Magnetic field dependence of low-frequency flux noise and spatial distribution of vortices in YBCO dc Squids

R. Straub, R. Kleiner

Experimentalphysik II, Universität Tübingen, Germany D. Koelle

II. Physikalisches Institut, Universität Köln, Germany

x Motivation

- x Vortex imaging signal generation
- **x Results:** vortex imaging & correlation with 1/*f*-noise
 - Single layer devices
 - Multilayer devices
- **x** Conclusions

High T_c SQUIDs: noise limitations

x white (thermal) noise is low √
x low frequency noise can be high:
improve for applications

Nature of low frequency noise:

- \blacktriangleright $\mathbf{I}_{c}\text{-fluctuations}$ of Josephson junctions \checkmark
- > thermally activated motion of vortices

Defects !!!

Flux noise \Leftrightarrow local property x where do vortices go? vortex imaging x flux coupling to SQUID? \blacktriangleright measure coupling strength $\delta \Phi / \delta r$ x fluctuation strength? spectral density of spatial fluctuations S_r Local analysis via Low Temperature Scanning Electron Microscopy (LTSEM)

LTSEM on SQUIDs

Eberhard Karls Universität Tübingen

Samples and noise measurements

Vortex imaging

Signal vs position of vortex

Eberhard Karls Universität Tübingen

cooling field $B_0 = 5 \mu T$ $\mu_{0} = 35 \,\mu$ T

Eberhard Karls Universität Tübingen

Locations of vortices

Number of vortices $N \Leftrightarrow$ cooling field B_0

x Expected: 300 experiment number of vortices Ζ linear fit 250 vortices ~ cooling field B_0 200 150 × Found: of 100 $N \approx B_0 \cdot A/\Phi_0$ number 50 i.e. no Meissner-0 screening 25 20 30 35 40 0 5 10 15 cooling field B₀ (µT) PIT II EBERHARD KARLS UNIVERSITÄT

*

Tübingen

Low-frequency noise power @ 1Hz

Simple model:

- x vortices uncorrelated
- x vortices distributed
 uniformely

$$S_{\Phi} \sim N \sim B_{C}$$

Result: deviation from $S_{\Phi} \sim N$

EBERHARD KARLS

Universität

Tübingen

Test of the model

thard Karls Universität Tübingen

*

*

Washer dc SQUID with input coil

SEM-image vs flux image

Flux noise at 1 Hz vs cooling field B_0

*

Identification of main fluctuator

Acknowledgement

Collaboration with:

- ★ John Clarke, Greg Nicols, Gene Dantsker, Andy Miklich, UC Berkley
- * Frank Ludwig, UC Berkeley, PTB Berlin
- * R. Wördenweber, K. Barthel, FZ Jülich

Funding: Deutsche Forschungsgemeinschaft (DFG), European Science Foundation (ESF) and Studien- stiftung des deutschen Volkes

This publication is based (partly) on the presentations made at the European Research Conference (EURESCO) on "Future Perspectives of Superconducting Josephson Devices: Euroconference on Physics and Application of Multi-Junction Superconducting Josephson Devices, Acquafredda di Maratea, Italy, 1-6 July 2000, organised by the European Science Foundation and supported by the European Commission, Research DG, Human Potential Programme, High-Level Scientific Conferences, Contract HPCFCT-1999-00135. This information is the sole responsibility of the author(s) and does not reflect the ESF or Community's opinion. The ESF and the Community are notresponsible for any use that might be made of data appearing in this publication.

