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SQUIDs and Gradiometers - A Starting Point

What can be done

� Films (YBCO)

� Junctions � bicrystal or step-edge

� SQUIDs with narrow trackwidths OK unshielded in Earth's �eld

Design and operating constraints

� Usually single layer of YBCO

� Substrate size/�lm coverage (and cost if bicrystal substrate)

� Use of liquid N2

Problems

/ Small substrates (e.g. 10 � 10mm2) ! poor gradient sensitivity

(even although the intrinsic SQUID �ux sensitivity is as good as

possible)

/ Single layer! �rst-order gradiometers

/ SQUID ! magnetometric response, resulting in a balance of only

1 part in 300 or worse.

Requirements for real applications

� As large a baseline as possible

� A high degree of balance

� Simple fabrication � e.g. with only one HTS layer

� Portability � cooling needs, immunity to Earth's �eld



Our Solutions

A. Two-SQUID single layer gradiometers

� 10� 30mm2 substrates) improved gradient sensitivity

� Two out-of-phase SQUIDs) adjustable balance

� Made at present on bicrystal substrates

B. Single layer gradiometers with a gradiometric SQUID

� Use step-edge junctions

� SQUID itself has minimal response to a uniform �eld ) improved

balance
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A. The 2-SQUID Gradiometer Design

� Fabricated on 10� 30mm2 24Æ bicrystal substrates

� Baseline b = 13mm

� Inductance per half loop � 15 nH

� Has two pairs of SQUIDs at its centre (only 2 of the 4 are used at

one time)

4 SQUIDsconnections

30mm

10
m
m

� Requires a modi�ed laser deposition process for the larger area �lms.
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Fabrication for 10� 30mm
2 Substrates

� Pulsed laser deposition, 820ÆC, 0.15mbar O2, 1.2 Jcm�2, 6000

pulses

� Target to substrate distance 68mm

� Laser beam is focussed to a spot �10mm long and �0.5mm wide

at the target,) a plume that expands signi�cantly in the direction

parallel to the long side of the substrate, ) good homogeneity

along the length of the substrate:

Centre Ends

Tc (K) 90 89

Thickness (nm) 200 180

� Patterning by argon ion beam etching

� Contacts are sputtered gold
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The SQUIDs

� SQUIDs have 4�m linewidth; SQUID loop is 108�m � 4�m

� SQUID inductance � 100 pH

� Junction width is 3�m

� Each pair of SQUIDs is arranged to couple in phase to the current

i �owing in the centre track of the gradiometer, but out of phase

to a uniform �eld:

SQUID 1

SQUID 2

i!

bicrystal
line
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2-SQUID operation � Adjusting the Balance

Each SQUID is operated with its own �ux-locked loop (FLL) electronics.

Feedback and modulation is coupled directly (via connections to

adjacent unused SQUIDs):
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The output voltages VSQ1 and VSQ2 are summed:

V = VSQ1 + �VSQ2

where � is an adjustable parameter close to 1.

� can be adjusted to reduce signi�cantly any uniform �eld response

due to any combination of

� gradiometer imbalance and

� di�erences in e�ective areas of the 2 SQUIDs.
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Uniform Field Response using a Single SQUID

� Tested at 77K with a Conductus PC100 SQUID system, using DC

bias.

� Large Helmholtz coils provided a uniform �eld

� Measured e�ective area Ae� as 645 � 1160�m2

� These values are consistent with estimates of the e�ective area of

the SQUID alone

� The e�ective area Amag was measured by cutting one of the

gradiometer deliberately, ) Amag = 0:73mm2. Again consistent.

Result: gradiometer balance Ae�=Amag lies between 1/1000 and

1/626, which is at least a factor of two better than our previous

gradiometers on 10mm2 substrates.
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Flux and Gradient Sensitivity

� Initially measured with only one SQUID, with DC bias
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� gradient sensitivity S1=2
g = S

1=2
�
=(bAmag):

746 fT=(cm
p
Hz) at 1Hz and 79 fT=(cm

p
Hz) at 1 kHz.

� Best reported gradient sensitivity for a single-layer gradiometer.
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Enhancing the Balance with Two SQUIDs

x
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z

SQ1
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V
VSQ1 + �VSQ2

� Lock-in �eld detection at 320Hz

� AC bias modulation used with the SQUIDs

� Apply uniform �eld Bz from Helmholtz coils, summed output from

both SQUIDs is VHh(�)

� Separately create a gradient @Bz
@x from small dipole source, its

summed output is Vd(�)

� Intrinsic 1-SQUID balance was de�ned b0 = Ae�=Amag

� The 2-SQUID balance is

b = b0

�
VHh(�)

VHh(0)

��
Vd(0)

Vd(�)

�

� Note: SQUID channels are not processing and di�erencing signals with

a high

common-mode term � most of the uniform �eld rejection is done

passively by the gradiometer itself.
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Dependence of Balance on �
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(This device has an intrinsic e�ective area Ae� = 645�m2.)
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Step-edge Junctions

Why step-edge junctions?

, More economical for large substrates (don't need bicrystals)

, Can have excellent junction properties

, Greater design freedom � don't need junctions in a line

Revisited a process we used some while ago . . . revised

procedures, tighter process control! good results.

Outline of fabrication

� STO substrate, photoresist mask, Ar ion milling.

� S1818 resist, 1.8�m thick. Edge bead removal essential for close

mask contact.

� Ar milling, water-cooled rotating stage, 90Æ incidence, 500V



� YBCO: 200 nm by PLD (process as for bicrystal junctions)

� Patterned with Ar as above, Au contacts.

� Studied the variation of junction properties with ratio of �lm

thickness t to step height h, keeping t = 200 nm, for junctions

made with track width w = 3�m.

resistive RSJ-like �ux �ow

0.6 0.8 1.0

t=h

� Keeping h = 300�30 nm for t = 200 nm gives a yield of � 85%

RSJ-like junctions (for step angles � 60Æ).



t = 200 nm

w = 3�m

T = 77K

IcRn = 135� 50�V



� Jc scales in the manner seen for many types of grain-boundary

junctions:

� The �eld dependence is almost Fraunhofer-like, but subsidiary peaks

are somewhat suppressed and suggest that Jc is slightly higher at

the junction edges:

� No �ux jumps are seen for 0 < B < 0:5mT
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Gradiometric SQUIDs with step-edge Junctions

� G-SQUID has highly symmetric layout ) minimal uniform �eld

response

� Needs only a single layer of YBCO

� Ex situ Au layer #1 immediately after YBCO PLD (+ O2 anneal)

� Patterned into SQUID structure, leaving Au contact pads

� SiO2 layer RF-sputtered, 300 nm thick

� Au layer #2 deposited and patterned to complete contacts

� Lsq � 67 pH

� E�ective area � 2�m2 . . . 200 � 500� smaller than for a non-

gradiometric SQUID of similar inductance
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G-SQUID Inductances and Coupling

The SQUID inductance is give by

Lsq =
LA

2
+ LB:

Mutual inductance Lm can be derived from the �ux � injected by the

current IM into either the upper or lower loop, so

� =
IM

2
(LA1 �MA)� IMMI

) LM =
LA �MA

2
�MI

Current design has Lsq = 67 pH and LM � 25 pH.
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A Gradiometric SQUID Gradiometer

� Prototypes on 10� 10mm2 substrates

� Pick-up look linewidth = 400�m; estimated inductance per loop =

10 nH

� Parasitic e�ective area of gradiometer � 95�m2 � much larger

than e�ective area of the SQUID itself, perhaps due to di�erences

in the areas of the two pick-up loops of the gradiometer, or local

�eld distortion from residual superconducting material.
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G-SQUID Gradiometer Flux Noise

� Measured at 77K with 64 kHz AC bias modulation.
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� Gradient sensitivity 4.6 pT/(cm
p
Hz)

� Note little di�erence between shielded and unshielded operation �

con�rms reductions of e�ective area for uniform �eld response
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Magnetocardiography

Adult magnetocardiogram (MCG), in aluminium eddy-current shielded

room, recorded with a long baseline single-layer gradiometer

0 2 4 6 8 10
Time (s)

−2000

0

2000

4000

F
ie

ld
 (

ar
bi

tr
ar

y 
un

its
)

Raw data

0.0 0.2 0.4 0.6 0.8
Time (s)

−2000

0

2000

4000

F
ie

ld
 (

ar
bi

tr
ar

y 
un

its
) Sliced and averaged



Future Directions . . .

1 Many measurements really need 2nd-order gradiometers � the

degree of rejection of sources of interference is often not su�cient with

1st-order devices.

We aim to achieve this in two ways:

Make a 2nd-order gradiometer using two 2-SQUID gradiometers

and 4 channels of SQUID electronics) a system in which both

the magnetometric and 1st-order responses can be independently

adjusted electronically to zero. But a little complicated!

and/or

Make larger 10�30mm2 or larger 1st-order gradiometers using

gradiometric SQUIDs with edge-junctions. Two of these can be

electronically di�erenced to make a 2nd-order gradiometer.

� Since only gradiometer length needs to be increased, existing YBCO

PLD process will be able to be used for 10 � 40mm2 or even

10� 50mm2.



2 Improve G-SQUID coupling: the mutual inductance Lm can be

increased while keeping the self-inductance Lsq in the optimum range.

Lsq =
LA

2
+ LB

Lm =
LA �MA

2
�MI

LA = 67 pH; LB = 33 pH (modelled by FASTHENRY)

) Lsq = 66:5 pH and Lm = 25 pH (we measure 23 pH)

LA = 167 pH; LB = 15 pH (modelled)

) Lsq = 98 pH and Lm = 74 pH

Currently evaluating this version.

Short and fat ) tall and thin!
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Conclusions

� 30�10mm2 bicrystal substrates produce acceptable junctions and

can be patterned and processed OK

� Intrinsic balance (using only 1 SQUID) is 2 � 3 times better than

for smaller gradiometers on 10� 10mm2 substrates

� Flux noise and gradient sensitivity are excellent

� The 2-SQUID method works well, with direct coupling of modulation

and feedback to parts of each SQUID, to avoid inductive cross-

coupling (using Conductus electronics)

� Electronic nulling of the magnetrometric response has been

demonstrated to improve the balance to better than 2� 10�5

� Have established a method for producing good-quality step-edge

junctions

� Have demonstrated the G-SQUID principle with negligible e�ective

area

� Advances feed into our biomagnetism and NDE programmes
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