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Abstract

We report the first experimental observation of ac-driven phase-locked motion

of a topological soliton at a nonzero average velocity in a periodically mod-

ulated lossy medium. The velocity is related by a resonant condition to the

driving frequency. The observation is made in terms of the current-voltage,

I(V ), characteristics for a fluxon trapped in an annular Josephson junction

placed into dc magnetic field. Large constant-voltage steps, corresponding to

the resonantly locked soliton motion at different orders of the resonance, are

found on the I(V ) curves. An experimentally measured dependence of the

size of the steps vs. the external magnetic field is in good agreement with

predictions of an analytical model. The effect has a potential application as

a low-frequency voltage standard.
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The important role played by collective nonlinear excitations in the form of solitons in

various physical systems is commonly known. Experimental observation of dynamical effects

produced by solitons is often difficult because real systems may be far from their idealized

mathematical models which give rise to solitons. Among perturbations that destroy soliton

effects, dissipation is the most important one. To compensate dissipative losses and thus

make the soliton dynamics visible, one must apply an external force that is capable to

support (in particular, to drive) a soliton1.

Solitons of the simplest type are topological kinks, a well-known example of which is

a magnetic flux quantum (fluxon) in long Josephson junctions (LJJs)2,3. A fluxon in LJJ

can be easily driven by bias current applied to the junction. The motion of a fluxon gives

rise to dc voltage V across the junction, which is proportional to the mean velocity of the

fluxon. Varying the dc bias current I, one can obtain a dependence V (I), which is the main

dynamical characteristic of LJJ. An experimentally obtained I(V ) curve easily allows one

to identify the presence of one or more fluxons trapped in LJJ2.

Microwave field irradiating LJJ gives rise to an ac drive acting on the fluxon. In a

spatially homogeneous lossy system, an ac drive may only support an oscillatory motion of

a kink, which is hard to observe in LJJ due to the absence of dc voltage. However, it was

theoretically predicted in Ref. 4 that an ac drive can support motion of a kink with a nonzero

average velocity u in a system with a periodic spatial modulation. Indeed, a moving kink

passes the modulation length (period) L during the time L/u. If this time is commensurate

with the period 2π/ω of the ac drive, i.e., m(L/u) = 2π/ω with an integer m, or

u = m(Lω/2π), (1)

one may expect a resonance (of order m) between the two periodicities. In other words,

a moving kink may be phase-locked to the ac drive. This provides for permanent transfer

of energy from the drive to the kink, making it possible to compensate the dissipation

of energy5. The energy balance gives rise to a minimum (threshold) value Γthr of the ac

drive’s amplitude Γ, which can compensate the energy losses and support the motion of the

2



ac-driven kink.

A more general case, when the system is simultaneously driven by the ac field and dc

field I (dc bias current, in the case of LJJ), was considered in Ref. 6. It was predicted that

the corresponding V (I) characteristic has steps (constant-voltage segments) at the resonant

velocities (1). The motion of the fluxon under the action of pure ac drive then corresponds

to zero-crossings, when the steps cross the axis I = 0. In fact, the most straightforward

way to observe the ac-driven motion of the soliton is through zero-crossings on the V (I)

characteristic.

A formally similar feature is known in small Josephson junctions as Shapiro steps2: ac

drive applied to the junction gives rise to dc voltage across it (an inverse ac Josephson

effect). However, a drastic difference of the effect sought for in this work from the Shapiro

steps is that they are only possible at high frequencies exceeding the junctions’s plasma

frequency, while we will demonstrate below that the ac-driven motion of the fluxon can be

supported by the ac drive with an arbitrarily low frequency. This circumstance also opens

way for application to the design of voltage standards using easily accessible sources of low-

frequency radiation, which are not usable with the usual voltage standards based on small

Josephson junctions.

An objective of this paper is to report direct experimental observation of the ac-driven

soliton motion in periodically modulated LJJs. Frequently, it is assumed that the necessary

periodic spatial modulation along the junction can be induced by periodically changing

the thickness of the dielectric barrier separating two superconductors. In the presence of

the losses and drive, thus modulated LJJ is described by the perturbed sine-Gordon (sG)

equation,

φtt − φxx +
(

1 + ε sin
2πx

L

)
sin φ = −αφt − γ − Γ sin ωt, (2)

where x and t are the length along the junction and time, measured, respectively, in units

of the Josephson length λJ and inverse plasma frequency ω−1
p , ε is the normalized modu-

lation amplitude, while γ = j/jc and Γ = jac/jc are the dc and ac bias current densities,
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respectively, normalized to the junction’s critical current density jc.

The above model assumes the modulation of the local magnitude of the maximum Joseph-

son current to be harmonic. The latter condition is very hard to realize in an experiment

due to the exponential dependence of the critical current on the thickness of the dielectric

barrier. A much easier and fully controllable way to induce a strictly harmonic periodic

modulation can be realized in an annular (ring- shaped) LJJ, to which uniform dc magnetic

field H is applied in its plane7. As it was demonstrated experimentally, fluxons can be

readily trapped in such a LJJ8,9. In this case, the sG model takes the form

φtt − φxx + sin φ + h sin
x

R
= −αφt − γ − Γ sin ωt, (3)

where h is a renormalized magnetic field, and R is the radius of the ring. Periodic boundary

conditions supplementing Eq. (3) in the case of the annular junction are φx(x+2πR) ≡ φx(x)

and φ(x + 2πR) ≡ φ(x) + 2πN , N being the number of the trapped fluxons (in this work,

N = 1). Comparison with the experiment shows that, unlike the model (2), the one (3) is,

virtually, exact10.

We assume the spatial size of the fluxon, which is ∼ 1 in the present notation, to be

much smaller than the circumference L ≡ 2πR of the junction. The large value of L imposes

an upper limit on the driving frequency ω which can support the ac-driven motion: as the

fluxon’s velocity cannot exceed the maximum (Swihart) group velocity of the electromagnetic

waves in LJJ, ≡ 1 in our notation, Eq. (1) demands that ω <
∼ 1/L.

A different type of the ac drive for fluxons in circular LJJs was proposed in Ref. 7, viz.,

ac magnetic field. In this case, the terms h sin (x/R) and Γ sin(ωt) are replaced by a single

one, h sin (x/R) sin(ωt), which may be naturally decomposed into two waves traveling in

opposite directions, (1/2)[cos(x/R − ωt) − cos(x/R + ωt)]. As it was shown analytically

and numerically7, either traveling wave may capture a fluxon, dragging it at the wave’s

phase velocity ±ωR. Another model belonging to the same type was proposed in Ref.11,

in which the fluxon is dragged by rotating magnetic field. A difference of our model (that

corresponds to real experiments reported below) is the separation between the fields that
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induce the spatial modulation and ac force, which admits to control the dynamics in a more

flexible way.

It is straightforward to derive an equation of motion for the fluxon in the adiabatic

approximation, following the lines of Refs. 4, 6 (
.

ξ≡ dξ/dt):

d

dt




.

ξ√
1− .

ξ
2


 =

πh

4
√

1− .

ξ
2

cos
ξ

R
− α

.

ξ√
1− .

ξ
2

+
π

4
[γ + Γ sin(ωt)] . (4)

For further analysis, one may assume (as it was done in Refs. 7, 11) that, in the lowest

approximation, the fluxon is moving at a constant velocity
.

ξ0≡ u belonging to the resonant

spectrum (1), so that ξ(t) = ut + Rδ, where δ is an arbitrary constant. Then, the first

correction to the instantaneous fluxon’s velocity, generated by the spatial modulation, can

be easily found from Eq. (4),

.

ξ1= (πRh/4u)
(
1 − u2

)
sin [(u/R)t + δ] . (5)

The approximation applies provided that the correction (5) is much smaller than the unper-

turbed velocity u, which amounts to a condition Rh � u2/ (1 − u2).

A key ingredient in the dynamical analysis of this problem is the energy-balance

equation7. In the model (3) it is based on the correction (5) to the velocity4,6, while in

the above-mentioned models with ac magnetic fields7,11 the approximation
.

ξ= u was suffi-

cient. In the case of the fundamental resonance (m = 1 in Eq. (1)), i.e., u = Rω, the energy

balance yields, after a straightforward algebra,

γ =
4αu

π

(
1 − u2

)−1/2 − πRhΓ
8u2

(
1 − u2

)
cos δ. (6)

Setting | cos δ| = 1 and γ = 0 in Eq. (6) gives a minimum (threshold) amplitude of

the ac drive which can support the fluxon’s motion in the absence of the dc bias current,

Γthr = (32/π2) (α/Rh)u3 (1 − u2)−3/2. For the comparison with experimental results, the

most important consequence of Eq. (6) is an interval of γ in which the phase-locked ac-

driven motion of the fluxon is expected. This is produced by varying cos δ between −1 and

+1:
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γ−
1 < γ < γ+

1 ; γ±
1 ≡ 4αu

π
√

1 − u2
± πRΓ (1 − u2)

8u2 h. (7)

Note that the size of the interval, γ+
1 − γ−

1 , strongly depends, via the relation u = Rω, on

the driving frequency, while in the model with the ac magnetic field7 it does not depend on

ω at all, provided that 2πR � 1.

Experiments have been performed with Nb/Al-AlOx/Nb Josephson annular junction

with the mean diameter 2R = 95 µm and the annulus width 5 µm, applying the bias current

I and measuring the dc voltage V across the junction. The distribution of the bias current

was uniform, which was concluded measuring the critical current Ic in the state without

trapped fluxons at H = 0. Ic was found to be about 0.9 of its value for the small junction.

The annular LJJ had the Josephson length λJ ≈ 30 µm and plasma frequency fp ≡ ωp/2π ≈
50 GHz. Note that these parameters imply the ratio ∼ 10 of the junction’s length 2πR to

the fluxon’s size, which is ∼ λJ , i.e., the junction may indeed be regarded as a long one.

The measurements were done at T = 4.2 K, using a shielded low- noise measurement setup.

The ac driving current with f = ω/2π between 5 and 26 GHz was supplied by means of a

coaxial cable ending with a small antenna inductively coupled to the junction. The power

levels mentioned below pertain to the input at the top of the cryostat.

Following Ref. 10, trapping of a fluxon in the junction was achieved by cooling the sample

below the critical temperature Tc ≈ 9.2 K for the transition of Nb into the superconductive

state, while a small bias current was applied to the junction. At H = 0, the fluxon depinning

current Idep was found to be very small, less than 1% of the Josephson critical current Ic

measured without the trapped fluxon. As a fluxon can only be trapped by junction’s local

inhomogeneities in the absence of the magnetic field, this indicates at fairly high uniformity

of the junction. At low values of the field H, linear increase of Idep with H was observed,

which is well described by the theoretical model based on Eqs. (3) and (4): the zero-voltage

state exists as long as the maximum fluxon’s pinning force exerted by the field-induced

potential remains larger than the driving force induced by dc bias current, which is satisfied

at |γ| < h . In the low-field range, fluxon depinning and re-trapping in the external magnetic
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field have been already studied experimentally and analytically in Ref. 10.

An evidence for the progressive motion of the fluxon under the ac drive is presented

in Fig. 1a. This I(V ) characteristic was measured at H = 0.35 Oe and f = 18.1 GHz.

Its salient feature is two large symmetric constant-voltage steps. The points where they

intersect the zero-current axis correspond to the fluxon moving around the junction with a

nonzero average velocity at zero dc driving force. Another remarkable feature is the absence

of any step at the zero voltage, i.e., in the present case the fluxon cannot be trapped by

the effective potential, even when the dc bias current is small. For comparison, in Fig. 1b

we show the I(V ) curve measured at the same power and frequency of the drive, but with

H = 0. In this case, a substantial zero-voltage step is seen, extending up to the current

I0 ≈ ±0.1 mA. In the absence of the ac drive, the critical current I0 is much smaller, less

than 20 µA (that residual I0 may be explained by small inhomogeneities of LJJ, see above).

The conspicuous zero-voltage step in Fig. 1b may be explained by the fact that the

magnetic component of the ac drive creates its own modulated potential. This argument

also helps to explain two symmetric constant-voltage steps at V ≈ 37 µV in Fig. 1b as

resonant steps supported by the ac-drive-induced modulation. Note, however, that the

latter steps do not feature zero-crossing. All the data collected in the experiments show that

the zero crossing is possible solely on the resonant steps that occur in the presence of dc

magnetic field. In other words, the ac-driven motion of the fluxons is not possible without

a stationary spatially periodic potential.

Coming back to the resonant steps induced by the dc field H, which is the main subject

of the work, we have also measured their size vs. H, see Fig. 2. The result is that both

edge values I+
1 and I−

1 indicated in Fig. 1 vary nearly linearly with H, up to H ≈ 0.37 Oe.

At still larger fields, the phase- locked ac-driven motion of the fluxon gets interrupted in

some current range (the perturbation theory does not apply to so strong fields). These

findings are in good agreement with the theoretical prediction given by Eq. (7), as concerns

both the upward shift of the lines I±
1 (H) (recall that I and H are proportional to γ and h,

respectively) and their linear change with the magnetic field. The residual nonzero value of
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I+
1 − I−

1 at H = 0 matches the small non-zero-crossing step in Fig. 1b. It is noteworthy too

that the current range of the zero-voltage state, I−
0 < I < I+

0 (see Fig. 1b), decreases nearly

linearly with H, disappearing at H ≈ 0.09 Oe.

Equation (7) also predicts a dependence of the step’s size on the ac-drive’s amplitude.

Comparison with experimental data shows an agreement in a certain power range. As for

the dependence on the ac-drive’s frequency at a fixed value of the amplitude, it is hard to

measure it, as variation of the frequency inevitably entails a change in the ac power coupled

to the junction.

All the above results pertained to the fundamental resonance, with m = 1 in Eq. (1).

It is also easy to observe zero-crossings corresponding to higher-orders resonances. This is

illustrated in Fig. 3, showing V (I) curves with the resonant steps generated by both the

fundamental and second-order ( i.e., corresponding to m = 2 in Eq. (1)) resonances.

The effects described above, i.e., the zero-crossing steps at finite voltages and disappear-

ance of the zero-voltage state, have been observed in a broad range of the ac frequencies,

starting from about 5 GHz and up. On the other hand, as it was mentioned above, the

condition that the moving fluxon cannot exceed the Swihart velocity c̄ sets a natural upper

cutoff for the frequency that can support the phase-locked motion of fluxons. In our junc-

tions, c̄ corresponds to the dc voltage V = c̄Φ0/(2πR) ≈ 80 µV, which translates, via Eq.

(1), into the cutoff frequency ∼ 40 GHz for the case of the fundamental resonance.

In conclusion, we have reported the first observation of ac-driven motion of a soliton

topological soliton in a periodically modulated lossy medium. The observation was made in

an annular uniform Josephson junction placed into constant magnetic field. Experimentally

measured data, such as the size of the constant-voltage step, are in good agreement with

predictions of the analytical model. The effect may take place in a broad class of nonlinear

systems and, in terms of the Josephson junctions, it may have a potential application as a

low-frequency voltage standard.
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FIG. 1. Current-voltage characteristics for a fluxon trapped in the annular Josephson junction

irradiated by the ac signal with the frequency 18.1 GHz and power Pac = −8 dBm. The dc magnetic

field is (a) H = 0.35Oe and (b) H = 0.
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FIG. 2. The critical values I±
0 and I±

1 of the dc bias current, indicated in Fig. 1, vs. the external

dc magnetic field.
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FIG. 3. Current-voltage characteristics for a fluxon in the annular Josephson junction at

H = 0.40Oe, irradiated by the ac signal with the frequency 10.0GHz. The signal’s power Pac

is −3.4 dBm (solid line) and −12.4 dBm (dashed line). The constant-voltage steps on the two lines

correspond, respectively, to the second-order and fundamental resonance in Eq. (1).
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