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Abstract

We present a quantitative theory of Cooper pair pumping in gated

one-dimensional arrays of Josephson junctions. The pumping accuracy

is limited by quantum tunneling of Cooper pairs out of the propagating

potential well and by direct supercurrent ow through the array. Both

corrections decrease exponentially with the number N of junctions in the

array, but give a serious limitation of accuracy for any practical array.

1 Introduction

When a potential well propagates adiabatically along an electron system which
is e�ectively one-dimensional it carries with it additional electron density and
induces a dc electric current through the system. Such a pumping e�ect is
observed in mesoscopic systems ranging from small metallic tunnel junctions
in the Coulomb blockade regime [1-4], to semiconductor quantum dots [5] and
one-dimensional ballistic channels [6]. The propagation of the potential well is
arranged either through the propagation of an acoustoelectric wave [2, 6] or by
phase-shifted gate voltages [1, 3, 5]. Of particular interest is the pumping regime
when the potential well carries a quantized number m of electrons so that the
induced current I is related to the frequency f , with which the well crosses the
system, by the fundamental relation I = mef . A well with a de�nite number of
electrons can be created either by the Coulomb interaction, as, for instance, in
the Coulomb blockade pumps [1-4], or it can be caused by the discrete nature
of single-particle states inside the well [7, 8]. In the case of Coulomb blockade
pumps, the precision of the pumped charge is reaching a level su�cient for
metrological applications [3, 4]. Di�erent sources of inaccuracy in the pumps
have been discussed in the literature [3,9-12].

Until recently the pumping e�ect has been studied almost exclusively in
normal systems where transport is due to individual electrons. A timely mo-
tivation for studying Cooper pair transfer comes from quantum computation,
where pumping can play an important role in the dynamics of quantum logic
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gates [13]. This work presents a quantitative theory of Cooper pair pumping
in one-dimensional arrays of superconducting tunnel junctions. In particular,
we �nd fundamental corrections to the quantized pumping regime and show
that they are unexpectedly large in arrays with a small number of junctions.
These large quantum corrections explain the fact that the �rst experiment with
pumping of Cooper pairs failed to demonstrate accurate pumping [14].

2 Cooper pair pump

Figure 1: (a) A schematic drawing of a gated Josephson array of N junctions.
In pumping Cooper pairs gate voltages Vgi are operated cyclically. Ci are the
capacitances of the junctions, and Cgi are gate capacitances. In a uniform pump
Ci � C for all i = 1; 2; : : : ; N . (b) A train of gate voltages to carry a charge in
a pump. Here qi = �CgiVgi=2e.

First we present the general expression for the charge transferred through an
array of N superconducting tunnel junctions in the Coulomb blockade regime by
adiabatic pumping of Cooper pairs [15]. In the standard model such arrays are
characterized by two energies, the charging energy HC as a system of capacitors,
and the energy associated with tunneling [16]. The array is assumed uniform,
so C1 = C2 = � � � = CN � C (�g. 1). We also assume that the characteris-
tic energy EC � (2e)2=2C of a Cooper pair in the array and the temperature
(kBT ) are both much lower than the superconducting energy gap of the elec-
trodes. The relation for EC replaces the usual condition in the normal Coulomb
blockade where the junction resistances should be larger than the quantum re-
sistance. With these conditions ful�lled quasiparticle tunneling is exponentially
suppressed, while the tunneling energy of Cooper pairs in junction i reduces to
a constant EJi=2. (EJi is the Josephson coupling energy.) In this work, the bias
voltage is set to zero, and thus a constant Josephson phase di�erence ' is �xed
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across the array. We can then treat the two external electrodes of the array as
one, so that e�ectively the array forms a loop and ' plays the role of external
ux threading it. Then, the Hamiltonian of the N-pump is [15]:

H = HC(n� q)�
NX
k=1

EJk

2

�
jnihn+ �kjei'=N + h:c:

�
: (1)

The array n � fn1; n2; : : : ; nN�1g represents the number ni of Cooper pairs on
the islands and q � fq1; q2; : : : ; qN�1g the charge, normalized by 2e, induced on
each island by the gate voltage Vgi (�g. 2.1). The term �k describes the change
of n due to tunneling of one Cooper pair in the kth junction. The charging
energy of the homogeneous array can be written as

HC =
EC

N

"
N�1X
k=1

k(N � k)u2k + 2

N�1X
l=2

l�1X
k=1

k(N � l)ukul

#
; (2)

where uk � nk� qk. We will also need the current operator of the kth junction:

Ik =
ieEJk

2�h

�
jnihn+ �kjei'=N � h:c:

�
: (3)

2.1 Adiabatic approximation

There are two mechanisms of Cooper pair transport in the array. One is the di-
rect supercurrent through the whole array and the other is the pumping, i.e. the
charge transfer in response to the adiabatic slow variation of the induced charges
qi. To derive the general expression for the total charge Q transferred during
one pumping period we introduce the basis of instantaneous eigenstates fjm(t)ig
with eigenenergies fE(t)

m g of the full Hamiltonian (1) for a given q(t). Assum-
ing slowly varying gate voltages we may solve the time-dependent Schr�odinger
equation with the initial condition j (t0)i = jm(t0)i to obtain [18]

j (t0+�t)i = e�iE
(t0)
m �t=�hjm(t0)i+ j�m(�t)i: (4)

Here the term j�m(�t)i is a correction to the state jm(t0)i due to the change in
gate charges q. The amount of charge that passes through the junction k during
a short time interval �t is then

�Qk =

Z t0+�t

t0

h (t)jIk j (t)idt

= �thIkijm(t0)
i � 2�h

X
l(6=m)

Im

� hmjIkjlihlj�mi
El �Em

�
(5)

where we have neglected the term quadratic in j�mi and oscillatory terms by
assuming that the inequality �t� �h=(El �Em) holds for all l.

For a closed path  the transferred charge must be equal for all N junctions
so the total amount of charge, Q, transferred through the array over a pumping
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period � is then given by Q = Qk =
R �
0
hIkijm(t0)

idt+QP. The �rst term gives
the charge transferred via direct supercurrent. The second term, the charge
transfer induced by gates, can be written as

QP

�2e =
�h

e

I


X
l(6=m)

Im

�hmjIk jlihljdmi
El �Em

�
; (6)

where jdmi is the di�erential change of jmi due to a di�erential change of the
gate voltages dq (see [15]).

2.2 Homogeneous pump

In the regime of accurate pumping the main contribution to Q comes from the
induced charge transfer QP while the supercurrent gives only small corrections
limiting the pumping accuracy [15]. The necessary condition for this regime to
exist is EJ � EC, which we assume from now on. We consider two di�erent
pumping paths around the degeneracy point, which occurs when qk = 1=N for
all k. At this degeneracy point the energies of several charge states coincide as
illustrated in �g. 2(a) for N = 3. If the pumping process is slow, the Cooper
pair is transported adiabatically between the islands by the usual two-state
level-crossing transitions that shift it along the array following the gate voltages.
One Cooper pair is then transported through the array per cycle corresponding
to a q-space trajectory circling once around the degeneracy point. One more
condition necessary for accurate pumping is that the probability of the Landau-
Zener transitions to the excited states is negligible and the array remains in the
minimum-energy state throughout the cycle. This condition limits the rate of
pumping, 1=� , by the relation, �h=� � E2

J=EC . However, even then, i.e. in the
regime of the present work, the pumping is not accurate due to the nonvanishing
EJ=EC.

For the trajectory illustrated in �g. 1(b) we obtain by perturbation theory
in EJ and by eq. (6) [15]:

QP

�2e = 1� NN�1(N � 1)

(N � 2)!

�
EJ

2EC

�N�2
cos' : (7)

Thus the probability of Cooper pair tunneling limiting the pumping accuracy
decreases with increasing N.

For N = 3, the triangular pumping trajectory in the (q1; q2) plane shown in
�g. 2(a) corresponds to triangular gate voltages. Another pumping scheme in
the N = 3 pump [1, 14] is provided by harmonic gate voltages, corresponding
to a circular trajectory around the degeneracy point q1 = q2 = 1=3. In this case
it is possible to calculate the pumped charge directly from eq. (6). For ' = 0
we obtain [15]:

QP

�2e = 1� 3

2

 
1

3
p
2�

+
1

2� 3
p
2�

+
1
3p
5
�
+

1

1� 3p
5
�

!
EJ

EC
; (8)
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Figure 2: (a) The states with minimum charging energy of the uniform N = 3
pump on the (q1; q2) plane. The vector (n1; n2) denotes the stable con�guration
inside each hexagon. A circular path with radius �, and the triangular path
of �g. 1(b) are shown. Only states contributing to the inaccuracy in charge
transport in the leading order are shown. (b) Numerically calculated quantum
inaccuracies of a uniform 3-pump for di�erent values of EJ=EC. The analytical
result of eq. (8) is exact in the limit of small EJ=EC.

where � � �
(q1 � 1=3)2 + (q2 � 1=3)2

�1=2
is the radius of the trajectory. The

results of eqs. (8) and (7) for N = 3 almost coincide for the optimum radius
of � ' 0:3. It should be noted that the quantum inaccuracy in pumping is
very signi�cant: it is more than 20 % at EJ=EC = 0:03 (practically, EJ is
limited from below by the temperature, while the maximum EC is limited by
physical dimensions of the fabrication.) The accurate coherent pumping is thus
practically impossible in the N = 3 pumps. Figure 2(b) shows QP calculated
numerically from eq. (6) for ' = 0 (no direct supercurrent present) as a function
of �. For small radii the charge is quadratic in �, QP = ��2 (8EC=27EJ)

2, as can
be derived from eq. (6). At large � the pumped charge in �g. 2 starts to decrease
since the trajectory approaches another degeneracy point at q1 = q2 = 2=3.
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2.3 Further results

To obtain quantitatively more precise results than by the �rst order perturbation
theory one can use the renormalisation method (see, e.g., [17]). With this
method it is possible to calculate the higher order corrections to the pumping
inaccuracy in case of homogeneous arrays, inhomogeneity of the array, and
nonideal pumping sequences [18].

Figure 3: The pumped charge QP=(�2e) as a function of ' for some values of
EJ=EC and N = 3. Curves denote renormalised values and symbols numerical
values which were obtained for a 41-state basis. The points calculated by eq.(2.7)
for ' = 0 and EJ=EC = 0:05 and 0:1 are 0:55 and 0:10, respectively. The
pumped charge is symmetric in ' and its period is 2�.

In �g. 3 the pumped charge QP for N = 3 is shown as a function of the phase
di�erence '. Values calculated with renormalisation and numerical results are
in good agreement and they clearly indicate that the deviations from the leading
order result, [QP=(�2e) = 1� 9(EJ=EC) cos'] are important also for �nite �.

Also the inhomogeneity of the array can be treated with renormalisation
theory. To do this we de�ne the inhomogeneity index of the array

Xinh =

vuut 1

N

NX
k=1

�
C � Ck
C

�2
; (9)

where the "average" capacitance C is given by C = N=
PN

k=1 C
�1
k . To make a

comparison easier we consider Winh, de�ned as the ratio between the inhomo-
geneous and homogeneous inaccuracies. The e�ects due to inhomogeneity can
be parametrised by obtaining limits for Winh as a function of Xinh. In �g. 4 we
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Figure 4: The limits for the ratio Winh as a function of Xinh for array lengths

N = 4 to N = 7. For small values of Xinh, Winh � 1 + a
(inh)
N �X2

inh, where the

N -dependent constant a
(inh)
N can be evaluated [18].

graphically present these limits for (Winh� 1)=X2
inh as a function of Xinh in the

cases N = 4 to N = 7.
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