7 \Omega$ and $R_{S}=7 \Omega, \Delta v \approx \mathbf{1 7 0} \mathbf{M H z}$.

Dependence of the step amplitude on the control current

At any given temperature, the linear branch only appears in a well defined range of control current and reaches its maximum height (that we call $I_{\text {Max }}$) for a given value of $I_{c r}$.
The plot of $I_{M a x} v s . T$ is shown in the figure inset.
The available dc power for a typical bias point on the linear branch ($V=1.5 \mathrm{mV}$ and $I=0.3 \mathrm{~mA}$), is $\boldsymbol{W}=0.45 \mu \boldsymbol{W}$

Evaluation of same characteristic parameters of the junction

A relevant parameter in the fluxon dynamics is the damping coefficient α.

- Evaluating $C=80 \mathrm{fF} \mu \mathrm{m}^{-2}$ from the voltage position $\left(V_{1}=0.9 \mathrm{mV}\right)$ of the first Fiske resonance, and assuming an effective penetration length $d \approx 2 \lambda_{L}$, and $\lambda_{L}=0.150 \mathrm{~nm}$, we get $\alpha=0.6$.
\cdot Estimating the Mc Cumber parameter β_{c} from the hysteresis of the IV characteristic, and using the relation $\alpha=\left(1 / \beta_{c}\right)^{1 / 2}$ we get $\alpha=0.7$

Non equilibrium effect induced by the current injection

Ratio between $I_{c}\left(I_{c r}\right)$ and $I_{c}(B)\left(\right.$ data in the inset) as a function of the voltage drop $V_{i n j}$ across a single $A u / Y B C O$ interface.

Two step reduction of the Josephson current are observed at $V_{i n j} \approx 25 \mathrm{mV}$ and $V_{i n j} \approx 75 \mathrm{mV}$ corresponding approximately to Δ and 3Δ.

Flux flow in biepitaxial Josephson junctions

IV characteristic of a partially asymmetric biepitaxial junction

The IV curve clearly exhibits symmetric linear branches at $I_{c r}=0$

Conclusions

\vec{r}
Linear branches have been detected in the IV characteristics of YBCO step edge Josephson junctions with a four terminal configuration. The phenomenology observed allows to connect the appearance of the linear branches with flux flow in long junctions. Moreover the fluxon nucleation is induced by non-equilibrium effects.
\vec{r}
The large and stable voltage tunability of the bias point of the linear branches and the available power make the device interesting for the development of Josephson oscillators.
\leftrightarrow Preliminary measurements on biepitaxial junctions have shown the appearance of linear branches. Their voltage position can modulate by applying an external magnetic field.

IV characteristics at different magnetic fields

$$
\mathrm{T}=4.2 \mathrm{~K}
$$

junction with a symmetric bias

$$
L / \lambda_{j}=4
$$

junction with a partially symmetric bias

$$
L / \lambda_{j}=4
$$

