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We propose a new type of Josephson vortex ratchet. In this system a Josephson vortex moves
in a periodic asymmetric potential under the action of a deterministic or random force with zero
time average. For some implementations the amplitude of the potential can be controlled during
the experiment, thus, allowing to tune the performance of the system and build rocking as well as
flashing ratchets. We present a model describing the dynamics of the fluxon in such a system, show
numerical simulation results, and discuss the differences between conventional and Josephson vortex
ratchets. The investigation of this system may lead to the development of the fluxon rectifier — a
device which produces a quantized dc voltage from colored noise (non-equilibrium fluctuations).
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I. INTRODUCTION

To extract useful work from random motion was a dream of mankind since the days when the Brownian motion was
recognized. Unfortunately, the second law of thermodynamics forbids to extract energy “for free” from equilibrium
thermal fluctuations (white noise), which was didactically demonstrated by R. Feynman in his Lectures [1]. Never-
theless, one can extract useful work from non-equilibrium or time-correlated (colored) noise “not paying” for it, using
so-called ratchets, i.e., systems with an asymmetric periodic potential [2]. Recently there was a boost of activity in
this field related to the experimental investigation of directed motion in biological systems, so-called Brownian motors
which, e.g., move muscles or transport vesicles in a cell [3]. In the latter case the probable mechanism of operation is
the motion of kinesin molecules along the surface of microtubules, which can be mapped to the motion of Brownian
particles along a one-dimensional ratchet potential with the period 8.2 nm [4]. The non-equilibrium energy is supplied
by chemical reaction of splitting of adenosine triphosphate (ATP) which takes place close to the kinesin molecule.

In addition to the application of ratchets as noise rectifiers, it was suggested to use them for very efficient separation
of small objects with different mobility, e.g., DNA molecules, viruses, etc. [5,6]. The particle separation is based on
so-called deterministic ratchets [7], where the particles move in a certain direction under the action of a deterministic
force with zero time average. Moreover, changing the force profile one can reverse the direction of the particle motion
[7]. The classification and discussion of different types of ratchet systems can be found in Ref. [8].

In this paper we focus on Josephson ratchets which are of particular interest because (a) the directed motion results
in a dc voltage according to the Josephson relation and (b) these systems can operate at very high frequencies up
to about 100 GHz. As a first example we mention the asymmetric dc SQUID where the equation of motion for the
Josephson phase (difference of quantum mechanical phases) corresponds to the motion of an imaginary particle in a
2D ratchet potential. Such SQUID ratchets have been proposed [9] and studied experimentally [10]. Another type
of Josephson ratchet investigated recently is a 1D array of Josephson junctions with spatially modulated properties
[11]. A Josephson kink (vortex), which can move along the array, can be considered as quasi-particle in a 1D ratchet
potential.

Here we propose a new class of Josephson ratchets which further develops the idea of a kink in a 1D array. The
proposed system consists of a 1D long Josephson junction (LJJ) which may be bent in the ab-plane [see Fig. 1(a)] or
have variable width w(x). Here and below x is a curvelinear coordinate along the junction. The fluxon (Josephson
vortex) moving along the junction, from a mathematical point of view, is a topological soliton. It has its own mass,
velocity, and other particle-like properties [12]. We study the motion of a fluxon in LJJs in a ratchet potential which
can be formed either by applying an external magnetic field and bending the junction properly or by modulating its
width w(x). To provide the required periodicity of the potential, the junction is topologically closed in a loop. Such
a geometry is similar to the well known annular Josephson junction [13–17] in which a fluxon moves in a sinusoidal
potential created by a magnetic field. Using a more elaborated shape [18] one can form an asymmetric potential with
the possibility to control its amplitude by changing the amplitude of the external magnetic field. An alternative idea
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of magnetic field modulation using a specially shaped control line is proposed in Ref. [19]. The directional motion
of a fluxon can be detected by measuring the dc voltage across the junction which is, due to the Josephson relation,
proportional to the average velocity of a fluxon.

Before discussing fluxon dynamics in a ratchet potential we would like to stress the difference between conventional
ratchets and Josephson vortex ratchets. First, the fluxon, although it has a topological charge and in general behaves
like a particle, is a nonlinear wave, i.e., it can change its shape rather strongly as well as emit electromagnetic waves.
Second, the fluxon dynamics is usually studied in the underdamped limit which is opposite to the overdamped case
which was considered for the majority of work on Brownian particles in a ratchet potential. Small damping may result
in chaotic dynamics even in the deterministic case [20] and, in the case of the fluxon, even without any potential [21].
Thus, to have a well defined behavior of a fluxon ratchet, one has to work in the overdamped or in the weakly
underdamped limit. If one uses conventional Nb-AlOx-Nb technology to fabricate the LJJ, this requirement means
that the working temperature should be very close to Tc. As an alternative one can use junctions with intrinsically
high damping such as SINIS LJJs [22] or high-Tc LJJs technology [23] which allows to fabricate LJJs of required
topology. Third, if we consider multi-particle dynamics, the strong repelling interaction between fluxons plays an
important role and must be taken into account.

This paper is organized as follows. In section II we derive the equations for the dynamics of the Josephson phase
in a bent LJJ of variable width w(x) in the external magnetic field. We also discuss different kinds of fluxon ratchets,
their advantages and drawbacks. The numerical simulation results are presented in III. Section IV concludes this
work.

II. THE MODEL

Here we derive the generalized perturbed sine-Gordon equation which takes into account the curvature of the LJJ
in the ab-plane [see Fig. 1(a)], the uniform magnetic field ~H applied in the plane of the junction (in b direction) as
well as the modulation of the LJJ width w(x) along its length x.

We start from a discrete representation of the LJJ shown schematically in Fig. 1(b). The Kirchhoff equations for
the Josephson phases in the cell and for the currents in one of the nodes are:

φ(x+ dx)− φ(x) =
2π
Φ0

Φ(x) =
2π
Φ0

[Φe(x)− L(x)IL(x)] ; (1)

IL(x)− IL(x− dx) = Ie(x)− I(x), (2)

where φ(x) is the Josephson phase at point x of the junction, Φ(x) and Φe(x) are the total and the external magnetic
flux applied to the cell, respectively, L(x) is the inductance of the piece of the junction electrodes between x and
x + dx, IL(x) is the current in the electrodes, i.e. through the inductance L(x), Ie(x) is the externally applied bias
current, and I(x, t) is the current through the Josephson junction. The particular expression for I(x, t) depends on
the adopted JJ model and is introduced later.

Assuming that the interval dx is infinitesimal, we can rewrite Eqs. (1) and (2) in a differential form using the
following expressions:

I(x) = j(x)w(x)dx; (3)
Ie(x) = je(x)w(x)dx; (4)

L(x) =
µ0d
′

w(x)
dx; (5)

Φe(x) = µ0(~H · ~n)Λdx = µ0H(x)Λdx, (6)

where µ0d
′ is the inductance of one square of the superconducting electrodes [24], d′ ≈ 2λL is the effective magnetic

thickness of the junction [24], ~n is the unit vector normal to the plane of the junction cell as shown in Fig. 1(b), Λ ≈ 2λL
is the effective penetration depth of the magnetic field into the junction [24], and λL is the London penetration depth
of the superconducting electrode. We assume that the films are spatially uniform so that d′ and Λ are independent
on x.

Substituting Eqs. (3)–(6) into Eqs. (1) and (2) we can rewrite the latter in a differential form as

∂φ

∂x
=

2π
Φ0

[
µ0H(x)Λ− µ0d

′

w(x)
IL(x)

]
; (7)

∂IL(x)
∂x

= w(x) [je(x) − j(x)] . (8)
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Excluding IL(x) from Eqs. (7) and (8), we get the equation which describes the dynamics of the Josephson phase
in the system:

w(x) [je(x)− j(x)] =
1

µ0d′
d

dx

{
w(x)

[
µ0ΛH(x)− Φ0

2π
φx

]}
, (9)

Here and below, the subscripts t and x, if any, denote the derivatives with respect to time t and coordinate x,
respectively. Note, that we didn’t include any particular model of JJ into our equation up to now, which is a definite
advantage of this derivation procedure. In the case of the simple RSJ model, one should substitute j(x) which is the
sum of the supercurrent, normal (quasiparticle) current and displacement current densities:

j(x) = jc sin(φ) +
Φ0

2πR
φt +C

Φ0

2π
φtt (10)

into Eq. (9). Here jc, R and C are the critical current density, specific resistance and specific capacitance of the
junction, accordingly. In this case Eq. (9) can be rewritten in a form which resembles the usual sine-Gordon equation
[24]:

λ2
Jφxx − ω−2

p φtt − sin(φ) = ω−1
c φt − γ(x) +QHx(x) +

wx(x)
w(x)

[
QH(x)− λ2

Jφx
]
, (11)

where λJ =
√

Φ0/(2πµ0jcd′) is the Josephson penetration depth, ωp =
√

2πjc/(Φ0C) is the Josephson plasma
frequency, ωc = 2πjcR/Φ0 is the so-called critical frequency, γ(x) = je(x)/jc is a normalized bias current density, and
Q = 2πµ0Λλ2

J/Φ0.
For theoretical investigation of the system we introduce standard normalized units, i.e., we normalize the coordinate

to the Josephson penetration depth λJ , and the time to the inverse plasma frequency ω−1
p . After such simplifications,

Eq. (11) can be rewritten as [25,26]:

φxx − φtt − sin(φ) = αφt − γ(x) + hx(x) +
wx(x)
w(x)

[h(x)− φx] , (12)

with the damping coefficient α = ωp/ωc ≡ 1/
√
βc, and the field h normalized in a usual way as

h(x) =
2H(x)
Hc1

. (13)

Hc1 = Φ0/(πµ0ΛλJ) is the first critical field (penetration field) for a LJJ which is, in fact, equal to the field in the
center of the fluxon. The normalized velocity is given in natural units of c̄0 = λJωp, where c̄0 is the so-called Swihart
velocity. The normalized voltage V = φt is given in units of Φ0ωp/(2π). From now on all quantities are given in
normalized units.

In comparison with the usual perturbed sine-Gordon equation, Eq. (12) contains 3 additional terms. The term
hx(x) describes the effect of the applied magnetic field when the junction is bent in the ab-plane. The second term
[wx(x)/w(x)]φx comes from the width modulation. The last term [wx(x)/w(x)]h(x) describes the mixture of both
and does appear only when both, field modulation due to curvature and width modulation are present.

It can be checked by a direct substitution into the Euler-Lagrange equation

d

dt

∂L
∂φt

+
d

dx

∂L
∂φx

− ∂L
∂φ

= 0, (14)

that the Lagrangian density

L = w(x)

{
φ2
t

2
− [φx − h(x)]2

2
− (1− cos φ)

}
, (15)

results in the equation of motion (12) without the αφt and γ terms which describe dissipation and external force and
therefore are not included in the Lagrangian density. Of course, the Lagrangian density (15) can be obtained directly
from Fig. 1(b) and the RSJ model. From Eq. (15) one can see that instead of the usual potential energy term φ2

x/2 we
now have w(x) [φx − h(x)]2 /2, i.e., actually 3 terms. The first, w(x)φ2

x/2, is the obvious generalization of the usual
potential energy term to the case of variable width w(x). The second term w(x)h(x)2/2 is a constant term due to the
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applied field and is not related to the fluxon motion or other Josephson phase activity in the junction. In fact, there
are no traces of this term in Eq. (12). The third term h(x)φxw(x) represents the part of the potential energy density
which we are interested in and which we are going to exploit to build a system with a ratchet potential.

One of the solutions of the sine-Gordon Eq. (12) with zero r.h.s. is a soliton (fluxon)

φ(x, x0) = 4 arctan exp(x− x0), (16)

with the center situated at point x0. We consider non-relativistic motion i.e., dx0/dt� 1. Further assuming that the
fluxon profile (16) does not change much due to the r.h.s. of Eq. (12) which acts as a perturbation, we can get the
explicit expression for the potential energy U(x0) as a function of fluxon coordinate x0. For this purpose, we note
that in expression (15) for the Lagrangian density the second and the third terms correspond to the potential energy
density U(x, x0) (with opposite sign). The potential energy U(x0) is obtained by substituting φ(x, x0) from Eq. (16)
into U(x, x0) and integrating over x. Thus, we get

U(x0) =
∫ +∞

−∞

4w(x)
cosh2(x − x0)

− 2w(x)h(x)
cosh(x− x0)

dx. (17)

The first term corresponds to the potential energy due to width modulation, the second due to shape, field and width.
The first possibility to form a ratchet potential is to apply no magnetic field (h = 0) and to vary the width w(x)

of the junction. In this case the potential energy will be given by the first term of Eq. (17). Moreover, when the
junction width w(x) does not change much over the distance comparable with the fluxon size, the potential

U(x0) ≈ 8w(x0) (18)

just repeats the w(x0) profile. From Eq. (18) it follows that if the width changes as a saw-tooth, so does the potential
energy, except for the vicinity of the saw-tooth’s infinite slope where one has to calculate the convolution according
to Eq. (17). Here and below when mentioning saw-tooth profile we mean a saw-tooth with finite positive slope and
infinite negative slope. In the case of the saw-tooth where the width changes from w0 to w0 + ∆w at the point x0 = 0
(infinite slope), the potential energy in the vicinity of the point x0 = 0 is U(x0) = 8w0 + 4∆w [1 + tanh(x0)]. The
practical implementation of such a ratchet would look like an annular LJJ with the outer edge having the shape of a
circle and inner edge having the shape of one turn of a spiral. This geometry has the advantage that the corresponding
potential can be made ideally saw-tooth-like except for the smearing due to the convolution in Eq. (17), which is a
common feature of all fluxon based systems. In some sense, this system is an analog of the Josephson ratchets based
on 1D arrays [11]. Unfortunately both types of ratchets do not allow to control the potential height during experiment
which can be considered as a disadvantage.

The second possibility is to keep w constant, to apply a magnetic field and to bend the junction in the ab-plane.
In this case the first term of Eq. (17) gives a constant and we have to consider only the second term. Again, if h(x)
changes slowly in comparison with the fluxon size, Eq. (17) is simplified to

U(x0) = −2πwh(x0). (19)

In the well known case of the ring shaped junction, the field h(x) = h0 cos(θ) = h0 cos(x/R) [θ is the angle between ~H
and ~n, as shown in Fig. 1], and therefore we get a symmetric potential. If we deform the ring properly, the potential
can be made asymmetric as desired. Possible experimental shapes are shown in Fig. 2. The advantage of this kind
of ratchets is that one can control the amplitude of the potential during experiment by varying the amplitude h0 of
the magnetic field. The possibility to tune the potential height allows to implement so-called flashing ratchets [8] by
applying either an ac magnetic field using a coil or just placing an rf antenna close to the junction so that the ~H of
the emitted electromagnetic wave will have non-zero component in the ab-plane.

Note, that the terms γ(x) and hx(x) in Eq. (12) from a mathematical point of view play the same role. Therefore
in the experiment the field h(x) can be substituted by a properly chosen additional bias current γp(x) = −hx(x),
which has zero average in space. The inverse mapping is also valid, but the bias current with non-zero average maps
to a non-periodic field (potential) with linearly growing component, which does not belong to the class of ratchets.
In section III.A we, in fact, use 〈γ〉 6= 0 (these brackets denote spacial averaging), but only to test the asymmetry of
the potential. When we demonstrate the real operation of the ratchet in the section III.B, we have 〈γ〉 = 0.

III. SIMULATION RESULTS

In this section we study the fluxon dynamics in a Josephson ratchet of the second type (h 6= 0, w = const) for a
saw-tooth field profile h(x). This ideal asymmetric profile is not only of academic interest because it should show
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the best figures of merit for fluxon ratchets but also can be quite closely reproduced in a real system [see shape in
Fig. 2(b) and corresponding h(x) in Fig. 3(a)]. All simulations were performed using an explicit numerical scheme for
Eq. (12) using a LJJ of the normalized length ` = 20, with damping coefficient α = 0.2 (weakly underdamped limit).
The numerical technique and simulation software are discussed in detail elsewhere [27].

A. Probing the asymmetry of the potential

First, we probe the asymmetry of the potential by calculating critical current γc vs. potential height h0 for the
case of one trapped fluxon [γ±c1(h0)] and for the case of no trapped fluxons [γ±c0(h0)]. The superscripts ‘+’ or ‘−’
correspond to opposite directions of applied bias current.

On the basis of the model derived in the previous section we can understand how these dependences should look
like for arbitrary magnetic field profile h(x). In general, due to the loop-like geometry, the left and right tails of a
fluxon can interact. We assume that the junction is long enough and this interaction in negligible. This situation
is equivalent to the long periodic system where the fluxons are separated by a large distance ` � λJ . Furthermore,
we represent the field h(x) as h0H(x) and map it to the equivalent additional bias current γp(x) = −h0Hx(x). An
example of h(x) and γp(x) derived from the geometry in Fig. 2(b) is shown in Fig. 3(a).

If there is a fluxon in the junction, γ(x) and γp(x) translate into a driving force Fγ(x0) and a potential (pinning)
force Fp(x0), respectively, acting on the fluxon [28]

Fγ(x0) =
∫ +∞

−∞

2γ(x)w
cosh(x − x0)

dx = 2πγw, (20)

Fp(x0) =
∫ +∞

−∞

2γp(x)w
cosh(x− x0)

dx = h0f(x0)w. (21)

The corresponding potential U(x0) and force f(x0) are shown in Fig. 3(b). For the sake of simplicity we suppose that
γ does not depend on x, but our discussion can be easily generalized to the case when the r.h.s. of Eq. (20) is equal to
2πΓ(x0)w. The pinning force (21) can be also obtained directly from expression (17) for the potential energy. When
we increase γ the fluxon is pinned while these two forces can compensate each other, i.e., Fγ(x0) + Fp(x0) = 0. The
depinning happens for

γ = γc1 = −h0f(x1)/2π, (22)

where x1 is the coordinate at which f(x1) has a minimum [see Fig. 3(b)]. We assume that γ > 0 and f(x1) < 0. Thus
from Eq. (22) we see that γc1(h0) looks like a straight line which starts from the origin.

On the other hand, regardless of the presence of a fluxon, the Josephson phase evolves under the action of the
net current γ + γp. From Fig. 3(a) it is clear that at point x2, where γp(x) is maximum, this sum can exceed 1
for some value of γ = γc and the junction switches to the resistive state. Using the γp = −h0Hx(x) the condition
γc + γp(x2) = 1 gives

γc(h0) = 1 + h0Hx(x2) = 1− h0 |Hx(x2)| , (23)

i.e., also a straight line, but with the negative slope.
Summarizing, γc1(h0) has two branches (22) and (23), and follows the one with the lowest critical current for given

h0. For fields 0 < h0 < h∗, γc1(h0) is given by Eq. (22), and for h0 > h∗ by Eq. (23), where the field

h∗ =
−1

f(x1)/2π +Hx(x2)
, (24)

is the field where these two dependences intersect. The dependence γc0(h0) has only one branch (23) since the fluxon
depinning mechanism is absent.

When one applies the current γ in the opposite direction, the dependences qualitatively look the same but the
particular values of slopes can be different in the case of an asymmetric potential, if γp(x2) 6= −γp(x4) and f(x1) 6=
−f(x3) (see Fig. 3). Thus, the measurement of γ±c0(h0) and γ±c1(h0) gives direct information about the asymmetry of
the field and of the potential, respectively. Note that an asymmetric potential may have γp(x2) = −γp(x4) and/or
f(x1) = −f(x3), i.e., it does not reveal its asymmetry in the measurements of γ±c0(h0) and γ±c1(h0). Inversely, the
asymmetry of γ±c0(h0) and γ±c1(h0) is a clear indication of asymmetry in the system.
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We stress that the first branch of γ±c0(h0) and the second branch of γ±c1(h0) show the asymmetry of the field h(x),
while the first branch of γ±c1(h0) shows the asymmetry of potential U(x0), i.e., already after convolution (17) with φx.
While hx(x0) may have appreciable asymmetry, U(x0) may be almost symmetric.

We should note that the above analysis is valid for an arbitrary field profile h(x) as long as hx(x) can be considered
as a perturbation in the r.h.s. of Eq. (12). However, for the case of the saw-tooth potential this is not the case,
since hx(x) has a δ(x)-like behavior at the point of the junction where the saw-tooth has infinite slope. Therefore our
analysis is valid only qualitatively. In particular the dependences γ±c (h0) still have linear slopes but the values of the
slopes can not be calculated using simple integrals as shown above because the fluxon shape will differ from (16) quite
considerably, as we saw in numerical simulations. Therefore we present the results of direct numerical simulation of
Eq. (12).

The simulated γ±c0(h0) and γ±c1(h0) for an ideal saw-tooth field profile h(x) are presented in Fig. 4. The magnetic
field is given in terms of the force amplitude h02π/`. If the system is closed in a loop with a normalized circumference
`, the h(x) can be written in the form h0H(2πx/`) where H is geometry dependent 2π periodic function normalized
to 1. Therefore the term hx(x) in Eq. (12) is

hx(x) = h0
2π
`
H′
(

2π
`
x

)
, (25)

where H′(ξ) = dH(ξ)/dξ is a periodic function. This means that the potential force scales inversely proportional to
the length of the junction `. So, to get rid of the length dependence and make our results valid for any length `� 1,
we present our results as a function of h02π/`.

From Fig. 4 one can see that the depinning current γc1(0) = 0 and then grows linearly with field, as expected from
the theory, up to some field h∗2π/` ≈ 1.8. After that it decreases linearly with field, also according to our prediction,
and, finally, exhibits multiple branches corresponding to the multi-fluxon states.

As it should be in the case of a saw-tooth potential, the slopes of γ±c0(h0) and γ±c1(h0) are not symmetric, and the
ratio of the slopes is about 4. Ideally, if the fluxon were a real particle we could expect an infinite force necessary
to push the fluxon out of the well in the direction against the infinite slope and, therefore, an infinite ratio of slopes
on γ±c1(h0) curves. In practice, due to the convolution (17), we have a finite force and a finite ratio of slopes on the
γ±c1(h0) dependences. The finite ratio of slopes on γ±c0(h0) as well as of the second slopes γ±c1(h0 > h∗) is observed
because perturbation theory does not apply as mentioned above.

The next step is the understanding of the dynamics of the fluxon in an asymmetric potential. One of the simplest
observations which can be made numerically as well as experimentally is the examination of the fluxon trapping current
γtr, i.e., the minimum current at which a fluxon still moves along the system, not being trapped by the potential.
Obviously, in the underdamped system the trapping of the fluxon by the potential will not take place while the kinetic
energy of the fluxon exceeds the height of the potential, and one should not see any difference in the fluxon trapping
currents γ±tr (h0) for opposite bias current directions. In the strongly overdamped case the fluxon dissipates energy so
fast that to move further under the action of the driving force, the driving force should always overcome the maximum
value of the potential (trapping) force. In an asymmetric potential the maximum force created by the potential is
different for opposite directions of fluxon motion and we should expect a difference in the fluxon trapping current.
The simulated γ±tr (h0) curves for a saw-tooth potential are shown in Fig. 5. Even in the slightly underdamped case
α = 0.2 the dependences for positive and negative direction of fluxon motion (bias current) differ quite considerably.
We also note that γ+

tr(h0) almost coincides with γ+
c1(h0) (see Fig. 4) for h0 < 2 which means that for positive direction

of bias there is no hysteresis on the I–V characteristic when the system switches from zero voltage state to the state
with moving fluxon and back. Instead, for the negative bias the hysteresis is present as can be seen in Fig. 6.

B. Motion due to monochromatic force

In the following we investigate the motion of a fluxon in a system with the saw-tooth field profile h(x) and w = const
under the action of a monochromatic ac bias current γ = γac sin(ωt) in Eq. (12). If as a result of an ac drive the
fluxon starts to move around the junction, we can estimate the characteristic frequency of this process. It is clear that
the maximum velocity of the fluxon is equal to the Swihart velocity (1 in normalized units) therefore the maximum
revolution frequency is ωmax = 2π/` ≈ 0.314.

In the limit of low frequency (quasi-static) drive ω � ωmax we can calculate the net average velocity of the fluxon,
just integrating the current-velocity characteristics u(γ) (see Fig. 6) at a given value of field h0 as:

u(γac) =
1

2π

∫ 2π

0

u(γac sin(τ)) dτ, (26)
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where the integration path should follow the proper hysteretic branches of the u(γ) dependence.
In the case when ω is comparable with the maximum frequency of the fluxon rotation around the junction ωmax,

we perform direct numerical simulations. The dependences u(γac) calculated numerically for different values of ω are
shown in Fig. 7(a)–(c) for h02π/` = 0.5, 1.0 and 2.0, respectively. The upper curves marked as “qs” (quasi-static) are
calculated using Eq. (26). All other curves for ω = 0.01–0.1 were obtained by means of direct numerical simulation
of Eq. (12). Such values of frequencies were chosen taking into account that they should be less but comparable with
ωmax. As we saw in simulations, at ω ≥ 0.2 [in the case of Fig. 7(a) already for ω = 0.1] the rectification is suppressed
almost completely.

From Fig. 7 one can see that the dependence u(γac) for quasi-static case is piecewise with jumps at the values of
bias current where switching between different hysteretic branches occurs. For example, let us focus on h02π/` = 1.0
[see Fig. 7(b)]. In this case the switch between different hysteretic branches occurs at γ which is equal to 0.522, 0.696,
0.916 (c.f. Figs. 4, 6 and 7). Several characteristic regions can be distinguished. First, in the region of small values of
γac, where u = 0, the amplitude of the ac current is not big enough to exceed the pinning current and the fluxon is
localized in the well. At higher ac bias up to γac = 0.522 the positive depinning current is exceeded and the system
switches to the fluxon step, i.e., the fluxon escapes from the well and starts to move around the junction. Note that
during a period of ac drive the fluxon can only make integer number of turns and at the end of the period will be
again localized in the well. This results in the quantization of the average velocity u, as can be seen as steps on all
curves except for the quasi-static one. The step number corresponds to the number of turns done by the fluxon during
one period of ac drive. The voltage rectifier based on this principle will give a quantized voltage Vn = nΦ0ω/2π
(in physical units) which is defined by fundamental constants and the applied frequency. The corresponding velocity
quanta in Fig. 7 are given by un = nω`/(2π). This gives u1 ≈ 0.0318 for ` = 20 and ω = 0.01. Note that the voltage
quantum increases with ω and for ω = 0.01 five quanta (turns per ac cycle) give the same voltage as one quantum for
ω = 0.05. For the quasi-static case the voltage quantum is infinitesimal so that the quasi-static curves look smooth.

A further increase of the ac bias amplitude 0.522 < γac < 0.696 results in a decrease of the dc voltage because
during the negative semi-period of the ac drive the fluxon starts moving in the opposite direction so that the efficiency
of the fluxon ratchet drops.

The big peak at 0.696 < γac < 0.916 in Fig. 7(b) is related to the switching of the junction to the resistive state
during the positive semi-period while during the negative semi-period the junction stays in the zero-voltage state or
on the fluxon step. When the amplitude of ac drive gets big enough to switch the system to the resistive state also
during negative semi-periods, the dc voltage drops again and in the limit of very strong ac drive approaches zero. A
large amplitude of ac bias γac � 1 implies that the system spends almost the whole period in the positive or negative
resistive state and only a tiny fraction of the period on the asymmetric part of the current-velocity characteristic at
low currents, so that the resulting average velocity is close to zero. In addition, such a strong ac drive results in
chaotic dynamics, as can be seen in Fig. 7 for large values of γac.

Figure 7 also shows that the rectification effect decreases when the driving frequency increases and approaches the
maximum fluxon rotation frequency ωmax.

We point out that the performance of the fluxon rectifier depends on the chosen potential amplitude h0. For
comparison in Fig. 7(a)–(c) we show the rectification characteristics for different values of magnetic field amplitude
2πh0/` = 0.5, 1.0 and 2.0 (see Fig. 4). We see that the potential depth affects the amplitude of ac drive at which
rectification appears, at which u(γac) has maximum and it affects the relative location of the two regions corresponding
to the fluxon rectification regime and resistive rectification regime. We note, that the resistive rectification regime in
principle gives a larger effect which is inversely proportional to the damping coefficient α, i.e., it can be made rather
big. However, this is a rather trivial effect which can be obtained using any non-symmetric I–V curve. The fluxon
rectification regime, which is the main subject of this study, gives smaller but a quantized voltages. This can be an
advantage for some applications.

IV. CONCLUSION

We proposed a new type of Josephson vortex ratchets, where the motion of a fluxon along a long Josephson junction
closed in a loop can be considered as the motion of a quasi-particle in a ratchet potential. The derived model suggests
several implementations of the fluxon ratchets, and, in particular, the one where the amplitude of the potential
can be controlled during experiment. Since the fluxon is a soliton (non-linear wave) moving in the underdamped
medium with asymmetric potential, we expect some non-trivial effects related to (a) wave properties of the fluxon,
(b) underdamped dynamics and (c) interaction between fluxons. As a first step, we performed a numerical analysis
of the effective potential seen by a fluxon, and checked the rectification of a monochromatic signal. We found that
a fluxon rectifier produces a quantized voltage, with a quantum given (due to the Josephson relation) only by the

7



fundamental constant Φ0 and the driving frequency ω. The experimental investigation of the proposed system based
on (Nb-Al-AlOx)-Nb Josephson junction technology is in progress.
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FIG. 1. Piece of LJJ (d1 and d2 are the thicknesses of the superconducting electrodes and dI is the thickness of the
insulating tunnel barrier) which is bent in the ab-plane and has variable width w(x): (a) 3D view of geometry, (b) schematic
representation using discrete elements.

FIG. 2. Possible shapes of LJJs (top view) that provide a ratchet potential when the magnetic field ~H is applied in the
direction shown by the arrow.

FIG. 3. Illustration to the explanation of the γ±c0(h0) and γ±c1(h0) dependences. (a) h(x) and γp(x). (b) U(x0) and f(x0).
These curves correspond to the LJJ shape shown in Fig. 2(b).

FIG. 4. Normalized critical currents γ±c0(h0) (no trapped fluxons) and γ±c1(h0) (one trapped fluxon) vs. magnetic field
amplitude h0 for the saw-tooth magnetic field profile h(x) in the annular LJJ of length ` = 20. Dotted lines show the values of
magnetic field at which rectification shown in Fig. 7(a)–(c) was calculated.

FIG. 5. Normalized fluxon trapping current γtr(h0) vs. magnetic field amplitude h0 for the saw-tooth magnetic field h(x)
in the annular LJJ of ` = 20 and α = 0.2. Dotted lines show the values of magnetic field at which rectification shown in
Fig. 7(a)–(c) was calculated.

FIG. 6. Current-voltage characteristic of LJJ with one trapped fluxon shown as the dependence of fluxon velocity
u = Vdc`/2π on the amplitude of the bias current γ obtained for α = 0.2.

FIG. 7. The dependence of the dc voltage across the junction Vdc given in terms of average fluxon velocity u = Vdc`/2π on
the amplitude of the ac drive γac for different normalized frequencies ω = qs, 0.01, . . . , 0.1 of the ac drive and α = 0.2. The
curves corresponding to the different frequencies are intentionally shifted by 0.0636 (two velocity quanta at ω = 0.01) relative
to each other for the sake of better visibility. The insets of (a) and (b) show magnified views of the fluxon rectification region.
Figs. (a), (b) and (c) were obtained for 2πh0/` = 0.5, 1.0 and 2.0, respectively.
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