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Abstract

In last years the return current, i.e., the value of the bias current where

an hysteretic Josephson junction switch back to zero voltage state, have

obtained interest in view of its connections with the evaluation of losses for

macroscopic quantum coherence experiments and the following development

of q-bit devices. Here we study carefully the problem of the return current

by means of numerical simulations of associated Langevin equations in both

very small and intermediate length Josephson junctions. Comparison with

theoretical lifetime, fluctuations, and recent experiments are carefully car-

ried on. The results show that the effects of finite length are important in

the correct description of the return switch.

PACS: 85.25 Am, 85.25 Cp, 85.25 Hv

Keywords: Josephson junctions, fluctuations, damping.

INTRODUCTION

The return current is defined as the value of the bias current at which a Josephson

junction switch back to the zero voltage state. Both the mean value of the current and the

fluctuations about it have been analyzed in the past by theoretical investigations1,2 and

by experiments3—6. The interest in return current is driven by its important connections

with the quasi-particle losses in the junctions7. This in turn came out of great interest for

the newly projected applications of Josephson junction as constitutive element of q-bit

devices8,9. On the other hand also the development of new digital Josephson devices10 and
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more recently developed systems as three-terminal devices11 or flip-flop devices12 push for

a careful analysis of condition of junction zero-voltage reset in order to apply engineering

procedures for the definition of competitive devices. In this paper we study the return

current problem in the framework of RSJ model using massive numerical simulations of

Josephson junction of finite extension ranging from small to intermediate length cases. Is

well-known that thermal fluctuations giving arise to a finite extent of the thermal switch

region. These switches can be collected in histograms and analyzed according to the known

theoretical predictions as that given by Ben-Jacob et al.1 about lifetimes of running state,

and variance of thermal distribution as given by Chen, Fisher and Leggett2. A comparison

with existing experimental data is carried out in order to analyze the possible causes of

some incongruencies between theory and experiments5.

The paper is organized as follows: in sect.I we review briefly both the deterministic

and statistical theoretical framework about the return current; in sect.II we report the

numerical results together with the data analysis of lifetimes and width of distributions.

A brief conclusion is in sect.III.

I. THE RETURN CURRENT

The standard RSJ Josephson junction model is based on the view that the state of the

junction is fully described by its phase variable ϕ which satisfy the following equation7:

ϕ̈+ α0ϕ̇+ sinϕ = γ + γN (1)

here times are normalized to plasma frequency ωJ =
q
2πI0
CΦ0

with C the junction ca-

pacitance, I0 the Josephson supercurrent, Φ0 the flux quantum. In the above equation

α0 = 1/
√
βC , with βC =

2πI0CR2

Φ0
the Stewart-McCumber parameter that contains the bare

normalized resistence 1/α0 and γ is the normalized current bias, i.e., γ = Ib/I0 where Ib
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is the current feed to the junction. Finally γN is a Gaussian current white noise, which

model the effect of the thermal fluctuations.

It is worth to note that RSJ model is purely ohmic from the point of view of dissi-

pative losses, i.e., the losses are voltage independent and reduce to the ohmic term α0.

There is no gap in the RSJ model, though it can be improved using some most accurate

approximation to the quasi-particle losses. On the other hand the use of such approxi-

mations is questionable2. A fully developed theory, as Quasi-Particle Tunneling (QPT)

approach will be mostly suitable to describe the actual junctions. Here however we use

the simplest RSJ model in order to test its limits. Moreover we are interested to compare

our numerical results with experiments at 4.2 K (cf. Castellano et al.5), so we treat the

junction like a ”classical” rather than a ”quantum” object, i.e., we stay in the limit µ¿ 1

and ρ¿ 1 following Chen et al.2, where µ = kBT/I0Φ0 and ρ = µ/α.

A frequent misconception about the Eq.(1) is that it describe ”small junctions”, where

the term ”small” usually refers to ”anything that is less than λL”, where λL is the so-

called Josephson length λL =
q

Φ0
2πJ0L , with L the inductance per unit length of the

junction and J0 the current per unit length. Besides many actual junctions are typically

¿ λL the Eq.(1) is a correct description only for a magnetic field far from critical field of

the junction. By the fact Eq.(1) describe zero length junctions with infinite critical field.

So any model that would introduce magnetic field effects have to change Eq.(1) into the

well-known SG equation for long Junctions:

ϕ̈+ α0ϕ̇ + sinϕ = ϕxx + γ + γN (x, t) (2)

where ϕxx is the second spatial derivative of the phase. The magnetic field is set in the

boudary conditions, i.e., ϕx (0) = ϕx (l) = η where l = L/λL is the normalized length of

junction, and η = 2πλJdB
Φ0

the normalized magnetic field with d the electric thickness of the
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junction. Here γN(x) is a spatially distributed Gaussian white noise with autocorrelation

function given by13:

< γN (x, t), γN(x
0, t0) >=

4πlα0kBT

Φ0I0
δ (t− t0) δ (x− x0) (3)

In absence of term γN Eq.(1) is deterministic and its solutions can be expressed in

terms of elliptic functions or integrated numerically. In order to grasp the essential aspects

of these solutions we note that it is well-known that Eq.(1) can be thinked as the equation

of the motion of a particle in the so-called washboard potential (check signs):

V (ϕ) = −γϕ − cosϕ

with a dissipative term given by α0ϕ̇. The existence of a return current can be inferred by

the following argument: for γ → 0 the tilt of the potential tend to vanish so the dissipation

can slow down the particle until it become unable to overcome the next potential well

given by cosϕ term. We call this value of the bias the ”return current” γr. It is worth to

note that the above argument make sense only for hysteretic junctions, i.e., underdamped

junction with small losses α0 ≤ 1. On the other hand the hysteretic junction are the most

promising for applications, both ”classical” and ”quantum”, being a two-state system

with very small losses. It is worth to note that bare dissipation represented by the value

of α0 which enter in the Eq.(1) could not confused with ”true” dissipation α which can

due to other phenomena which are not described by Eq.(1). The effect of magnetic field,

noise or junction length can change the dissipative properties: no one of these effects

are present in the deterministic, i.e., γN = 0, Eq.(1) above. From here we assume that

relation which can be deduced on the basis of RSJ model are valid for generic, true or

bare, quantities. The failure of these relation in the data analysis will indicate the limit

of the model and the necessity of its improvement. This is analogue to analysis made in
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Castellano et al.13. It is possible evaluate the deterministic value of γr which results given

by the following expression1:

γr =
4γc
π

α (4)

where γc is the normalized critical current. The temperature behavior of deterministic

return current γr was recently analyzed in a careful comparison with experiments by

M.G.Castellano et al.6 for both RSJ and QPT models. The results show that low critical

current density junctions have lower dissipation.

Adding the noise term γN the Eq.(1) become a Langevin equation. Applying statistical

procedures it is possible to evaluate the escape rate from oscillatory state1:

Γ = A(γr) exp (−B(γr,α)) = ωJ

s
(γ − γr)

2EJ
πkT

exp

Ã
−(γ − γr)

2EJ
α2kT

!
(5)

where EJ =
Φ0I0
2π

is the Josephson energy. As Γ can be evaluated by experiments or also

by numeric simulations the Eq.(5) can be used to fit other parameters as the temperature

T and the ”true” value of return current γr, or, the ”true” loss coefficient α and the ”true”

value of return current. According to above explained procedure fit can be used to check

the consistency of the theory giving information on the parameters appearing in Eq.(5),

i.e., we can assume that also for finite (but moderate) length junctions the Eq.(5) is valid,

except that true parameters could be not satisfy point-like junction relations like Eq.(4).

Another independent theoretical prediction on the return current is the width of return

switches distribution, which in the thermal noise limit can be written:

wth = 2σ = γrG (µ, υ)

s
1

2
µf (T ) ln 2 (6)

where G (µ, υ) is a function of the order of 1 in which µ and υ enter in logarithmic form

and f(T ) is a growing function of temperature2. In Eq.(6) current interval given by wth
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is normalized to maximum Josephson current. At T = 0 K we have f(0) = 1, whereas at

T = 4.2 K f(4.2) ' 10 for the experimental data in ref.4.

II. NUMERICAL RESULTS AND DISCUSSION

If theory given in Ben-Jacob et al.1 is again valid in the description of finite, but

short length junctions described by Eq.(2) then we can use numerical simulations of this

equation to predict the true value of return current and one of two other parameters, i.e.,

the temperature or the loss coefficient α. Here to make a comparison with Castellano

et al.5 we set T = 4.2 K in Eq.s(3),(5) and evaluate the most interesting loss coefficient

α. We use the standard procedure to simulate Eq.(2) dividing the junction in N discrete

sections each with length ∆x so that l = N∆x. We analyze two normalized length l = 1

and l = 0.15 using ∆x = 0.05 this implies N = 20 in the first case and N = 3 in the

second case. If we assume current density to be constant the ratio of critical currents for

the two length will be 3/20 this means that variances in Eq.(3) will have the same ratio.

We assume that smallest length have exactly the same critical current of junction in the

experiment5. In some case we take two junction length have the same critical current,

which means a different current densities. Magnetic field behavior for zero voltage escape

in long junctions was treated in Castellano et al.13 where is shown that for junction

normalized length below one the behavior is very similar to point-like junction until the

neighbor of the critical field.

Numerical procedure is similar to that used in Castellano et al.13 for zero voltage

escape. Junction is set in the resistive state and the system of ODE equivalent to Eq.(2)

is integrated with a adiabatic down sweep of bias current until return switch occurs. Then

the procedure is repeated until we reach a significant statistics. Normalized sweep times

1/υ are roughly of the order of 3× 10−6.

6



The result of return switch sampling are plotted in the form of histograms. In Fig.1

we show typical histograms for the two junction lengths in zero magnetic field. In Fig.1a

the case of smaller length for a deterministic dissipation of α0 = 0.025 is shown. This

value of bare dissipation is about the same of the experiment5. The sample is formed by

n = 5827 return switches. We note that histogram have a well defined width, so we do

not observe in the simulation the extremely small σ found in the experiment. In Fig.1b

we report the histogram for the longest junction with the same dissipation and critical

current density, with n = 2123. For the longer junction the histogram mean value and

width are lower because the critical current is larger. In Fig.2a we report histograms for

the same parameters of Fig.1a except that a magnetic field roughly equal to ηc/2 is now

imposed over the junction. We note that mean value is lower with respect to Fig.1 as

can be espected because the magnetic field reduces the return current. Skewness for all

histograms is between 0.7 and 0.9.

Next step in the numerical data analysis is the fit of Eq.(5 ). We note that in this

case prefactor A(γr) in Eq.(5) is depending on ”true” γr which is unknown before the fit,

anyway the dependance is weak so we can use γ0r =
4γc
π
α0 or the histogram mean value as a

first guess in the fit procedure and then iterate is until reach consistency. The fit produces

two unknown parameters: the ”true” return current γr, from which we can calculate the

”deterministic” value of dissipation αd deduced by Eq.(4), and the ”stochastic” dissipation

αs. Some fit is given in Fig.3 for two values of lentgth and low bare dissipation α0. The

complete sets of data collected with the fit of Eq.(5) are reported in Table I which would

be compared with Fig.7 of Castellano et al.5. Values of dissipation are given as normalized

resistor 1/α in order to have a direct comparison with discussion of experiment. We note

that in zero magnetic field just at the first guess γ0r fitted ”true” return current is found to
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be always within its associated error equal to its deterministic value given by Eq.(4). The

same is true for ”deterministic” value of dissipation αd in zero magnetic field. This is an

indication that theoretical model is again reliable for finite length junctions in zero field.

When magnetic field is different from zero 1/αd is smaller according as in the experiment,

meaning that magnetic field increase the dissipation. Anyway the ”stochastic” dissipation

αs is always larger than its deterministic value by a factor variable between 1.37 and 3.15.

This happens systematically for each values of length, dissipation and critical currents and

is also observed in the experiments where the factor was larger (' 10). It is also interesting

that this effect is larger in small junction case than in large junction case, and with the

same length is larger for small critical current junctions (cf. ref.5). This seems indicates

that the observed noise reduction of dissipation is effective in very small junctions with low

critical current. On the other hand the magnetic field behavior follows the deterministic

case, i.e., the ”stochastic” resistor 1/αs is smaller, again implying that magnetic field

increase dissipation. There is no substantial differences between two analyzed lengths,

also if these are again small to produce relevant differences. Naturally on this basis we

are unable to decide if dissipation increase due to magnetic field have to be assigned to

a real additional dissipative process or to a variation of other parameters appearing in

Eq.(5) as in the case of zero voltage escape13. It could be linked to the torque applied

by the field on the pendula in the mechanical analog of the junction, this torque favors

early switch of the junction to the zero voltage state, so producing an increase of the

dissipation. This is a typical finite length effect which do not implies a real increase of

dissipation.

In Table II we report the numerically evaluated widths. Can be seen that widths

are smaller for low dissipation case and higher critical currents. In low dissipation case
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we observe an increase of the width in presence of magnetic field which was noted in

the experiment5 also if the increase is moderate. This could agree with above fit analysis

showing that fluctuations are enhanced in presence of a magnetic field. Anyway for higher

dissipation the same does not happen and the width decrease in presence of magnetic field.

Comparison with theoretical prediction given by Eq.(6) shows that numerically evaluated

width is always smaller than theoretical one by a factor variable between 2 and 4. This is

similar to what happens in the experiment5. Accordingly to above fit analysis this would

be expected because (apparently) numerical thermal noise reduces the dissipation. We

note however that we use full expression given in ref.2, whereas in ref.4 comparison is

made with T = 0 value of wth which is lower.

III. CONCLUSION

The indications emerging by the above numerical analysis can be resumed in two main

conclusion. Firstly the numerical simulations seem to confirm what was found in the ex-

periments because both analysis of escape by fitting Eq.(5) or width of distributions are

different from theoretical prediction based on simple RSJ model. Anyway this conclusion

require attention: numerical data show the tendencies found in the experiment, but not

the quantitative values. Furthermore the finite length of the junctions do not alter sub-

stantially the zero magnetic field values of (deterministic) dissipation and return current.

But in non zero magnetic field case could be plausible that an (apparent) increase of

dissipation is related to the internal dynamic of a finite length junction.
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FIGURE AND TABLE CAPTIONS

Fig. 1. Histograms of return switches in zero magnetic field for junction with bare

dissipation α equal to to 0.025, and temperature 4.2 K. (a) l = 0.15 with n = 5827

collected switches and critical current of 15 µA ; (b) l = 1.0 with n = 2123 collected

switches and critical current of 100 µA .

Fig. 2. Histograms of return switches for a normalized magnetic field η roughly equal

to ηc/2. Parameters are the same of Fig.1. a) l = 0.15 with n = 3959 collected switches;

(b) l = 1.0 with n = 1372 collected switches.

Fig.3 Linear fit of Eq.(5) for the low dissipation case α = 0.025 and l = 0.15. On the

y axis is the logarithmic escape rate which contain also the prefactor A(γr). Temperature

is set to 4.2 K. (a) η = 0; (b) η ' ηc/2.

Table I Results of linear fit of Eq.(5) for numerical simulations data. Temperature is

fixed to 4.2 K. True return current is given normalized to maximum critical current.

Table II Width of distributions for numerical data. Temperature is fixed to 4.2 K.

Distribution widths are normalized to maximum critical current. wth is the theoretical

width calculated using Eq.(6).

12



Table I

l n Ic µA η γtr 1/α0 1/αd 1/αs
0.15 5827 15 0 0.0332± 0.0019 40 38.35± 2.18 122.65± 3.40
0.15 3959 15 21 0.0290± 0.0014 40 27.83± 1.39 84.77± 1.69
0.15 5360 15 0 0.3112± 0.0129 4 4.09± 0.17 10.98± 0.22
0.15 4046 15 21 0.2727± 0.0163 4 2.97± 0.18 7.41± 0.23
1.0 2123 100 0 0.0309± 0.0036 40 41.25± 4.86 62.00± 3.55
1.0 1372 100 3.14 0.0260± 0.0051 40 31.19± 5.92 41.95± 4.08
1.0 1984 15 3.14 0.0276± 0.0043 40 29.38± 4.59 92.54± 7.07
1.0 1849 100 0 0.3081± 0.0215 4 4.13± 0.28 8.37± 0.29
1.0 4361 15 0 0.3101± 0.0186 4 4.10± 0.25 10.41± 0.32
1.0 1059 100 3.14 0.2485± 0.0086 4 3. 26± 0.11 6.16± 0.10

Table II

l n Ic µA η 1/α0 w · 103 wth · 103
0.15 5827 15 0 40 0.577 1.251
0.15 3959 15 21 40 0.615 1.721
0.15 5360 15 0 4 4.765 11.73
0.15 4046 15 21 4 4.297 16.18
1.0 2123 100 0 40 0.279 0.518
1.0 1372 100 3.14 40 0.307 0.729
1.0 1984 15 3.14 40 0.562 1.638
1.0 1849 100 0 4 2.237 5.168
1.0 4361 15 0 4 5.051 11.68
1.0 1059 100 3.14 4 1.975 6.566
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