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Introduction
MONG Superconducting devices proposed so far in these last years two-dimensional Josephson junction arrays (2D-JJA)
have been one of the most promising for application mainly as local oscillators. The main features of 2D-JJA are the
possibility of has a large number of Josephson junctions all coherently phase-locked together and so obtain a relevant

power emission. Though in principle the power emitted from an array can be larger than that from a LJJ, only in these last
years underdamped arrays have been fabricated and their efficiency proved [3,4].

The typical parameter for the measurement of array junctions coupling is the SQUID parameter βL = 2πI0L/Φ0 where I0 is the
junction critical current, L the loop inductance, Φ0 the flux quantum. In low βL arrays (typically βL <0.5) the network equations
can simplified using some of next-neighbors approximation for the mutual inductance between array loops. Anyway most
arrays have been realized with βL >1, in this case only a model including the full mutual inductance matrix between array loops
can give a realistic array model [5].

The most frequent geometry is the simple so-called horizontal square Josephson ladder (H-ladder) in which a single row of
meshes is feed by bias current in any of the junction common to two adjacent meshes (cf. Fig.1a). Arrays formed by two or
three of these rows have been also considered. Another geometry is the vertical ladder (V-ladder), in which a single column of
meshes is feed (cf. Fig.1b). Two or more of such columns form arrays used in [4].

Coherent emission state is reached when the array is placed in a magnetic field perpendicular to the array plane. In this case the
I-V characteristics of the array shown steps on which it is possible biasing the device in order to obtain the coherent signal. In
presence of magnetic it is possible to make a simple cavity resonances theory based on the checkerboard pattern solutions
[6,7]. It shows that the array behavior under the applied magnetic field is dominated by two singularities called V+ and V−. The
largest frequency one, V+, have to be considered the analogous of Eck step in LJJ.

In this work we use a full inductance model to simulate numerically the behavior of simplest geometry of underdamped 2D-
JJA, i.e., the H- and V-ladder arrays within the range 0.1 < βL < 2. We study mainly the dynamics of V+ singularity, i.e., the
Eck-like step, which would be the most promising for the applications.
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The Model
We model a Nr x Nc meshes 2D-JJA following the procedure reported in [10]. Single junctions of the network are modeled as

RSJ elements with a damping corresponding to α = (1/ βC)1/2. The coupling between the junctions of the array is introduced via
standard fluxoid quantization rule and self-inductance of superconducting path between junctions of the network. In this model
the self-inductance coupling is represented by a suitable value of the parameter βL, whereas mutual inductance depends on the
ratio R/a with R the mesh dimension and a the branch dimension in the array plane. An uniform orthogonal magnetic field is
applied over the array via the frustation vector f which measure the external flux normalized to flux quantum, i.e., f=ΦΦΦΦ/Φ0. The
array equations will result:

)(1 WγVU ++=++ fsin
Lttt ϕϕϕϕϕϕϕϕαϕαϕαϕαϕϕϕϕϕ ββββ          

(1)

where ϕ ϕ ϕ ϕ is the phase vector of all junctions in the arrays, γγγγ the bias current vector; U is the matrix expressing the coupling
between all junctions, i.e., containing the full mutual inductance matrix of the whole array; V and W are the matrixes relating
the external magnetic field flux and the bias current in each mesh of the array to the junctions. In (1) time is normalized to the
inverse of plasma frequency ωJ of the junctions and bias currents to critical current of junctions. The system (1) are explicit
equations that can be solved using standard integration routines for system of ODE equations. Finally, using R/a parameter, the
normalized mutual inductance matrix have been chosen in order to have maximum coupling at βL =4 [10].



Numerical Results: 1) Eck-like steps
We have solved (1) for some underdamped 2D-JJA ladder arrays.

In Fig.2 typical I-V characteristics for H-ladders and for V-ladders are shown. Here βL=1 so step are comparable with that of
[3,6]. Typical steps appears in I-V characteristics. The largest ones are the Eck-like steps: (i) (overlap) H-ladder Eck-like steps
for a 10 and 100 meshes array; (j) V-ladder with 10 meshes; (k)  V-ladder with 100 meshes. Parameters of simulations are:
βL=1, α=0.25, f=0.5.

Resonances of  V+ and V− type are visible. All simulated arrays shown these resonances, but we note that the V-ladder shows a
lower voltage (more than 15%) just from relatively small arrays (6x1) and smaller amplitudes.

Moreover the voltage of Eck-like step depends on the array length in V-ladders case (this is much more evident for small
arrays with Nr<5), while in the H-ladders case the Eck-like steps for 10 and 100 meshes overlap almost completely.

The V-ladders show also a more rich structure in resonances below the Eck-like step, whereas the H-ladders show only V− (we
refers to Eck-like step in V-ladder as the topmost frequency resonance).

All simulated Eck-like steps attain their maximum amplitude at f=0.5, where also the maximum voltage is attained in most
cases  (see below).
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Numerical results: 2) Dependence on βL
Changing the parameter βL  two families of Eck-like steps are generated on the I-V characteristics according to array type.

In Fig.3a we report the H-ladder case 1x10 for typical values α=0.25, f=0.5 of parameters and for the optimal frustation f=0.5.
Eck-like steps appear at lower voltage for higher values of βL. For the H-ladder a comparison with resonances theory given in
Refs. [6,7] is shown in Fig.4, where mutual inductance effects have been accounted using an “effective”

βLeff ~1.5βL

(corresponding roughly to Leff ~L+2M). We note that  agreement is very good also for large values of βL where long range
mutual inductance effects are not accounted by “effective” βL  correction.

In Fig.3b the same I-V characteristics are reported for V-ladder 10x1 case. Comparison with the resonance theory is reported
again in Fig.4. The behavior appears similar to H-ladder case but resonance voltage is generally lower than linear cavity mode
prediction [6], which give only small differences with H-ladder case.

Moreover the steps show a resonant fine structure especially for lower βL. About voltage we note that it is impossible to use an
“effective” uniform βL. In fact the observed difference tends to be small for low βL values indicating that a different
mechanism is involved in producing the observed voltages



0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 1 2 3 4 5 6 7

Fig.3a
0.1

0.15

0.2

0.4
0.6

0.8

1.0

(a)

Normalized Voltage

N
or

m
al

iz
ed

 B
ia

s 
C

ur
re

nt



0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 1 2 3 4 5 6 7

Fig.3b
0.1

0.15

0.2

0.4
0.6

0.8

1.0

(b)

Normalized Voltage

N
or

m
al

iz
ed

 B
ia

s 
C

ur
re

nt



0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

7

8

Fig.4

N
or

m
al

iz
ed

 V
ol

ta
ge

β
L

 H-Ladder 1x10
 V-Ladder 10x1
 Theory (exact)



Numerical results: 3) Stability
After reaching the maximum amplitude at βL~1, steps rapidly decrease in amplitude and at a critical βL

c
  disappears abruptly.

This behavior is reported in Fig.5a. In [10] the maximum step depletion for rf-induced steps occurs near maximum mutual
coupling βL depending on array geometry (here near βL=4): a similar mechanism seems occur also here.

Increasing the dissipation parameter α steps can be found also at higher βL values.  Thus, as higher dissipation has the effect to
increase the stability of the system, steps could be unstable over βL

c. In Fig.5b we report the stable and unstable regions over
the α-βL plane, separated by βL

c
 (α) curves, for H-ladder 1x10 and V-ladder 10x1.

Numerical results: 4) Magnetic field behavior
In Fig.6 typical field behavior (frustation) is reported for a H-ladder, 1x10 with βL =0.5: the step voltage is maximum for f=0.5
that is the typical behavior of Eck-like steps predicted also by linear theory [6,7]. The percentual variation of voltage is about
4% in this case.  Increasing to βL =1 have the effect to flatten the curve giving a voltage practically constant being the
maximum variation of less than 0.5%.  In Fig.6b others simulations are reported for H-ladder.

The behavior of V-ladder 10x1 is substantially different: always in Fig.6 in both cases, βL =0.5 and 1, f=0.5 corresponds to
minimum value of voltage, with a variation of about 13% and 17% respectively. This behavior is analogue in some sense of
multi-row arrays in which linear resonances theory can give this results and some experiments seems confirm it (cf. Ref. [9]).
It is worth to note that anyway maximum screening currents are always found at f=0.5.
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Internal Dynamics
The differences between Eck-like steps of H- and V-ladder noted above can be explained looking at the array internal
dynamics.

H-ladder shows clearly checkerboard (ribbon) dynamics of order ½ in the whole interval from f=1/3 to 1/2.

V-ladder dynamics is again checkerboard-like, but coherent length of checkerboard pattern is subject to a phase-shift along the
array so that distant meshes cannot be mapped exactly one to one. This is reported in Fig.7 where phases of current feed
junction are reported for an array 20x1, f=0.5, βL =1, α=0.25.

Also power spectrum of V-ladder, reported in Fig.8b, shows more sidebands structures with respect to H-ladder spectrum in
Fig.8a. Parameters here are the same of above except for the array dimension which is 10x1.

So V-ladder behavior is much more reminiscent of a multi-rows array in which other modes appears depending on the number
of rows. Actually “rows” in a V-ladder are single meshes. As flux propagation in such “short” structures is replaced by
“beating solutions” [11] V-ladder is much easier to understand as a collection of coupled lumped phase-shifted “flux”
oscillators rather than “flux-flow”. This can help to explain why a frequency selection element, as ground plain used in Ref.
[4], is necessary to obtain large power emission from V-ladder type arrays.
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Conclusion
The main consequences for applications of above properties of Eck-like steps can be resumed as following: 1) exist an

optimal βL range where steps attains their maximum amplitude giving arise to the best output power, for the mutual inductance
model used here is between 0.4 and 0.8; 2) low dissipation α<0.1 can reduce stability and tunability; 3) step fine structure
would be avoided in order to have a smooth tunable oscillator.

The analysis of two different geometry, H- or V-ladder shows that the H-ladder is a true fluxflow device with characteristics
comparable to LJJs, also if poor tunability can be a problem. On the other hand V-ladder is a different type of device working
much more as a collection of coupled lumped oscillators.
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