
Chapter 2

FLUID INTERFACES AND CAPILLARITY

A. Fluid interfaces: Young’s Membrane Model

1. The thinness of interfaces

Fluid-fluid interfaces are a good place to start because they are far
simpler to describe than fluid-solid or solid-solid interfaces. The molecular
mobility in fluids makes it reasonable to assume that they will be in internal
mechanical and diffusional equilibrium. Thus when the composition and the
required number of thermodynamic state variables are set, the system is
uniquely defined. In solids, non-equilibrium structures are frozen in place
over time scales of practical interest. Fluid interfaces are smooth (as opposed
to generally rough), morphologically and energetically homogeneous (as
opposed to heterogeneous) and free of all internal shear stresses when at rest
(as opposed to supporting un-relaxed internal stresses). Consider first the
simplest case of all, viz., the interface between a pure liquid (water) and its
equilibrium vapor at 20°C. The pressure is then the vapor pressure of water
at 20°C, i.e., 2.33 kPa.

As noted earlier, the interface is not a mathematical discontinuity, but
rather a thin stratum of material whose intensive properties vary across it
from those of the liquid phase to those of the gas phase, as suggested in Fig.
1-1. In going from the liquid phase to the gas phase in the present case, the
density decreases by a factor of approximately 58,000!

It is known that, except when one is very near to the critical point, the
stratum of inhomogeneity at a liquid surface is very very thin, usually of the
order of a few Ångströms. The abruptness is verifiable from experimental
observations of the nature of light reflected from a surface. In accord with
Fresnel’s Laws of reflection,1 if the transition between a gas and a medium
of refractive index n (> 1) is abrupt (i.e., thickness << wavelength of light),
the reflected light will be completely plane polarized when the angle of
incidence is equal to tan-1n (called the polarizing angle or Brewster’s
angle).2 (An important technique for studying the structure of interfaces

1 Jenkins, F. A., and White, H. E., Fundamentals of Optics, 3rd Ed., pp. 509ff, McGraw-Hill Co.,
NY, 1957.

2 Hennon, S., and Meunier, J., Rev. Sci. Inst., 62, 936 (1991);
Hennon, S., and Meunier, Thin Solid Films, 234(1-2), 471 (1993);
Hönig, D., and Möbius, D., J. Phys. Chem., 95, 4590 (1991);
Hönig, D., and Möbius, D., Thin Solid Films, 210, 211, 64 (1993).
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examines them when illuminated by laser light at precisely Brewster’s angle
(“Brewster angle microscopy” or BAM). It is the polarization of reflected
light that makes it possible for sunglasses or Polaroid filters, polarized
vertically, to block glare from horizontal surfaces. If the density transition
through the interface is more gradual, the reflected light is elliptically
polarized. Light reflected from most smooth solid surfaces and unclean
liquid surfaces show at least some “ellipticity.” Lord Rayleigh showed,3
however, that when liquid surfaces are swept clean (by a technique to be
described later), light reflected from them at Brewster’s angle indeed shows
virtually no ellipticity whatsoever. One monolayer of “foreign” molecules at
the surface can measurably change this, and the technique of “ellipsometry”4

(in which the extent of ellipticity is measured) is used to study the thickness
and optical properties of material at surfaces.

The abruptness of a clean interface is also supported by statistical
mechanical calculations, which have provided quasi-theoretical pictures of
the density profile across the interfacial layer in simple systems. An example
is shown in Fig. 2-1, showing density profiles for noble gases computed for
various reduced temperatures. It reveals that gas-liquid interfacial layers for

Fig. 2-1: Density profiles across the interfacial layer computed for noble
gases at various reduced temperatures, T/Tc, where Tc = critical
temperature. r* is the molecular radius, and * is the maximum packing
density. The point of z = 0 is arbitrary. After [Hill, T. L., Introduction to
Statistical Thermodynamics, Addison-Wesley Publ., Reading, MA,
1960, p. 318.]

such systems (and by inference, for other gas-liquid systems) have
thicknesses of the order of molecular dimensions, except very near to their
critical points (where T Tc, and the distinction between the phases
vanishes), where the interfacial layer becomes thicker and eventually
envelops the entire system. Partially miscible liquid-liquid systems may also
exhibit critical points. A critical solution point occurs at the temperature just
below (or just above) which two liquid phases coexist. Liquid-liquid systems
may have an upper critical solution temperature (UCST), a lower critical

3 Lord Rayleigh (J. W. Strutt), Phil. Mag., 33, 1 (1892).
4 Tompkins, Harlan G., A User's Guide to Ellipsometry, Academic Press, Boston, 1993.
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solution temperature (LCST) or both. The thinness of either the gas-liquid or
liquid-liquid interfacial layer (at least that associated with clean interfaces
removed from their critical points) allows it to be treated, for purposes of
macroscopic mechanical modeling, as a membrane of zero thickness.

2. Definition of surface tension

Everyday experience reveals that a fluid interface wants to contract in
order to assume a minimum area, subject to whatever external forces or
constraints are put upon it. For example, a mass of liquid undistorted by
gravity, such as an oil drop of density equal to water suspended in water, or
an air-filled soap bubble in air, assumes the shape of a sphere to produce the
minimum area/volume. The contractile tendency of fluid interfaces can be
quantified with reference to the zero-thickness-membrane model in terms of
a “surface tension” or “interfacial tension” ( ) of the membrane, defined
with reference to Fig. 2-2. Consider a point P on a small patch of surface
(membrane). We can consider the state of tension at point P by imagining
the patch to be divided into two parts by line MM passing through P and
regarding each as a “free body.” One such body exerts a pull on the other

Fig. 2-2: Mechanical definition of
surface or interfacial tension.

across the line MM . The |force|/length along this line at P is the surface
tension at P, i.e., dF = d or = dF/d , a scalar quantity with units of
force/length. “ ” is the notation used for surface tension in this text, but it is
also common to see the symbol “ ” used for it. For all fluid systems this
force/length at P has the same value (at P) regardless of how MM is drawn,
i.e. the system is isotropic with respect to its surface tension. Also, for
uniform composition, isothermal surfaces, the surface tension is uniform.
The macroscopic mechanical model of a fluid interface is thus a zero-
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thickness membrane in uniform, isotropic tension, . This is “Young’s
membrane model” (after Thomas Young, who first described fluid interfaces
in this way in 1805).5 The units of surface tension, force/length, are the same
as those of energy (or work) per unit area, so that surface tension can also be
interpreted as the mechanical energy required to create unit new area of a
liquid surface. (The surfaces of solids require additional considerations.)

Consideration of the thermodynamics of capillary systems (examined
later in Chap. 3) leads to another definition of surface tension, viz., =
( F/ A)T,V,eq, where F is the Helmholtz free energy of the system, A is the
surface area, and the subscript “eq” refers to full internal equilibrium. If the
mechanical definition of restricts itself to conditions of constant T,V and
internal equilibrium, the two definitions are equivalent. It is useful for
present purposes to think in terms of the mechanical model of the fluid
interface and the mechanical definition of the surface or interfacial tension.

B. The surface tension of liquids

1. Pure liquids

Surface or interfacial tension values are usually expressed in either
cgs units (dynes/cm or erg/cm2) or SI units (mN/m or mJ/m2). The numerical
values are the same in either system, and they range from near zero to as
high as nearly 2000. Literature values for the surface tension of pure liquids6
are plentiful and usually reliable, although they are often given for only one
temperature. Some specific values for pure liquids against their equilibrium
vapor are shown in Table 2-1. The lowest values are those for liquefied
gases. Most organic liquids (at or below their atmospheric boiling points) are
in the range of 20-40 mN/m, while water has a value at 20°C of about 73
mN/m.

Essentially the only liquids having surface tensions substantially
below 20 mN/m at room temperature are the lower molecular weight
silicone oils and the fluorocarbons. Highest are values for molten salts and
metals, being generally several hundred mN/m. The surface tensions of pure
liquids are assumed to apply to liquids in contact with their equilibrium
vapor when in fact, they are more often measured for the liquid against air at
atmospheric pressure. The difference in surface tension between the two
cases is generally negligible,7 however, and even though it is not strictly
correct to do so, we assume surface tensions of pure liquids against air to be
functions of temperature only.

5 Young, T., Phil. Trans. Roy. Soc. (London), 95, 55 (1805).
6 a large database is given by: J. J. Jasper, J. Phys. Chem. Ref. Data, 1, 841-1008 (1972).
7 Defay, R., Prigogine, I., Bellemans, A., and Everett, D. H., Surface Tension and Adsorption,
pp. 88-89, Longmans, London, 1966.
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Table 2-1: Surface tension values for various liquids
Liquid T (°C) Surface Tension (mN/m)

Helium -272 0.16

Hydrogen -254 2.4

Perfluoropentane 20 9.9

Oxygen -183 13.2

Silicone (HMDS) 25 15.9

n-Heptane 20 20.3

Ethanol 20 22.0

Benzene 20 28.9

Olive oil 18 33.1

Ammonia -33 34.1

Nitric acid 21 41.1

Glycerol 20 63.4

Methylene iodide 20 67.0

Water 20 72.7

Sodium chloride 801 114.

Lithium 181 394.

Zinc 360 877.

Iron 1530 1700.

2. Temperature dependence of surface tension

The surface tension of all pure liquids decreases with temperature and
goes to zero as their respective critical points are approached. Over modest
ranges of temperature, the decrease is nearly linear for most liquids, as
suggested by the data of Fig. 2-3, and the coefficient, d /dT, is
approximately -0.1 mN/m-°K for most cases. This rule of thumb may be
used for rough extrapolation of surface tension values in the absence of any
further data. Jasper’s extensive data collection provides linear expressions of
the form: = a – bT for many liquids. Many semi-empirical relationships
have been proposed for the dependence of surface tension on temperature,
one of the oldest of which is the Eötvös Law,8

v 2 / 3 = kE(Tc T) , (2.1)

where v is the molar volume of the liquid at the temperature of interest, T; Tc
is the critical temperature, and kE is the “Eötvös constant,” equal
approximately to 2.5 erg/°K (0.25 mJ/°K) for apolar, non-associating liquids
(although there are many exceptions). The term v 2 / 3 corresponds to a molar
surface free energy of the liquid, seen to decrease linearly with the approach
to the critical temperature. A second semi-empirical law, based on the

8 Eötvös, R., Wied. Ann., 27, 456 (1886).
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principle of corresponding states, and valid for apolar, non-associating
liquids, is that due to van der Waals (1894)9 and Guggenheim (1945)10 viz.

= * 1
T

Tc

11/ 9

. (2.2)

* is a “characteristic surface tension,” given initially in terms of the
critical properties of the liquid as * = 4.4(Tc /vc

2/3) [=] mN/m, with Tc [=] °K
and vc the critical molar volume [=] cm

3/mol. The exponent of 11/9 in Eq.
(2.2) reproduces the slight upward concavity of the -T curves for apolar

Fig. 2-3: Surface tension dependence on temperature for a variety of liquids:
(1) water, (2) furfural, (3) chlorobenzene, (4) acetic acid, (5) carbon
tetrachloride, (6) ethanol, (7) n-octane. Dashed line has slope: -0.1 mN/m·K,
in reasonable agreement with that for most liquids.

liquids, and its format is excellent for generally good for interpolating (T)
data for such systems. The equation has been much refined yielding more
elaborate expressions for *, usually involving a third parameter obtained

9 van der Waals, J. D., Z. Phys. Chem., 13, 716 (1894).
10 Guggenheim, E. A., J. Chem. Phys., 13, 253 (1945).
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from vapor pressure data.11 It has also been extended to include polar or self-
associating liquids, but this requires more general expressions for the
exponent as well.

3. Surface tension of solutions

The surface tension of solutions depends on both temperature and
composition. Some representative data for binary systems at 20°C are shown
in Fig. 2-4, and an extensive bibliography for binary solutions has been
compiled by McClure et al.12 A more nearly complete discussion of the
surface tension dependence on composition must await the discussion of
capillary thermodynamics, but the figure suggests a few generalizations:

i) The surface tension of binary solutions is usually intermediate to
those of the pure components, but less than the mole-fraction-average value.
Some systems show extrema (minima or maxima) at intermediate values of
the composition. The pronounced maximum in the water-sulfuric system is
thought to be associated with the formation of the hydration complex:
H2SO4·4H2O.

Fig. 2-4: Surface tension
dependence on composition for
several binary solutions at 20°C.

11 Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, 3rd

Ed., Chap. 12, McGraw-Hill, New York, 1977.
12 McClure, I. A., Pegg, I. A., and Soares, V. A. M., "A Bibliography of Gas-Liquid Surface
Tensions for Binary Liquid Mixtures," in Colloid Science (A Specialist Periodical Report),
Vol. 4, D. H. Everett (Ed.), The Royal Society of Chemistry, London, 1983.
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ii) The surface tension of water is increased approximately linearly by
dissolved salts, although the increases are small for low concentrations.

iii) The surface tension of water is usually decreased sharply by
organic solutes.

The surface tension of water may be reduced very sharply at low
concentrations of certain solutes (termed “surface active agents” or
“surfactants”) as shown in Fig. 2-5. These will be discussed in more detail
later. To classify as a surface active agent, a solute must generally reduce the
surface tension of water by 30 mN/m or more at a concentration of 0.01M or
less. Although “surface activity” may also be identified in non-aqueous
media, the reductions in surface tension involved are generally much less.

Certain surfactants are but vanishingly soluble in water, as well as
being nonvolatile, and monomolecular films of these compounds at the
water-air interface represent an important class of systems. Their surface
activity may be represented by plots of surface tension against surface
concentration, , [=] moles/cm2, or more conveniently μmole/m2, as shown
in Fig. 2-5(b). Surfactant solutions have a monomolecular layer at the
surface that is highly enriched in the solute (called an “adsorbed” or “Gibbs”
monolayer), whereas insoluble surfactants form such a monolayer (called a
“spread” or “Langmuir” monolayer) by direct spreading of the surfactant at

(a) (b)

Fig. 2-5: Surface tension dependence on composition for surfactant monolayers (a)
adsorbed or “Gibbs monolayer,” or (b) spread or insoluble “Langmuir monolayer.”
Insert shows schematic of surfactant monolayer for either case.

the surface. In either case, the surfactant molecules consist of segregated
hydrophilic and hydrophobic portions which orient themselves at the
interface with their hydrophilic portions dissolved in the water and their
hydrophobic portions directed outward, as shown. One of the most powerful
of all insoluble surfactants is that which lines the moist inner lining of the
alveoli of the mammalian lung. This surfactant mixture is primarily
dipalmitoyl lecithin (DPL), pictured in Fig. 2-6. It consists of a glycerol
molecule with an adjacent pair of its hydroxyl groups esterified with
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Fig. 2-6: Stylized diagram of a lung surfactant molecule: L-a, dipalmitoyl lecithin.

palmitic (C15) acid, and the remaining group with phosphoric acid. The
opposite hydrogen atom of the phosphoric acid is substituted with a choline
group. A monolayer of these molecules is capable, upon compression, of
reducing the tension of water to less than one mN/m.

C. Intermolecular forces and the origin of surface tension

1. Van der Waals forces

The existence of surface tension, and all of its manifestations, derives
ultimately from the forces that exist between molecules.13 These may be
purely physical in nature or they may involve chemical complexation
(association), such as that due to hydrogen bonding. If liquid metals are
involved, metallic bonding exists, in which a cationic matrix of metal atoms
is held together in part by a “sea” of free (conductance) electrons. Media
containing ions introduce net electrostatic (Coulombic) interactions.

The purely physical interactions between neutral molecules are
referred to as “van der Waals interactions.” One type is that which exists
between permanent molecular charge distributions, such as dipoles or
quadrupoles. The interaction is obtained through vectorial summation of the
Coulombic interactions between the various charge centers of the molecules,
and is mutual-orientation dependent. Boltzmann-averaging over all possible
mutual orientations of a pair of permanent dipoles yields the result (due to
Keesom) for the potential energy of interaction as a function of their
distance of separation, r:

dip dip =
Bpolar
r6

, (2.3)

where Bpolar varies as the square of the dipole moments of the molecules and
inversely with the dielectric constant, , and with absolute temperature. The

13 A comprehensive account is given by: Israelachvili, J. N., Intermolecular and Surface
Forces, 2nd Ed., Academic Press, London, 1991.
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potential function is defined as the reversible work required to bring the
two molecules, initially at infinite separation, to a distance r from one
another.

A second type of van der Waals interaction results when a molecule
with a permanent dipole induces a dipole in a neighboring molecule, with
which it then interacts. The resulting pair interaction energy function (due to
Debye) takes the form:

ind =
Bind
r6
, (2.4)

where Bind depends on the permanent dipole moment of the first molecule
and the molecular polarizability of the second molecule. Of course both
molecules may possess permanent dipoles so that two such terms may be
involved.

A final type of van der Waals force results from the oscillations of the
electron clouds of all molecules, which produce strong temporary dipole
moments. These induce strong temporary dipole moments in neighboring
molecules with which they then interact in accord with the relationship (due
to London):

disp =
Bdisp
r6
, (2.5)

where Bdisp depends on the ground-state energies of the molecular
oscillations, which in turn are closely proportional to the first ionization
potentials of the molecules and their molecular polarizabilities.14 (The close
analogy of the effects described by London to that of light impinging on a
medium has led to their being termed “dispersion” interactions, and hence
the notation above.) For the interaction between a molecule i and a molecule
j, to good approximation:

Bdisp(ij)
3

2 i j

IiI j
Ii + I j

3

4 i jI = BiiBjj , (2.6)

where Ii and Ij, and i and j are the first ionization potentials and the
molecular polarizabilities of molecules i and j, respectively. The second
approximate equality derives from the fact that the first ionization potentials
seldom differ by more than a factor of two between molecules, so that it is

14 It should be appreciated that this is a simplified picture. Attractive interactions may also arise
from other than the ground state oscillation frequencies, as well as from fluctuating
quadrupole and higher multipole interactions. Also, as the distance between molecules
increases, the induced molecular oscillations become increasingly out of phase with the
inducing oscillations, due to the finite speed of electromagnetic radiation. This effect, called
retardation, generally begins at separations of about 50 nm or so, and by 100 nm the
interaction energy approaches a -1/r7 dependence. Retardation will be addressed again in the
discussion of interactions between colloid particles in Chap. 7.
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generally reasonable to put Ii Ij = I. This gives the important result, used
later, that when dispersion forces predominate, the interaction between
unlike molecules is given by the geometric mean of the interactions between
the like molecules (Berthelot’s Principle).

An important observation related to the -functions for all the
principal van der Waals interactions is that they vary as 1/r6, so that they
may be combined to give:

vdW =
BvdW
r6

. (2.7)

The content of BvdW is discussed with somewhat more sophistication in
Chap. 7. The above relationship holds only so long as the electron clouds of
the interacting molecules do not overlap. Under such conditions, strong
repulsive forces arise. While the exact functional form of the r-dependence
of these repulsive interactions has not been established, they are known to be
very steep and can reasonably be represented by:

rep =
Brep
r12
. (2.8)

The net (or total) physical interaction between a pair of molecules is given
by the sum of the van der Waals and repulsive interactions, and takes the
form shown in Fig. 2-7.

Fig. 2-7: Schematic of
Lennard-Jones potential
function.

Defining as the distance of separation for which = 0
(representative of the molecular diameter) and as the depth of the
“potential well,” Lennard-Jones derived expressions for BvdW and Brep
leading to what is now termed the “Lennard-Jones potential:”

= 4
r

12

r

6

. (2.9)

Its application is restricted to approximately spherical, apolar or weakly
polar molecules.

The attractive force of interaction between two molecules is the slope
of the potential energy function, viz.
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Fatt =
d

dr
=

24

r
2
r

12

r

6

. (2.10)

Both and Fatt are shown in Fig. 2-8, computed for carbon tetrachloride (for
which = 5.881 Å, and = 4.514 x 10-14 erg).15 It is to be noted that at the
average distance of molecular separation in the gas at standard conditions,
both and the intermolecular force are effectively zero. In the liquid, due to
thermal motion, the average molecular separation lies not at the potential
minimum, but just to the right of it, and the attractive intermolecular force at
this point has a finite positive value.

The intermolecular forces and energies associated with chemical
complexation, such as hydrogen bonding, require essentially direct
molecular contact, and are thus shorter-ranged than attractive van der Waals
forces. They are not generally represented in terms of an r-dependence, but
it is clear that such dependence would be very steep and would produce a
deep potential energy minimum. Metallic “bonding” is very strong at close
range, and ionic interaction energies are both very strong and long-ranged,
varying as 1/r, as compared with 1/r6 for van der Waals energies.

Fig. 2-8: Pair interaction
curves for CCl4.

15 Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, 2nd Ed., p. 865,
Wiley, New York, 2007.
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2. Surface tension as “unbalanced” intermolecular forces; the
Hamaker constant

Surface tension may be interpreted directly in terms of intermolecular
forces. The simplest picture, suggested by Fig. 2-9, contrasts the inter-
molecular forces acting on a molecule at the surface of a liquid with those
acting on a molecule in the interior. The latter is acted upon equally in all

Fig. 2-9: Unbalanced intermolecular forces on molecules at a liquid
surface.

directions, while a molecule at the surface experiences intermolecular forces
directed only inward towards the interior. The net inward attraction tends to
draw surface molecules toward the interior, causing the surface to seek
minimum area (subject to whatever additional forces and constraints act on
the system). The stronger the intermolecular attractions are, the greater the
expected surface tension. This may be made somewhat more quantitative as
follows.

Consider a body of liquid conceptually divided into an upper and a
lower half extending to infinity away from the imaginary interface dividing
them. We may compute the total energy of interaction between the
molecules above the interface with those beneath it, on a per unit area basis.
If the two liquid half-spaces were conceptually separated (to infinity), the
work required to do so can be identified with (the negative of) this energy,
and may be equated to twice the energy/area of the new surface created, i.e.,
2 , because two new interfaces would be produced by the process. Begin by
considering the interaction of a single molecule in the upper layer a distance
D above the interface with the lower layer, as shown in Fig. 2-10. First we
compute the energy of the molecule’s interaction with a ring of diameter x of
molecules in the lower half-space a vertical distance z away from it. The
volume of the ring is 2 xdxdz; and the number of molecules in it is

m2 xdxdz, all a distance r = x 2 + z2 from the subject molecule in the
upper half-space. m here is the molecular density. The energy of interaction
between the subject molecule and the entire ring, assuming a van der Waals
fluid, Eq. (2.7), and pairwise additivity of the molecular interactions, is
BvdW
r6 m2 xdxdz = 2 BvdW m

xdxdz

x 2 + z2( )
3 . Integration then gives the

interaction between that molecule and the entire lower half-space:
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Fig. 2-10: Computation of the interaction of a single molecule with a semi-
infinite half-space of the same molecules.

1/4z4

molec-half -space = 2 BvdW m dz
D

x

(x 2 + z2)3
dx

0

1/3D3

=
2
BvdW m

1

z4
dz

D
=

BvdW m

6D3 . (2.11)

Next we compute the interaction of a thin sheet (of thickness dD and unit
area) of molecules in the upper half space at a distance D from the interface
with the lower half-space. The number of molecules in this thin sheet of unit
area is mdD , so the interaction of the sheet with the lower half-space is

BvdW m
2 dD

6D3 , and the total interaction energy of a unit area (signified by

the superscript ) of infinite depth16 with the lower half-space is

=
BvdW m

2

6

dD

D3D0
=

BvdW m
2

12D0
2 , (2.12)

where D0 is the closest distance of molecular approach. It is common to put

( m )
2BvdW = A , (2.13)

16 A simplification is made here in that the effects of “retardation” are neglected.
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where A is called the Hamaker constant,17 embodying the integrated
molecular interactions. This is discussed in more detail in Chap. 7. Then

=
1

2
=

A

24 D0
2 . (2.14)

D0 may be estimated from the molecular size and packing density in the
liquid and is usually of the order of 1-2 Å. The accepted value of D0 is 1.65
Å.18 The important point that has been demonstrated here, however, is the
direct relationship between the surface tension and the strength of the
intermolecular interactions in the liquid.

3. Pressure deficit in the interfacial layer; Bakker’s Equation

A somewhat different picture focuses upon intermolecular forces
within the zone of inhomogeneity that constitutes the interfacial layer.
Consider a pure liquid at rest in the absence of external force fields and
facing its own vapor across the interfacial layer, and divided into two parts
by a plane AB drawn normal to the interface,19 as shown in Fig. 2-11. One
may consider the forces acting across the plane AB by one part on the other.
Out in the bulk of each phase, the forces acting on the plane are those of the
hydrostatic pressure, which, in the absence of flow in the bulk material and
external force fields such as gravity, is uniform and isotropic. In general, the
net pressure force exerted on a plane drawn in the fluid depends on the
following two factors:

Fig. 2-11: Molecular interpretation of surface tension.

1) The kinetic energy (thermal agitation) of the molecules: Pressure is
manifest at the (real or conceptual) confining boundaries of the phase
through the change in momentum of the molecules colliding with them, per

17 Hamaker, H. C., Physica, 4, 1058 (1937), who was one of the first to perform such
integrations.

18 Israelachvili, J. N., Intermolecular & Surface Forces, 2nd Ed., p. 203, Academic Press,
London, 1991.

19 “Normal to the interface” is defined as the direction of the density gradient, .
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unit area, and this pressure is transmitted throughout the bulk of the phase.
This is the only factor at play in ideal gases.

2) Configurational potential energy, due to intermolecular forces: This
is expressed as the sum of interaction energies between pairs of molecules,
per unit area of the conceptual interface between them, and is a function of
the distance of their separation, as shown in the preceding paragraphs. The
forces between the molecules are generally attractive and thus subtract from
the pressure effect that would be attributable to thermal agitation alone.

Out in the bulk phases on either side of the interfacial layer, the net
effect of these two contributions is a pressure that is uniform (neglecting
external field effects) and isotropic. As detailed below, this condition does
not exist within the interfacial layer, between A and B in Fig. 2-11.

Since density is presumed to vary continuously from that of the liquid
to that of the gas as one moves upward through the interfacial layer,
intermediate molecular separations are forced to exist, and for these, the
lateral attractive forces will be much greater than they are in either the bulk
liquid or gas. This is suggested by Fig. 2-8, in which it is seen that the forces
between molecules at the average spacing in either bulk liquids or gases are
quite small relative to those at intermediate spacings. Thus the net local
pressure forces in the lateral direction, pT, i.e., the difference between the
pressure forces due to thermal motion and those due to the attractive
intermolecular forces, are substantially reduced in the interfacial region
relative to the bulk regions, as shown schematically in Fig. 2-12. They may
even become negative, producing a net local tension. The lateral pressure
component becoming negative, however, is not a requirement for the
occurrence of surface tension; merely the reduction in the pressure
component is sufficient.

Fig. 2-12: Deficit in the tangential component of pressure in the interfacial layer.

One can be more specific about the “pressure” quantities being
discussed. In general the state of (compressive) stress in a fluid is given by
the tensor p . In a bulk fluid at rest this tensor reduces to
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p =
p 0 0
0 p 0
0 0 p

. (2.15)

The off-diagonal elements must be zero because they represent shear
stresses, which a fluid cannot support in equilibrium at rest. The three
normal components of stress must furthermore be equal since a bulk fluid
phase (in the absence of external force fields) is uniform in all intensive
variables. One can still balance the forces even when the pressure
components are different, i.e., if the requirement of isotropy is relaxed, so
that

p =
pxx 0 0
0 pyy 0
0 0 pzz

, (2.16)

with pxx pyy pzz. In the interfacial layer, these pressure components will
be different, as full isotropy with respect to the pressure can no longer exist.
In particular, one must have two different pressure components, one normal
and one tangential to the interface, pN(z) and pT(z), respectively. Mechanical
stability requires that the gradient of the pressure tensor be everywhere equal
to zero20, and symmetry requires isotropy in the plane tangent to the surface
(“lateral” or “transverse” isotropy) so that pxx(z) = pyy(z) = pT(z), where z is
the coordinate normal to the surface. The pressure component normal to the
surface is pzz(z) = pN(z) pT(z). The pressure component being discussed in
terms of intermolecular forces is pT.

Knowledge of the pressure tensor across the interfacial layer (which
can be expressed only to the extent that one has detailed knowledge of the
intermolecular potential functions and the molecular distribution functions)
and application of Young’s membrane model thus permits, in principle, a
computation of the surface tension. The result is:

= (pN pT )dz
za

zb

, (2.17)

where z is the coordinate normal to the interface, and the gap za zb defines
the region of molecular inhomogeneity constituting the interfacial layer. If
the interface is flat, pN(z) = p = constant, and one may replace the finite
limits with ± , since the regions outside the zone za zb contribute nothing
to the integral:

flat surf.
= (p pT )dz

-

+

. (2.18)

20 Ono, S., and Kondo, S., "Molecular Theory of Surface Tension in Liquids," pp. 134-304 in
Handbuch der Physik, Vol. 10, E. Flügge (Ed.), Springer-Verlag, Berlin, 1960.
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The above result is due to Bakker.21 Using an assumed local equation of
state similar to that describing the bulk phase, together with an expression
for free energy minimization in the interfacial layer, van der Waals made
computations of the interfacial density profiles and the resulting surface or
interfacial tension. Others22 have since refined these arguments and have
applied statistical mechanics to the problem.23,24

What has been done using Bakker’s Equation is to project the
integrated excess lateral stress (or alternatively, the compressive stress
deficit), as shown in Fig. 2-12, onto the mathematical surface defined as the
interface. The mathematical surface of the model is termed the “surface of
tension,” and for a flat interfacial layer, its exact location is immaterial, i.e.,
its location in no way impacts the unambiguous and physically measurable
surface tension. For an interface that is not flat, it is useful to distinguish
between weak curvature and strong curvature. (A more detailed discussion
of surface curvature is given later.) Weakly curved surfaces are those whose
mean radius of curvature is large relative to the thickness of the zone of
inhomogeneity, whereas strongly curved surfaces are those whose radius of
curvature is comparable to that of the interfacial layer thickness. In the latter
case, since interfacial layers are of the order of only a few Å in thickness,
one might expect the continuum concept of surface tension to break down,
or alternatively, to require that the surface tension be regarded as a function
of the curvature. For the moment, we shall consider only weakly curved
surfaces. As will be proved later, curved fluid surfaces (whether strongly or
weakly curved) require a difference in the equilibrium bulk pressures, with
the pressure on the concave side larger than the pressure on the convex side.

The molecular picture of the interfacial layer, particularly with respect
to the interpretation of the states of stress that exist within it, gives one the
idea of why fluid interfacial layers should exhibit a tension. It also explains
qualitatively why there should be a difference in the surface tension from
one pure liquid to the next in terms of the type and strength of the
intermolecular forces that prevail. Intermolecular forces such as those of
ionic bonds, metallic bonds, or hydrogen bonds, which yield very strong
attractions, lead to much higher boundary tensions than those for liquids
with only van der Waals interactions. Thus it is that molten salts and liquid
metals have very high surface tensions and that water’s surface tension is
high relative to that of organic liquids. One may also explain the nature of
the temperature dependence of surface tension. The portion of the pressure
component due to kinetic energy increases linearly with temperature, while

21 Bakker, G., Kapillarität u. Oberflächenspannung, Vol. 6 of Handb. d.
Experimentalphysik, W. Wien, F. Harms and H. Lenz (Eds.), Akad. Verlags., Leipzig, 1928.

22 Cahn, J. W., and Hilliard, J. E., J. Chem. Phys., 28, 258 (1958).
23 Rowlinson, J. S., and Widom, B.,Molecular Theory of Capillarity, Clarendon Press, Oxford,
1982.

24 Davis, H. T., Statistical Mechanics of Phases, Interfaces and Thin Films, VCH, New York,
1996.
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that due to intermolecular attractive forces remains essentially constant.
Thus, as temperature increases, the difference between p and pT diminishes,
and decreases in approximately linear fashion. The reason for the
effectiveness of surface active agents in reducing surface tension can also be
understood. These molecules orient themselves in the interface so that in
both the upper and the lower portions of the layer, portions of molecules are
present which interact favorably with the predominant component of the
respective bulk phases. This reduces the impact of the lateral intermolecular
forces, i.e., the magnitude of p - pN , in passing from one phase to the other.
The high-energy clean water surface is effectively replaced by the lower
energy hydrocarbon moieties of the surfactant. Finally, the molecular picture
of the interfacial layer makes clear the reason for its thinness. The zone of
inhomogeneity constituting the interfacial layer is necessarily limited by the
range of the intermolecular forces. Van der Waals forces, for example,
seldom are significant beyond the second- or third- nearest neighbors.
Intermolecular forces leading to hydrogen bonding are even shorter-ranged.
Ionic interactions are longer ranged, and interfacial layers involving these
types of forces may be somewhat thicker.

4. Components of the surface tension

The direct dependence of surface tension on the intermolecular forces
in the fluid has led Fowkes and others to divide the contributions to surface
tension into the various contributions to the intermolecular forces that may
exist. Specifically, Fowkes25 first wrote

=
d
+

p
+

i
+

H
+

m
+ ..., (2.19)

where “d” refers to dispersion forces, “p” to forces between permanent
dipoles, “i” to induced dipoles, “H” to hydrogen bonds, “m” to metallic
bonds, etc. It is now known from the theory of intermolecular forces in
condensed-phase media26 that the contributions of dipole-dipole (Keesom)
and dipole-induced dipole (Debye) interactions to the surface energy are
essentially negligible, as a result of the self-cancellation that occurs when
multiple dipoles interact. This is in contrast to the situation in gases, where
dipoles interact predominantly in pairwise fashion. The portion of the 72
mN/m surface energy of water at room temperature that is attributable to
such polar effects, for example, has been computed to be only 1.4 mN/m.27
In addition to dispersion force interactions, the major contributor to is that
due to donor-acceptor interactions, i.e. Lewis acid-base association. A donor
(base) donates a pair of electrons in an adduct-forming complexation with an
acceptor (acid). This picture can be made to include hydrogen bonding.28

25 Fowkes, F. M., A.C.S. Advances in Chemistry Series, 43, 99-111 (1964).
26 Israelachvili, J. N., Intermolecular and Surfaces Forces, 2nd Ed., Academic Press, London,
1992.

27 van Oss, C. J., Chaudhury, M. K., and Good, R. J., J. Colloid Interface Sci., 111, 378 (1986).
28 Fowkes, F. M., J. Adhesion Sci. Tech., 1, 7 (1987).
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Thus H is replaced with the more general ab. Many liquids (most notably
water) may act as both acids and bases, and thus self-associate. For most
liquids then, Eq. (2.19) reduces to: = d + ab, where ab refers to the
contribution of acid-base self-association. In molten metals, metallic
bonding is important, so in those cases: = d + m.

As will be seen later, the components of surface tension for a given
liquid may be determined experimentally from interfacial tension
measurements between that liquid and an immiscible, non-associating
reference liquid, or from the measurement of contact angles against
reference solids (see Chap. 4). Of particular importance, for water at 20°C:
= 72.8 mN/m, with d = 21.2±0.7 mN/m. For mercury, = 485 mN/m and
d = 200 mN/m. A list of values for various liquids is given in Table 2-2.

Table 2-2: Components of surface tension (in mN/m at 23.±0.5°C).
From [Fowkes, F. M., Riddle, F. L., Pastore, W. E., and Webber, A. A.,
Colloids Surfaces, 43, 367 (1990)].
Liquid d ab Type
Water 72.4 21.1 51.3 both
Glycerol 63.4 37.0 26.4 both
Formamide 57.3 28.0 29.3 both
Methyl iodide 50.8 50.8 0 Neither
a-Bromonaphthalene 44.5 44.5 0 Neither
Nitrobenzene 43.8 38.7 5.1 Both
Dimethylsulfoxide 43.5 29.0 14.5 Both
Aniline 42.5 37.3 5.1 Both
Benzaldehyde 38.3 37.0 1.3 Both
Pyridine 38.0 38.0 0 Basic
Formic acid 37.4 18.0 19.4 Both
Pyrrole 37.4 32.6 4.8 Both
Dimethylformamide 36.8 30.2 6.6 Both
1,4-Dioxane 33.5 33.5 0 Basic
cis-Decaline 32.2 32.3 0 Neither
Squalane 29.2 29.2 0 Neither
Acetic acid 27.6 22.8 4.8 Both
Chloroform 27.1 27.1 0 Acidic
Methylene chloride 26.6 26.6 0 Acidic
Tetrahydrofuran 26.5 26.5 0 Basic
Ethyl acetate 25.2 25.2 0 Basic
Acetone 23.7 22.7 1.0 Both
Ethanol 22.2 20.3 1.9 Both
Triethylamine 20.7 20.7 0 Basic
Ethyl ether 17.0 17.0 0 Basic
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D. Interfacial tension

1. Experimental interfacial tension

As stated earlier, the terminology “surface tension” is usually reserved
for the tension observed at a liquid-vapor interface, whereas “interfacial”
tension is used in reference to fluid interfaces of all kinds, but in the present
context to liquid-liquid interfaces. The same molecular picture developed
earlier explains the existence of interfacial tension between liquids. If the
liquids are dissimilar enough to form an interface, then the molecules of
each bulk phase prefer to stay together rather than mix. They resist the
enforced molecular separation between like species that must exist
throughout the interfacial layer, where intermediate compositions prevail,
and manifest this resistance as interfacial tension. For example, at the water-
oil interface, the hydrogen bonds between the water molecules are disrupted.

Values for liquid-liquid interfacial tensions are less plentiful in the
literature than those of surface tension and are generally less reliable, due to
uncertainty as to the extent of mutual saturation of the liquid phases during
the measurement. Some representative experimental values for interfacial
tensions between water and various liquids are shown in Table 2-3.

Table 2-3: Interfacial tension values
Liquids T(°C) Interfacial tension

(mN/m)

Water/Butanol 20 1.8
Water/Ethyl Acetate 20 6.8
Water/Benzene 20 35.0
Water/HMDS (Silicone) 20 44.3
Water/Perfluorokerosene 25 57.0
Water/Mercury 20 415
Water/Oil (with surfactant) 20 as low as < 0.001

The effect of temperature on interfacial tension is somewhat more
complex than that for surface tension, because changes in temperature may
strongly change the extent of mutual solubility of the liquids. For systems
having an upper critical solution temperature (UCST), decreases with
temperature, but for those with a lower critical solution temperature (LCST),
increases with T. For systems with both a UCST and an LCST, passes

through a maximum at an intermediate temperature.

2. Combining rules for interfacial tension

Effort has been put into developing semi-empirical equations allowing
interfacial tension to be calculated in terms of known values for the surface
tensions of the two liquids forming the interface. Some are based on the
simple picture of the molecular origin of surface tension displayed in Fig. 2-
9. If surface tension represents the “unbalanced” inward-pulling



44 INTERFACES & COLLOIDS

intermolecular forces, then interfacial tension should represent the net
inward force, directed toward the liquid of greater surface tension, as
suggested in Fig. 2-13. This is the basis for Antanow’s Law,29 which states
that the interfacial tension between two liquids is the absolute value of the
difference between their surface tensions:

AB = A(B) B(A) . (2.20)

It often does well if the surface tension values used correspond to mutually
saturated liquids, as suggested by the subscripts in the equation. Table 2-4
shows data for several mutually saturated, water–organic systems in
comparison with calculations based on Antanow’s Law.

Table 2-4: Interfacial tensions of mutually saturated water-organic liquid
systems. From [Voyutsky, S., Colloid Chemistry, p. 129, Mir. Pub.,
Moscow, 1978.]

Surface tension, against
air (mN/m)

Interfacial tension
(mN/m)Liquid T (°C)

Water
layer

Organic
layer

Antanow’s
Law

Experimental

Benzene (19°) 63.2 28.8 34.4 34.4
Aniline (26°) 46.4 42.2 4.2 4.8
Chloroform (18°) 59.8 26.4 33.4 33.8
Carbon tetrachloride (17°) 70.2 26.7 43.5 43.8
Amyl alcohol (18°) 26.3 21.5 4.8 4.8
Cresol (18°) 37.8 34.3 3.5 3.9

Another equivalent approach to estimating interfacial tensions also
derives from their direct computation in terms of intermolecular forces.
Consider two immiscible liquids A and B as semi-infinite half-spaces

Fig. 2-13: Model for evaluating interfacial tension in terms of surface tensions.

meeting at their common interface. The work required to separate the two
phases (to infinity, in vacuo) is the energy required to form the surfaces of A
and B, minus the energy recovered by the destruction of the AB interface,
viz.

29 Antanow, G., J. Chem. Phys., 5, 372 (1907).
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Wseparation = A + B AB . (2.21)

This work of separation can be computed as the sum of the intermolecular
forces between the molecules of phase A with those of phase B, by analogy
with Eqs. (2.12)-(2.14):

Wseparation = AB =
BAB A B

12D0
2 =

AAB
12 D0

2 , (2.22)

where BAB is the cross van der Waals molecular interaction constant
between molecules A and B, A and B are molecular densities, and AAB is
the cross Hamaker constant. Applying the geometric mean rule, Eq. (2.6),
for BAB (assuming the dominance of dispersion forces), we see that the cross
Hamaker constant is given by

AAB =
2

A B BAABBB = AAAABB . (2.23)

Then relating the Hamaker constant to surface tension, Eq. (2.14):

Wseparation = AB = 2 A B , (2.24)

so that finally, substituting in Eq. (2.21):

AB = A + B 2 A B . (2.25)

Girifalco and Good30 wrote Eq. (2.25) in the form:

AB = A + B 2 A B , (2.26)

with the factor (presumably 1) accounting for the fact that not all of the
molecular interactions across the interface may be of the dispersion force
type.

An alternative formulation was given by Fowkes,31 who argued that,
in the absence of acid-base interactions (or metallic bonding), only
dispersion forces were operative across the interface. The result was thus:

AB = A + B 2 A
d

B
d , (2.27)

To use Eq. (2.27) one needs to know the dispersion force contributions to the
surface tension values, such as given in Table 2-2. The interpretation of the
Girifalco-Good -factor becomes rather awkward (and quite different from
its original interpretation, which involved presumed polar interactions). The
Fowkes equation is easily extended, at least in a formal way, to include the
possibility of acid-base interactions across the interface, Iab:

AB = A + B 2 A
d

B
d I ab . (2.28)

30 Girifalco, L.A., and Good, R.J., J. Phys. Chem., 67, 904 (1957).
31 Fowkes, F. M., A.C.S. Advances in Chemistry Series, 43, 99-111 (1964).
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Situations in which Iab is significant may lead to AB 0, suggesting
miscibility between liquids A and B. While strictly applicable only in the
case of total immiscibility, the Fowkes Equation may be applicable to
partially miscible systems if the values of surface tension correspond to
those of mutual saturation, i.e. A(B), A(B)

d , etc. This idea, however, seems
not to have been tested.

A word of caution must be raised concerning the use of equations for
interfacial tension employing Berthelot’s principle. The mixing rule applies
to energy quantities (such as internal energy or enthalpy), whereas surface
and interfacial tensions are free energies.32 Thus equations such as those of
Girifalco and Good or Fowkes ignores the entropy effect associated with
bringing together or disjoining the phases.

E. Dynamic surface tension

The surface and interfacial tensions referred to in the foregoing are
assumed to be equilibrium values. Before exploring further the mechanical
consequences of capillarity for equilibrium systems, a word should be said
about systems which may not be in equilibrium, and which exhibit a time-
dependent, or dynamic surface or interfacial tension (t). Examples would
include “fresh” surfaces created in coating operations, for liquids emerging
from orifices or spray nozzles, or when bubbles are formed within liquids.
Practical situations exist, such as in ink-jet printing, in which surface ages as
low as fractions of a millisecond are important. The time required for
molecular re-orientation at fresh interfaces of non-macromolecular pure
liquids is less than one micro-second, so that dynamic surface tension
behavior of pure liquids is of little practical significance, but for solutions,
particularly dilute solutions of surface active agents, surface tension may be
found to vary from its value at t 0 (when is presumably close to that
corresponding to the pure solvent) to its equilibrium value over times from
less than one millisecond to several hours. As has been noted, such solutes
reduce surface tension as they accumulate at the interface, and to do so
requires at least the time for diffusion. Additional time may be required for
the solute molecules to enter the surface and possibly to re-orient
themselves. Further discussion of dynamic surface tension is deferred to
Chap. 3, following discussion of surfactant adsorption.

F. Capillary hydrostatics: the Young-Laplace Equation

1. Capillary pressure: pressure jump across a curved fluid interface

Consider next the problem of determining the shape and location of
fluid interfaces, the fundamental problem of capillary hydrostatics. The
solution to this problem is the basis for most of the methods of measuring

32 Lyklema, J., Colloids Surfaces A, 156, 413 (1999).
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surface or interfacial tension and has important consequences for the
formation of adhesive bonds, for the motion of liquids in porous media, for
the thermodynamic properties of small drops or bubbles, and for the process
of phase change by nucleation. For the fluid interface, nothing more
complicated than Young’s membrane model is needed.

It is a matter of experience that when an elastic membrane is
deformed, as when air is blowing on a soap film suspended on a frame as
shown in Fig. 2-14, the pressure on the concave side (p ) must be greater
than the pressure on the convex side (p ). The pressure difference is found

Fig. 2-14: Pressure applied to a soap
film.

to be directly proportional to the curvature of the soap film, as demonstrated
by the example shown in Fig. 2-15. When two bubbles of different sizes are
connected by a tube, the larger one will grow at the expense of the smaller
one since the curvature of the smaller bubble is greater (has a higher
pressure inside) than the larger one. Flow continues until the curvatures are
equal, as shown, with the smaller bubble eventually becoming a spherical
cap with the same radius as the larger bubble.

Fig. 2-15: Spontaneous flow occurs from the smaller bubble (higher
curvature) to the larger bubble until the spherical cap at the location
where the smaller bubble started has the same radius of curvature
as the final larger bubble.
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Thomas Young (in 1805, loc. cit.) and P. S. Laplace (in 1806)33
derived the exact relationship which must hold between the pressure jump
across a fluid interface, p = p - p , and its local curvature, , viz.,

p = , (2.29)

with pressure on the concave side higher. This is the Young-Laplace
Equation, and is derived below. In order to understand and use Eq. (2.29),
the curvature , of a surface in space (at a point) must be defined.

2. The curvature of a surface

One may first recall the definition of the curvature of a plane curve,
with reference to Fig. 2-16. The curvature of a plane curve C at P is its rate
of change of direction with arc length S, at P, measured along the curve, i.e.,
= d /dS, where is the angle made between the tangent to the curve at the

Fig. 2-16: Construction for defining plane curvature.

point of interest and some arbitrary direction (say, the x-direction, as shown
in the figure). Its units are length-1, and its sign is ambiguous. In terms of the
equation of the curve y(x):

= ±
d2y

dx 2
1+

dy

dx

2 3 / 2

. (2.30)

The curvature of a circle is computed from its equation: x2 + y2 = R2 (for a
circle of radius R centered at the origin) and is seen to be ±1/R. It is thus
possible to define a circle of curvature (or “osculating circle”) for any point
P along any curve C, as the circle passing through point P and having the
same curvature as C at P. The radius of the circle of curvature at P is referred
to as the radius of curvature of C at P.

It is next possible to define the curvature of a surface in space, with
reference to Fig. 2-17, in the following way. We first erect a normal, n, at
the point of interest and pass a pair of orthogonal planes through it. These

33 De Laplace, P. S., Traité méchanique céleste, supplement au Livre X, 1806.
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cut the surface in two plane curves. The curvature of the surface is the sum
of the curvatures of these two plane curves:

= ±
1

R1
+
1

R2
= ±

2

Rm
, (2.31)

where Rm is the mean radius of curvature of the surface. It may be identified
as the radius of the osculating sphere. The sum is invariant as one rotates the
planes about the normal. The R1-value that is maximum, and the
corresponding R2-value which is minimum, are referred to as the principal

Fig. 2-17: General surface in
Cartesian space.

radii of curvature. The sign of the curvature of the surface is ambiguous
until a physical context is specified.

Recalling the expression for the curvature of a plane curve, it is easy
to appreciate that the general expression for the curvature of a surface is
quite complex. For the general case shown in Fig. 2-18, where the surface is

Fig. 2-18: General surface in
Cartesian space.

given as the elevation z as a function of the planform variables x and y, viz. z
= z(x,y), the general expression for the curvature becomes:

= ±

2z

x 2
1+

z

y

2

2
z

x

z

y

2z

x y
+

2z

y 2
1+

z

x

2

1+
z

x

2

+
z

y

2 3/2 . (2.32)
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Many of the cases of special interest, however, possess certain symmetries
that simplify the expressions considerably. Some examples of special cases
are discussed below.

For spheres or segments of spherical surfaces, as might be created by
soap films, it is evident, as shown in Fig. 2-19, that any normal to the
surface will pass through the center of the sphere, and any plane containing
this line will cut the sphere to yield a great circle. The radius of this circle,
R1, is the radius of the sphere, R. The plane containing the normal and
orthogonal to the first plane will also cut the surface of the sphere in a great
circle, so we see that the curvature of the spherical surface is

=
1

R1
+
1

R2
=
1

R
+
1

R

2

R
. (2.33)

Right cylindrical surfaces (or portions of such surfaces) may be
similarly analyzed. Any normal to the surface will pass through and be
orthogonal to the axis of the cylinder, as shown in Fig. 2-20. One convenient

Fig. 2-19: Curvature of a
spherical surface.

plane passing through the normal will be perpendicular to the axis of the
cylinder, and cut the cylindrical surface in a circle whose radius, R1, is the
radius of the cylinder. Then the plane perpendicular to this circle and cutting
the surface of the cylinder will be a rectangle. The “radius” of this curve =
. Thus for the circular cylinder,

=
1

R1
+
1
=
1

R
. (2.34)

Fig. 2-20: Curvature of a right
circular cylinder
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Cylindrical surfaces in general are those swept out by moving a
straight line (the generatrix) normal to itself, as shown in Fig. 2-21. It is
evident that the curvature of any general cylindrical surface will be the

Fig. 2-21: A general cylindrical surface.

curvature of a plane curve in the plane perpendicular to the generatrix, i.e.,

=
1

R1
+
1
= ±

y

1+ (y )2[ ]
3/2 . (2.35)

Some practical situations yielding this type of surface are shown in Fig. 2-22
and include menisci against flat walls contacting a liquid, and menisci
between flat plates or between cylinders and plates.

Fig. 2-22: Examples of cylindrical
liquid surfaces.

Finally, there are surfaces of axial symmetry, some examples of which
are shown in Fig. 2-23. The first three are closed surfaces, i.e., cut by the
axis of symmetry. Case (d) is a soap film suspended between opposing open

Fig. 2-23: Examples of surfaces of axial symmetry. The meniscus in a round tube
(a), the pendant drop (b) and the sessile drop (c) are cut by the axis of symmetry,
whereas the soap film suspended between circular rings (c) is not.
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wire loops, and is an example of an axisymmetric surface that is not closed.
One may derive the expression for the curvature of closed surfaces of axial
symmetry by considering that any normal to such a surface, when extended,
will intersect the axis of symmetry, and the plane established by the normal
and the axis of symmetry will cut surface yielding its profile, as shown in
Fig. 2-24. The profile may be given the equation y(x), defining the origin as
the point where the surface is cut by its axis of symmetry, y as the coordinate
along the axis of symmetry, and x the distance measured away from it. One
of the two principal radii of curvature, R1, at the point of interest, will be the

Fig. 2-24: Axisymmetric interface; profile view in plane passing through axis of
symmetry.

plane curvature of y(x) at that point. A little examination of the figure
reveals that the second principal radius of curvature, R2, must be the distance
measured from the point of interest on the surface back to the axis of
symmetry along a line perpendicular to the tangent of the curve y(x). It is
evident that as such a radius swings around the axis of symmetry, it will
trace out a circle on the surface. R1 thus swings in the plane of the figure,
while R2 swings around the axis as shown. R1 is given by the usual
expression for plane curvature. R2 is x divided by sin , where is the angle
whose tangent is dy/dx, i.e. y . This works out to be:

R2 = ±
x 1+ (y )2[ ]

1/ 2

y
. (2.36)

Thus for an axisymmetric surface (which is cut by the axis of symmetry) the
expression for the curvature becomes:

=
1

R1
+
1

R2
= ±

y

1+ (y )2[ ]
3/2 +

y

x 1+ (y )2[ ]
1/ 2 . (2.37)

Fluid interfaces that are cylindrical or axially symmetric represent perhaps
the majority of cases of practical interest.
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3. Derivation of the Young-Laplace Equation

The Young-Laplace Equation, Eq. (2.29), which takes the general
form:

p =
1

R1
+
1

R2
, (2.38)

may be derived with reference to Fig. 2-25. Consider a small patch of
surface centered at P and enclosed by a curve drawn in the surface
everywhere a distance (measured along the surface) from P. is taken to
be very small. Phase ( ) is on the lower, concave side of the patch, while
phase ( ) is above it. Construct orthogonal lines AB and CD as shown, as
lines made by a pair of orthogonal planes passing through a normal to the
surface at P, viz., n. A normal force balance, i.e., in the direction of n, on the
patch, requires:

net pressure force
on patch =

normal component of surface tension
force acting on patch perimeter

.

Fig. 2-25: Figure for derivation of
the Young-Laplace Equation.

The net upward (+n direction) force on the patch is

F = (p p ) 2 (2.39)

to any desired degree of accuracy by making sufficiently small. To
compute the downward force, consider first the force on an element of
perimeter, , at point B, as shown. The force pulling downward (-n
direction) on the element of perimeter is F = sin . Since is very
small (because is small), sin tan /R1, and this component of force
is - ( /R1)d . At point A, the component of force is the same. At points C
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and D, the force is ( /R2)d . Adding these gives 2 (1/R1 +1/R2)d .
To obtain the total downward force acting on the perimeter, the above
expression is integrated around one-fourth the perimeter, i.e., a distance of
1/4(2 ) = 1/2( ), to get:

F = 2
1

R1
+
1

R20

/ 2

=
2 1

R1
+
1

R2
. (2.40)

Equating F = F , and canceling 2 from both sides yields Eq. (2.38).

The general expression for curvature renders the result a second-order,
non-linear partial differential equation, whose solution will give the shape of
a fluid interface under given conditions.

Next the Young-Laplace Equation requires the appropriate expression
for p. For a static system, such as that of the meniscus against a vertical
plate shown in Fig. 2-26, in the absence of force fields other than gravity, the
local pressure on each side of the interface at a point P is given by the
hydrostatic equation written in the appropriate phase at the elevation h of
point P above the datum plane34 i.e.,

p = p0 gh,  and p = p0 gh . (2.41)

Fig. 2-26: Hydrostatic
pressure difference across a
curved fluid interface.

Note that both pressures must be referenced to the location of the datum
plane in the appropriate phase, whether or not either or both the actual
phases exists at the datum plane. p is then the difference between the
hydrostatic pressures of Eq. (2.41):

p = p0 ( )gh . (2.42)

If y = 0 is located at the datum plane, then h = y, and

p = p0 ( )gy . (2.43)

If, as in Fig. 2-26, the datum plane is located at an elevation where the
surface happens to be flat (one cannot always do this, as for example, in any

34 Under more general conditions, stagnation flows and/or rigid body rotation may also contribute
to the local value of p at a given point on either side of the interface.
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of the cases of Fig. 2-23), p0 = p0 , and p = ( )gy . Using expressions of
the above type for p, the Young-Laplace Equation for the special cases of
curvature discussed earlier may be written as follows:

1. Sphere: p = p0 =
2

R
. (2.44)

2. Circular cylinder: p = p0 = R
. (2.45)

3. General cylindrical surface:

p = p0 ( )gy = ±
y

1+ (y )2[ ]
3/2 (2.46)

4. Axisymmetric (closed) surface:

p = p0 ( )gy = ±
y

1+ (y )2[ ]
3/2 +

y

x 1+ (y )2[ ]
1/2 (2.47)

A quick calculation of the pressure jump p between the inside and
the outside of a soap bubble of radius 5 mm, using Eq. (2.44), reveals that it
is quite small for curvatures of this magnitude. Taking the surface tension of
the soap solution as 35 mN/m, and noting that the soap film has both an
inside and an outside surface, gives p 2.8·10-4 atm.

4. Boundary conditions for the Young-Laplace Equation

In order to obtain solutions to the Young-Laplace Equation in general,
one must provide information equivalent to two boundary conditions. If the
surface has an edge, there are two types of conditions that may prevail there
(as pictured in Fig. 2-27): 1) the “fixed edge location” condition, and 2) the
“fixed contact angle” condition. The latter condition states that a given fluid
interface must meet a given solid surface at some specified angle. When a
fluid interface terminates on a solid surface, the angle drawn in one of the
fluid phases (which must be specified) is termed the “contact angle.”

Fig. 2-27: Boundary conditions for Young-Laplace Equation: (a) and (b) are examples of
“fixed-edge” conditions, and (c) and (d) are “fixed-angle” conditions.
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When a fluid interface terminates at another fluid interface, as when a
liquid drop rests upon another immiscible liquid (as shown in Fig. 2-28), the
angles between the three interfaces meeting at the interline must be such as
to satisfy the vectorial equation

AB + BC + AC = 0 . (2.48)

Fig. 2-28: Boundary tension
forces at a tri-fluid interline.

Equation (2.48) is referred to as “Neumann’s triangle of forces,”35 and it
fixes the angles between the surfaces. For the intersection of soap film
lamellae in a foam (as shown in Fig. 2-29), the ’s are all equal, and the
films must thus intersect at 120° angles. One might inquire about an intrinsic
tension associated with the fluid interline itself, i.e. a “line tension”
(which would presumably tend to contract the interline). Such a property
would have units of force, or energy/length, and estimates for its magnitude
range from –10-9 to +10-9 N36 (from which it is seen that it may take on
negative values).37 If the value of the line tension is positive, it will
contribute a radially inward force on the interline of magnitude /R, where
R is the radius of the lens. For a lens of radius 1 mm, and a line tension of
10-9 N, this would contribute a tension of only 10-3 mN/m, quite negligible in
comparison with typical surface or interfacial tensions. Line tension may
play an important role, however, for micro or nano lenses.

Fig. 2-29: Photograph of a typical foam structure. After [Everett, D. H., Basic
Principles of Colloid Science, p. 178, Roy. Soc. of Chem., Letchworth (1988).]

With reference to Fig. 2-28, consider the possibility that AC > AB +

BC, i.e., the force pulling the interline to the right is larger than the
maximum possible force pulling it to the left. Under such circumstances it

35 Neumann, F., Vorlesungen über die Theorie de Capillarität, B. G. Teubner, Leipzig, 1894.
36 Toshev, B. V., Platinakov, D., and Sheludko, A., Langmuir, 4, 489 (1988).
37 Kerins, J., and Widom, B., J. Chem. Phys., 77, 2061 (1982).
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would be impossible to satisfy Neumann’s equilibrium condition. The
droplet of liquid B would have no recourse but to spread indefinitely as a
thin liquid film, possibly all the way to becoming a monolayer. The driving
force for the spreading of liquid B at the A-C interface is the spreading
coefficient, defined as

SB/AC = AC ( AB + BC) . (2.49)

If the spreading coefficient is positive, one may expect to see the
spontaneous spreading of the liquid at the interface. Spreading of this type
may also be observed at a solid-fluid interface, discussed further in Chap. 4.

G. Some solutions to the Young-Laplace Equation

1. Cylindrical surfaces; meniscus against a flat plate

One solution to the Young-Laplace Equation that can be obtained
analytically is that for the shape of the meniscus formed by a flat plate
dipping into a liquid pool, as shown in Fig. 2-30. This is an example of a
general cylindrical surface and satisfies the differential equation given for
this case for interfaces of liquids at rest in a gravitational field, acting in the
-y direction, viz.

y

1+ (y )2[ ]
3 / 2 gy = 0, (2.50)

where the datum plane of y = 0 has been chosen as the elevation where the
surface is flat. The derivatives y and y are taken with respect x, the
horizontal coordinate measured away from the location where the interface
is (or would be) vertical. The analytical solution in dimensionless form38 is
explicit in x, specifically:

x/a( ) =
1

2
ln

2 + 2 (y/a)2[ ]
1/ 2

(y/a)
2 (y/a)2[ ]

1/ 2

+ C, (2.51)

where “a” is the “capillary length,” defined as: a = 2 / g .39 It is a useful
yardstick characterizing the size of a meniscus. The constant of integration,
C, is determined by the value of x corresponding to the location of the solid-
liquid-gas interline. The curve (c) in Fig. 2-30 includes all possible
situations, with the relevant piece of that curve being determined by the
angle made by the meniscus at the interline with the vertical axis. This angle
is the difference btween the contact angle and the tilt angle of the plate
, i.e. = . C is given by:

38 Princen, H.M., in Surface and Colloid Science, Vol. 2, E. Matijevic (Ed.), pp. 1-84, Wiley-
Interscience, New York,1969.

39 It must be noted that some authors define the capillary length as: g .
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Fig. 2-30: Meniscus against a flat plate dipping into a liquid at various angles.

C = 1+ sin( )
1/ 2
+
1

2
ln

1 sin( )
1/ 2

2 + 1+ sin( )
1/ 2 . (2.52)

Figure 2-31 shows the complete solution. The value of C corresponding to
= 0° is 0.3768... Under these conditions, the meniscus against a vertical wall

Fig. 2-31: Meniscus profile against a flat plate.

with = 0° rises to a height of precisely the capillary length, a. Other values
of the contact angle yield other values of C, shifting the location of the
wall, i.e., where (x/a) = 0, but not altering the shape of the curve. The
locations of the wall corresponding to contact angles of 30°, 45° and 60° are
shown. A useful result that can readily be derived is that for the maximum
height, hm, of a meniscus against a vertical flat wall, viz.

hm
a

2

=1 sin . (2.53)
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2. Axisymmetric and other surfaces

Figure 2-32 shows the solution for the axisymmetric surface of sessile
drops (or captive bubbles, when inverted.) Problems of this type, i.e.,

Fig. 2-32: Sessile drop (or if inverted, captive bubble) profiles.

axisymmetric interfaces cut by the axis of symmetry and described by Eq.
(2.47), were solved numerically by Bashforth and Adams.40 Over a twenty
year period, these authors compiled solutions for closely-spaced values of
the dimensionless parameter = ( )gb2/ using seven-place tables of
logarithms. (The parameter is now known as the Bond Number,41 Bo.)
This achievement was of great importance because it yielded solutions for
most of the cases encountered in measuring surface tension.

Computer solutions have been obtained for meniscus shapes in which
simplifying symmetries do not exist, and examples are shown in Figs. 2-33
and 2-34. The first shows the profile of a drop on an inclined surface, and
the second shows the meniscus about a rectangular object immersed at an
angle into a liquid surface.

3. Non-dimensionalization of the Young-Laplace Equation; the
Bond Number

It is useful to consider limiting cases where the Young-Laplace
Equation and its solution take on especially simplified forms. The most
important way of delineating these is in terms of the relative importance of
surface tension and gravity forces in determining the interface shape. This
can be done in a systematic way by nondimensionalization, requiring only
the specification of an appropriate characteristic length L for the system.
Some examples are shown in Fig. 2-35. If one is interested in the shape of

40 Bashforth, F., and Adams, J.C., An Attempt to Test the Theories of Capillary Action, Univ.
Press, Cambridge, UK, 1883.

41 Following: Bond, W. N., and Newton, D. A., Phil. Mag., 5, 794 (1928), in which the group
was used in describing the rise of bubbles in liquids.
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Fig. 2-33: Drop shape on an inclined
plane. From [Brown, R.A., Orr, F.M.,
and Scriven, L.E., J. Colloid Interface
Sci., 73, 76 (1980).]

Fig. 2-34: Meniscus around a square pin.
From [Orr, F.M., Scriven, L.E., and Chu,
Y.T., J. Colloid Interface Sci., 60, 402
(1977).]

the liquid surface in a large container, such as that in a laboratory beaker
shown at the right, the characteristic length depends on what aspects of the
shape are sought. If the entire surface is of interest, the diameter of the
beaker, D, is appropriate, but for only the meniscus near the wall, the
characteristic length is usually chosen as the capillary length, i.e. L = a.

Fig. 2-35: Characteristic lengths for various systems.

Non-dimensionalization of the Young-Laplace Equation in the form:

p0 + ( )gy =
1

R1
+
1

R2
(2.54)

proceeds from the definition of the dimensionless length variables:
ŷ = y/L; x̂ = x/L , etc. , and gives

( p0)L +
( )gL2

ŷ =
1

R̂1
+
1

R̂2
. (2.55)

It is seen to yield two dimensionless groups. The first, ( p0)L/ , is a
dimensionless reference curvature. The second is the Bond Number, Bo:
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Bo =
( )gL2

=
(gravity forces)

(surface tension forces)
, (2.56)

which is seen to be the ratio of the gravity forces to the surface tension
forces that are responsible for determining the shape of a fluid interface.

When the Bond Number is sufficiently small (< 0.01), gravity is
unimportant in determining the shape of the interface, and under such
circumstances, the second term of the equation drops out, giving surfaces of
constant curvature. All confined cylindrical surfaces become portions of
right circular cylinders, and all closed surfaces of revolution become
portions of spherical surfaces (spherical caps, etc.). For example, for a
spherical cap of radius R, L = R, and R̂1 = R̂2 = R /R =1, so that:

( p0)R + 0 =
1

R̂1
+
1

R̂2
= 2 , or p0 =

2

R
. (2.57)

On the other hand, if Bo is very large (> 100), surface tension forces will be
unimportant relative to gravity in determining the interface shape. The
interface (at rest) will be just a flat surface perpendicular to the g-vector.
This would be the case considering the entire surface of liquid in a large
beaker (large L = D), as opposed to the shape of the meniscus near the wall.
Low-to-moderate Bo cases are thus of importance in capillary hydrostatics.
Various ways in which very low Bond Numbers can be achieved might be:

• Characteristic length (L) is small.
• Density difference between phases ( ) is small.
• Gravitational acceleration (g) is low.
• Surface tension ( ) is large.

When fluid systems are small, low Bo conditions often exist; for
liquids of ordinary surface tension, this is usually the case when L 1 mm.
Thus menisci in small tubes, small liquid bridges between solid particles,
etc. will have surfaces strongly affected (and sometimes totally determined)
by capillary forces. Surface tension forces are also dominant in determining
the shape of interfaces across which the density difference is small. An oil
drop suspended in a liquid of nearly the same density will assume the shape
of a sphere, undistorted by gravity, which would flatten the drop if it were
denser than the medium, and distend it, if it were lighter. A soap bubble,
with air inside and outside at nearly the same pressure, is also a sphere. A
soap bubble deposited on a flat surface pre-moistened with the soap solution,
will be a perfect hemisphere.

Another situation leading to very low Bond Numbers is that of low-to-
zero g, as realized on board spacecraft, and many capillary hydrodynamics
experiments have been performed on space flights (as well as in zero-g
maneuvers in ordinary aircraft). When gravity is no longer operative to
contain or transport liquids, they behave in ways that are often counter-
intuitive to one’s experience on Earth. Wetting liquids, for example, when
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let loose in the capsule, do not fall to the “floor,” but may contact and spread
out over the entire solid inner surface of the capsule and all the equipment,
etc., contained in it.42

The condition of high may yield a small Bond Number. Surface
tension values are not large enough to render very large fluid interfaces free
of gravitational influence, but it is a matter of experience that a droplet of
mercury (with a very high surface tension) will be more nearly spherical
than a drop of water or organic liquid of comparable size.

4. Saddle-shaped surfaces

A soap film open to the same pressure on both sides, as in the case of
Fig. 2-23(d) is interesting. The surface must be one of zero mean curvature
everywhere because p is zero, yet the film is clearly “curved.” This does
not mean that the surface must be flat, but may be saddle-shaped, as shown
in Fig. 2-36. The two plane curvatures must be equal in magnitude and
opposite in sign so that the sum: (1/R1 + 1/R2) is zero. The problem of
determining the surface satisfying the condition of zero mean curvature and
passing through a given closed (non-planar) curve (or set of curves) in space
is known as “Plateau’s problem,” after the blind Belgian physicist, J.
Plateau, who published work on capillary hydrostatics in the late 1800’s43.

Fig. 2-36: Saddled-shaped surface (surface of zero mean curvature).

It can be proven that this is also the surface of minimum area passing
through the given closed curve(s). A number of fascinating experiments with
Plateau’s problem can be done with a soap solution and wire frames of
various shapes, as suggested by Fig. 2-37. A delightful account of
experiments that can be done with soap films has been written by C.V.
Boys44. It is the substance of a series of lectures delivered to juvenile and

42 A delightful 47-minute suite of zero-g experiments conducted by NASA on board the Space
Station can be viewed at: http://www.youtube.com/watch?v=jXYlrw2JQwo

43 Plateau, J. A. F., Statique expérimentale et théorique des liquides soumis aux seules forces
moléculaires, Gauthier-Villars, Trubner et cie, F. Clemm, 2 Vols., 1873.

44 Boys, C.V., Soap Bubbles: Their Colors and the Forces Which Mold Them, Dover, New
York, 1959.
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popular audiences in 1889-1890. A more detailed description of much of its
contents is given by Isenberg.45

Fig. 2-37: Some soap-films
suspended on wire frames. Many
interesting saddle-shaped surfaces
may be created by selectively
puncturing different panels (using
an alcohol-dipped pencil point) on
the cubical frame. Puncturing the
center panel on the structure
between circular loops leads to a
film as shown in Fig. 2-23(d). The
film on the spiral wire may jump
between two shapes as the spiral is
squeezed or distended.

The apparent mechanical equivalence between a flat surface and a
saddle-shaped surface of zero mean curvature belies the assumption that an
interface shape may be specified completely in terms of a single variable,
such as or Rm. The interface shape in fact requires two variables for its
specification. These may be chosen as the two principal radii of curvature,
R1 and R2, defined earlier, but more commonly one uses the curvature ,
defined by Eq. (2.31), as the first variable, and

+ =
1

R1R2
, (2.58)

termed the Gaussian curvature, as the second. Different nomenclature and
notation are sometimes used. The mean curvature, defined as H = 1/2 , is
termed the “Hermitian curvature.” Gaussian curvature is generally important
in those cases when the interfacial layer has a highly organized structure, as
might be the case for close-packed surfactant monolayers or bilayers. Such
interfaces may resist bending deformations in accord with the relationship
given by Helfrich:46

F (bending) =
1

2
k1 o( )

2
+ k2 , (2.59)

where F (bending) is the Helmholtz free energy/area of an interface
attributable to its state of bending, and k1 and k2 are the “mean bending
modulus” and the “saddle splay modulus,” respectively. These constants
have units of energy and magnitudes of order kT. 0 is the “spontaneous
curvature,” taken as zero for interfacial layers of symmetrical structure
(Critical Packing Parameter 1, cf. Chap. 3.I), but non-zero otherwise. The
spontaneous Gaussian curvature is taken as zero in all cases. A second

45 Isenberg, C., The Science of Soap Films and Soap Bubbles, Dover Publ., New York, 1992.
46 Helfrich, W., Z. Naturforsch., 28c, 693 (1973); 33a, 305 (1978).
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Helfrich Equation expresses the interfacial tension in such systems as a
function of curvature:

curved = flat +
1

2
k1

2 k1 o + k2 . (2.60)

The magnitudes of k1 and k2 are such that even for these structured
interfaces, the interfacial tension is effectively independent of curvature for
radii of curvature in excess of a few tens of nanometers.

H. The measurement of surface and interfacial tension

1. Geometric vs. force methods

A large number of methods and devices for measuring surface or
interfacial tension in the laboratory have been proposed, and many are now
represented by commercial instrumentation. A few examples are listed in
Table 2-5. Solutions to the Young-Laplace Equation, one way or another,
provide the basis for their use. Some, termed geometric methods, are based

Table 2-5: Some methods for measuring surface or
interfacial tension.

Geometric methods

• Capillary rise
• Sessile drop (captive bubble)
• Pendant drop (pendant bubble)
• Spinning drop
• Oscillating jet
• Contracting circular jet

Force methods

• Du Nüoy ring detachment
• Wilhelmy slide (or rod)
• Langmuir barrier
• Drop weight (volume)
• Maximum bubble pressure

on a direct determination of an interface shape or position. In these cases, the
boundary tension is determined by finding the value for it that produces the
best match between a measured interfacial profile or location and the
appropriate solution to the Young-Laplace Equation. Force methods, on the
other hand, are based on the measurement of a force or its equivalent, such
as a mass, volume or pressure, and its comparison with the value computed
using the Young-Laplace Equation. In the latter case, one most often deals
with a solid object suspended in or detached from a fluid interface or a liquid
drop detached from an orifice. Since the geometry of the experimental
situation can be designed to be convenient, one is essentially always dealing
with interfaces of a high degree of symmetry. The interfaces are usually
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closed-axisymmetric or cylindrical (in the general sense). A few of the
methods that are important historically or are commonly used in present-day
laboratories are described briefly below.

2. Capillary rise

One of the oldest methods for measuring surface tension is based on
determining the position of the meniscus of the liquid in a capillary tube. If
the liquid wets the tube wall, which is generally glass, its surface is
constrained to meet the wall at a contact angle less than 90°. The meniscus is
thus concave upward, requiring that at equilibrium, the pressure above it be
greater than the pressure beneath. To achieve equilibrium, the meniscus rises
in the tube, as shown in Fig. 2-38, until the hydrostatic pressure beneath the
surface (p0 - gh) is sufficiently below atmospheric (p0) to support the

Fig. 2-38: The capillary rise method for measuring surface tension. (a) h is
the equilibrium rise height, (b) If the meniscus is spherical, but the contact
angle is > 0°, the radius of the meniscus is R = r/cos , where r is the radius
of the capillary, and is the contact angle, (c) if the meniscus is flattened
by gravity, the radius of the curvature at its apex is b > r.

curvature of the meniscus. The simplest situation arises when Bo =
( )gr2/ << 1 (where r = capillary radius) so that gravity will not flatten the
meniscus, and it will be a segment of a sphere. If the contact angle is 0°, the
meniscus will be a hemisphere of radius r, so that:

p = gh =
1

R1
+
1

R2
=
2

r
, (2.61)

where is the density of the liquid (the density of the overlying gas has been
neglected) and h is the height of rise from the flat surface in the vessel to the
bottom of the meniscus. (In order to assure a flat surface in the vessel, it
should be at least five cm wide, so that for the vessel, Bo > 100.) The above
formula simplifies to:

=
1

2
grh . (2.62)
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Parenthetically, it was noted by early investigators (including Leonardo da
Vinci) that for a given capillary tube and liquid, the product rh was a
constant. It is evident now that

rh =
2

g
= constant, (2.63)

from which one obtains the original (da Vinci) definition of the capillary
constant:

a2 =
2

g
= the capillary constant, [=] length2. (2.64)

The capillary length, a, has been defined earlier and is seen to be the square
root of the capillary constant. If the contact angle is different from 0°, (but
Bo << 1) one would still have a spherical segment as the meniscus, but the
radius of curvature would be R = r/cos , as shown in Fig. 2-38(b), and the
amount of capillary rise would be correspondingly less. As a practical
matter, however, it is necessary that = 0°, as this is the only condition
which is reliably reproducible. The condition is generally satisfied for most
liquids against glass (with the notable exception of mercury, for which >
90°, resulting in capillary depression) if the glass is scrupulously clean and
has been put in contact with the liquid for a sufficient period of time (i.e.,
“seasoned”). The liquid is generally brought to a level above the equilibrium
rise height and allowed to recede to the equilibrium position. It is thus the
receded angle that must be 0°. Also, one usually uses a device with two
tubes of different radius with a precision cathetometer to measure the
difference in capillary rise between them.

The radius of the capillary required to achieve Bo < 0.01 is generally
less than 0.2 mm, often impracticably small. For larger tubes, the meniscus
must be treated as a general surface of revolution, flattened to some extent
by gravity. The surface tension in this case can be expressed in terms of the
rise height and the radius of curvature, b, of the meniscus at its apex, as
shown in Fig. 2-38. But determining b amounts to solving for the entire
meniscus configuration using the Bashforth-Adams tables. This is extremely
inconvenient since the unknown ( ) is buried in and b, and tedious trial
and error is required. Thus Sugden47 derived tables from those of Bashforth
and Adams for use with the capillary rise method. They give values of (r/b)
vs. (r/a) (where a = the capillary length) for the case of = 0°, as shown in
Table 2-6. The procedure for using the tables is one of successive
approximation.

47 Sudgden, S., J. Chem. Soc., 1921, 1483.
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Table 2-6: Sugden’s tables for capillary-rise corrections.

Values of r/b for values of r/a

r/a 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 1.0000 9999 9998 9997 9995 9992 9988 9983 9979 9974
0.10 0.9968 9960 9952 9944 9935 9925 9915 9904 9893 9881
0.20 9869 9856 9842 9827 9812 9796 9780 9763 9746 9728
0.30 9710 9691 9672 9652 9631 9610 9589 9567 9545 9522
0.40 9498 9474 9449 9424 9398 9372 9346 9320 9293 9265

0.50 9236 9208 9179 9150 9120 9090 9060 9030 8999 8968
0.60 8936 8905 8873 8840 8807 8774 8741 8708 8674 8640
0.70 8606 8571 8536 8501 8466 8430 8394 8358 8322 8286
0.80 8249 8212 8175 8138 8101 8064 8026 7988 7950 7913
0.90 7875 7837 7798 7759 7721 7683 7644 7606 7568 7529

1.00 7490 7451 7412 7373 7334 7295 7255 7216 7177 7137
1.10 7098 7059 7020 6980 6941 6901 6862 6823 6783 6744
1.20 6704 6655 6625 6586 6547 6508 6469 6431 6393 6354
1.30 6315 6276 6237 6198 6160 6122 6083 6045 6006 5968
1.40 5929 5890 5851 5812 5774 5736 5697 5659 5621 5583

1.50 5545 5508 5471 5435 5398 5362 5326 5289 5252 5216
1.60 5179 5142 5106 5070 5034 4998 4963 4927 4892 4857
1.70 4822 4787 4753 4719 4686 4652 4618 4584 4549 4514
1.80 4480 4446 4413 4380 4347 4315 4283 4250 4217 4184
1.90 4152 4120 4089 4058 4027 3996 3965 3934 3903 3873

2.00 3843 3813 3783 3753 3723 3683 3663 3633 3603 3574
2.10 3546 3517 3489 3461 3432 3403 3375 3348 3321 3294
2.20 3267 3240 3213 3186 3160 3134 3108 3082 3056 3030

The first estimate is a rh . Then r/a is computed and r/b is obtained from
the table, giving an estimate of b. The next estimate of a is: a bh , from
which r/a is computed, etc., to convergence. It seldom requires more than
three rounds.

Lord Rayleigh48 proposed a convenient approximate solution, valid
for Bo 0.04, in the form:

a2 = r h +
r

3

0.1288r2

h
+
0.1312r3

h2
... . (2.65)

For wide tubes (Bo > 10), he proposed the approximate formula:

ln
h

a
= 0.6648 + 0.1978

a

r
2
r

a
+
1

2
ln

r

a
. (2.66)

48 Lord Rayleigh (J. W. Strutt), Proc. Roy. Soc., A92, 184 (1915).
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3. Sessile drop and pendant drop

Among the most commonly used methods for measuring boundary
tension are those in which the shape profiles of drops or bubbles are
determined and compared with solutions of Bashforth and Adams with the
value of chosen that produces the best fit. The most common methods of
this type are those of the sessile drop (or captive bubble) and the pendant
drop (or bubble) as pictured in Fig. 2-39. An expedited method obtains the
fit in terms of a pair of descriptive parameters, commonly the maximum
diameter, and the height above it (or below it). Tables derived from the
Bashforth-Adams calculations can then be used to estimate surface tension.

At present it is more common to use a commercially available
axisymmetric drop shape analysis (ADSA) system, as shown schematically
in Fig. 4-22 (where it is discussed in the context of determining contact
angle). An accurate drop or bubble profile is obtained using a precision CCD
camera, and the full profile match is effected using a computer.

Fig. 2-39: Axisymmetric drop profiles: (a) sessile drop, (b) captive
bubble, (c) pendant drop.

4. Du Noüy ring detachment

In this method, pictured in Fig. 2-40, one measures the force required
to detach a ring (usually of platinum) from a surface. A schematic plot is
shown of the measured downward force as a function of the height of the
ring above the undisturbed surface of the liquid. It is the maximum in the
measured force that is used to determine the boundary tension. After the
maximum is reached, the meniscus beneath the ring begins to contract
before final detachment occurs. Since the maximum force is what is needed,
most current instrumentation does not actually detach the ring. The
maximum downward force on the ring is given by

(Force) =
4 R

Fc
, (2.67)

where R is the radius of the ring and Fc is a correction factor for which there
are tables49 or empirical fitting formulas.50-51 It represents the weight of the

49 Harkins, W. D., and Jordan, H. F., J. Amer. Chem. Soc., 52, 1751 (1930).
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subtended liquid at the point of maximum force. The needed correction
factor is generally automatically implemented in current commercial
instrumentation. The method is generally suitable for interracial as well as
surface tension measurements. Other objects of known wetted perimeter
(e.g., plates, cylinders, etc.) can also be detached from surfaces and the
appropriate forces measured and analyzed to give the boundary tension.

Fig. 2-40: du Nüoy ring detachment method.

5. Wilhelmy slide

In a simple but powerful method one measures the downward force on
an object partially immersed in the liquid. The usual configuration is a
dipping slide, as shown in Fig. 2-41 (left), known as a Wilhelmy slide. In
some cases a rod is convenient to use rather than a slide, as shown at the
right. It is assumed that the contact angle of the liquid against the solid
surface is 0°, in which case the downward force on it consists of its weight

Fig. 2-41: Wilhelmy slide (or rod).

in air, plus the downward-pulling interline force of surface tension acting
around its wetted perimeter, minus the buoyancy force due any protrusion of
the plate (or rod) beneath the level of the undisturbed liquid surface. The
weight in air is usually zeroed out, so the net downward force is given by:

50 Freud, B. B., and Freud, H. Z., J. Amer. Chem. Soc., 52, 1772 (1930).
51 Zuidema, H. H., and Waters, G. W., Ind. Eng. Chem., 13, 312 (1941).
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Fnet = (wetted perimeter) (buoyancy) . (2.68)

For a rectangular plate of width d and thickness t, extending a distance h
beneath the flat, undisturbed surface of the liquid:

Fnet = (2d + 2t) ghtd . (2.69)

Since the plates used are usually thin (t << d), and measurements are made
at the point where h = 0, is evaluated from:

=
Fnet
2d
. (2.70)

The Wilhelmy technique is often used for measurement of the surface
tension, , of water in a rectangular trough, covered with an insoluble
(Langmuir) surfactant monolayer. In a method pioneered by Agnes
Pockels,52 and shown schematically in Fig. 2-42, one compresses or expands
the surfactant film by means of a movable barrier that seals the liquid
surface on one side from that on the other. Surface tension is monitored
during compression or expansion by measuring the force on the plate held in
null position.

Fig. 2-42: Schematic of Pockels’
trough, with Wilhelmy slide.

6. Langmuir film balance

Another method for measuring the surface tension of monolayer-
covered liquid surfaces is to divide the trough surface into two parts by a
movable boom, as shown in Fig. 2-43. The boom is connected to the trough
edges by flexible hydrophobic threads that seal the parts of the surface from
one another. The film is deposited on one side, while the other side presents
a clean water surface. A force equal to W, where W is the boom length,
pulls on the film side of the boom, while the force 0W, where 0 is the
surface tension of pure water, pulls in the opposite direction. The net force
on the boom, Fnet = ( 0 )W , is measurable by means of rigid connection to
a calibrated torsion wire. When the monolayer is soluble to some extent, the
subphase portions between the two parts of the surface may be kept apart by

52 Pockels, A., Nature, 43, 437 (1891).
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a flexible membrane connecting the boom and its tethers to the bottom of the
trough.

Fig. 2-43: Langmuir film balance.

7. Drop weight (or volume)

In this method, drops are formed, as shown in Fig. 2-39(c), and made
to grow until they break away by gravity. The collective volume (or weight)
of several drops is measured. Despite the complexity of the break-off event,
as shown in the rapid sequence photographs of Fig. 2-44, the size at break-
off is a reproducible function of for a given nozzle radius, and fluid
density difference.53 To a rough approximation, the weight of the drop is
given by 2 r , where r is wetted tube radius, assuming the surface is
vertical around the perimeter at the time of rupture, and that no liquid is
retained on tip when detachment occurs. Actual results may be conveniently
expressed as

mg = r
1

Fc
, (2.71)

Fig. 2-44: Break-off of water
drops in air. From [Pierson, F.
W., and Whitaker, S., J.
Colloid Interface Sci., 54, 219
(1976).]

where m is the drop mass and the correction factor Fc is a universal function
of (V/r3), where V is the drop volume. Fc accounts primarily for liquid

53 Harkins, W. D., and Brown, F. E., J. Amer. Chem. Soc., 41 499 (1919).
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retained on the tip after detachment and has been given in tabular form,54

and fit analytically by55:

Fc = 0.14782 + 0.27896
r

V 1/3 0.1662
r

V 1/3

2

, (2.72)

valid for 0.3 < (r/V1/3) < 1.2. The drop weight method may be used for
interfacial as well as surface tension measurement. In the latter case, the
drop mass m is replaced by V - , where  and are the densities of
the two liquids involved. Instruments are available commercially,56 but a
home-built setup for interfacial tension measurement is shown schematically
in Fig. 2-45. Oil drops are formed in an inverted water-filled vessel with a
side arm. The mass of water displaced by the formation of a given number of
oil drops is used to determine the oil drop size.

Fig. 2-45: Drop weight method for interfacial tension measurement.

8. Maximum bubble pressure and dynamic surface tension

In the formation of a bubble from a nozzle tip, as shown in Fig. 2-46,
maximum pressure is required when the radius of curvature of the bubble is
minimum (for Bo << 1), and under these conditions the surface is a
hemisphere, with pmax- pliq = 2 /r, where r is the radius of the capillary. For
larger capillaries, the appropriate corrections can be worked out for the
bubble flattening using the Bashforth and Adams tabulations, as in the
capillary rise method. A useful approximate formula (with reference to Fig.
2-46) is:

=
r

2
pmax

1

3
gr2

1

2
grh

g2r2

12 pmax gh( )
, (2.73)

54 Lando, J. L., and Oakley, H. T., J. Colloid Interface Sci., 25, 526 (1967).
55 Heertjes, P.M., De Nie, L.H., and De Vrie, H.J., Chem. Eng. Sci., 26, 441 (1961).
56 Gilman, L. B.,(Krüss USA) "A Review of Instruments for Static and Dynamic Surface and
Interfacial Tension Measurement," presented at 84th AOCS Ann. Mtg. and Expo, Anaheim,
CA Apr. 27, 1993.
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where h is the depth of the capillary tip beneath the surface of the liquid. For
very small tubes (giving Bo < 0.01), the final three terms of Eq. (2.73) are
negligible. The maximum bubble pressure method has the advantage of
being very rapid, and the surface formed is fresh. The method is good for
difficult-to-access liquids, such as molten metals, polymer melts, etc., and
for rapid “on-line” determinations of surface tension in general.

Fig. 2-46: Maximum bubble pressure method.

One of the most important advantages of the maximum bubble
pressure method is that it is amenable to dynamic surface tension
measurement, usually down to surface ages of a few milliseconds or less.
Surface tension is often time dependent as a result of slow solute diffusion to
the interface, kinetic barriers to adsorption or desorption, surface chemical
reaction rates, including denaturation, etc., as mentioned earlier and
discussed further in Chap. 3. Many of these processes, such as spray coating,
pesticide or herbicide spray applications and ink-jet printing, produce
changes over time scales of practical interest. Structural changes
accompanying the formation of fresh surfaces of pure liquids occur over
time scales of microseconds or less, and are not of practical interest. While
the methods of drop (or bubble) shape analysis, Wilhelmy tensiometry and
drop weight determination are useful for surface ages of the order of one
second or greater, they are not applicable for the much shorter times that are
often of practical interest. In commercial maximum bubble pressure devices,
the bubbling rate may be varied so that the surface tension corresponding to
a range of surface ages may be obtained. A bubble tensiometer currently
available from Lauda Instruments (Model MPT-2)57 is capable of
measurements for surface ages from about three seconds down into the sub-
millisecond time range.

9. The pulsating bubble “surfactometer”

A useful variation on the maximum bubble pressure method employs
a single small bubble suspended at the end of a capillary and made to pulsate
and therefore produce sinusoidal time variations in the bubble surface area.

57 Munsinger, R. A., Amer. Lab. News, Jan. (1997).
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The device is termed commercially a “surfactometer,”58 and is shown
schematically in Fig. 2-47. The bubble radius is made to oscillate between
0.40 and 0.55 mm at frequencies from 1 to 100 cycles/min. The sample
chamber contains 25 μL, usually of a surfactant solution, that communicates
with ambient air through a capillary, which also serves as the airway for
bubble formation. The liquid sample is pulsed by means of a volume
displacement piston to produce the desired radius variation, while the
pressure inside the chamber is monitored using a sensitive pressure
transducer. Assuming the bubble to be spherical, knowledge of its size and
the chamber pressure suffices to calculate the surface tension.59 The method
is especially applicable to the study of the dynamics of surfactant
monolayers, in particular lung surfactant, and has the advantage of
producing wider ranges of surface compression/expansion rates and
requiring much smaller sample sizes than the Langmuir trough.

Fig. 2-47: Schematic of the
pulsating bubble
“surfactometer.”

10. Elliptical (vibrating) jet

One of the earliest devices for measurements of dynamic surface
tension in the millisecond range was the elliptical (oscillating) jet. In this
method, now primarily of historical interest, a liquid is forced through an
elliptical orifice at a sufficient rate to form a jet. The jet attempts to “correct”
its noncircular cross-section, and in so doing overshoots and oscillates about
a circular shape, as shown in Fig. 2-48. The value of the surface tension can
be computed from knowledge of the jet parameters, fluid density and the
measured wavelength of the oscillations, as originally shown by Nils Bohr,
but in simplified form for liquids of low viscosity by Sutherland:60

2 Q2 1+ 37a2 /24b2( )
3a 2 1+ 5 2a2 /3 2( )

, (2.74)

where Q = volumetric flow rate; a = rmax + rmin, and b = rmax - rmin. When is
changing with time (surface age), as by the adsorption of a solute that must
first diffuse to the surface, will vary with distance along the jet (i.e., time).

58 Enhorning, G., J. Appl. Physiol., 43, 198 (1977).
59 This assumption has been relaxed: Seurynck, S.L., et al., J. Appl. Physiol., 99, 624 (2005).
60 Sutherland, K. L., Aust. J. Chem., 7, 319 (1954).
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Fig. 2-48: Elliptical oscillating jet.

Since the flow rate is known, one can measure the wavelength as a
function of position and, knowing the rate of jet flow, extract the time
variation of the surface tension. Usually up to seven or eight wavelengths
can be realized before the jet disintegrates. It is generally not a good method
for interfacial tension, because the jet breaks up too quickly. A number of
practical difficulties have precluded the method from being realized
commercially, but its use in earlier studies was indispensable in the study of
dynamic processes at interfaces.

11. Contracting circular jet

For surface or interface lifetimes in the hundredths of a second range,
the elliptical jet is not practical, but the contracting circular jet method may
be used, in particular for oil-water interfacial tensions.61 The extent of
contraction in a given distance for a given set of jet parameters and fluid
properties can be related directly to the interfacial tension.

12. Problems with interfacial tension measurement

There are sometimes difficulties in the measurement of interfacial
tension that do not arise in the measurement of surface tension. While the
drop shape analysis, the ring detachment method and drop weight methods
are all in principle adaptable to interfacial tension measurements, their use is
limited to systems with an adequate density difference between the liquids
and/or a sufficiently high value of the interfacial tension itself. From a
practical point of view, a density difference of at least 0.10 specific gravity
units is required. Otherwise, the drop shape will be too close to spherical for
accurate matching with the Bashforth-Adams computed profiles, and for the
drop weight method, drops of impractically large size are obtained. In the
ring detachment method, very large displacements of the ring above the
surface are required for the maximum force to be attained. The
recommended method for handling the problem is to carefully equilibrate
the two liquids (with respect to any mutual solubility), as in a separatory
funnel, remove samples of each liquid and measure their respective surface
tensions. The needed interfacial tension can then be computed using
Antanow’s Law, Eq. (2-20).

Another problem arises if the interfacial tension between the liquids is
extremely small (< 0.1 mN/m). It is then difficult to adequately pin a drop
for profile determination, i.e., either one liquid or the other will wet out the

61 England, D. C., and Berg, J. C., AIChE J., 17, 313 (1970).
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surface, producing contact angles either approaching 0° or 180°. The
detachment method requires such small forces and displacements that
accurate determination of the low interfacial tension is difficult. The
problem is addressed by the spinning drop method described below.

13. Spinning drop method

The spinning drop method62, shown in Fig. 2-49, is especially useful
for determining ultra-low interfacial tensions of the type encountered in the
polymer-surfactant flooding strategies for tertiary oil recovery. A drop of the
less dense liquid is injected into a capillary tube containing the denser fluid.
The tube is spun on its axis until the suspended drop is elongated into a
cylindrical shape with hemispherical caps. The lower the interfacial tension,
the greater will be the elongation. When the drop length is much greater than
the radius, rm, the result is:

=
( ) 2rm

3

4
, (2.75)

where is the density difference between the liquids, and is the angular
velocity of rotation about the tube axis.

Fig. 2-49: Spinning drop method.
Drawing taken from photographs
showing a heptane drop (0.156
cm3) in glycerol rotating at various
speeds about a horizontal tube
axis. Redrawn from [Princen, H.
M., Zia, I., and Mason, S. G., J.
Colloid Interface Sci., 23, 99
(1967).]

I. Forces on solids in contact with liquids: capillary
interactions

1. Liquid bridges

Recall that liquids exert forces on solids in contact with them through
the action of boundary tension. When two or more solid objects are in
contact with the same liquid mass, such that they share a meniscus there are
effective forces (referred to as capillary forces) acting between the solid
bodies, tending either to draw them together or to push them apart. It is
convenient to distinguish between two categories of systems, viz., liquid
bridges and shared menisci, as shown in Fig. 2-50.

62 Vonnegut, B., Rev. Sci. Inst., 13, 6 (1942).
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When a finite liquid mass separates two solids, it is referred to as a
“liquid bridge.” A similar configuration (a “vapor bridge”) is created when a
bubble joins two particles immersed in a liquid medium. Consider as an
example, a drop of liquid between a pair of horizontal flat plates wet by the

(a) (b)

Fig. 2-50: (a) Liquid bridge, (b) shared meniscus.

liquid as shown in side view in Fig. 2-51. The volume of the drop is small,
but since the plate spacing, h, is also considered very small, the diameter of
the drop D (as would be observed in a top view) may be large. Focusing on
the upper plate, one may note that there are two types of forces (apart from
gravity) drawing it toward the lower plate. The first of these is the
downward component of the interline force acting around the perimeter of
the drop, viz. D sin , where is the contact angle of the liquid against the

Fig. 2-51: Liquid bridge between horizontal flat plates.
Not in perspective, since h << D.

glass plate. The second contribution is the capillary pressure force, i.e., the
force pulling down on the upper plate because the liquid is on the convex
side of the fluid interface, rendering the pressure inside the liquid lower than
that outside by an amount p, the Young-Laplace pressure jump. This
produces a pressure force acting to hold the plates together equal to p times
the area which is wetted ( D2/4). The capillary pressure force, which can be
considerable if is low and the plate spacing is small, is often much larger
than the interline force, which may then be neglected.

p is given by the Young-Laplace Equation: p = (1/R1 + 1/R2). The
meniscus is a saddle with R2 = -D/2 (the minus sign being used to account
for the fact that this curvature is opposite in sign to that of the profile of the
figure). Since h << D, one may neglect 1/R2, and treat the meniscus as
effectively a cylindrical surface, and if it is assumed further that h is
sufficiently small that Bo << 1, it is a right circular cylindrical surface,
whose radius is R1 = (h/2)/cos . Thus:
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F = p
D2

4
=

cos

(h/2)

D2

4

D2 cos

2h
. (2.76)

For the case of perfect wetting, = 0°, and

F =
D2

2h
. (2.77)

This "adhesive" force must be overcome if the plates are to be separated, and
the formation of a liquid bridge is the first step in the formation of an
adhesive bond. It is clear that it becomes very large as h 0. It is also seen
to go to zero as approaches 90°, and becomes negative (i.e., a force
pushing the plates apart) if > 90°, i.e., the plates are unwet.

Liquid bridges, as described above, can be formed between solids of
various shapes. For example, Fig. 2-52 shows the establishment of a liquid
bridge between a cylinder and a plane. The total force acting to hold the
objects together consists of three terms. The first two are capillary forces of

Fig. 2-52: Liquid bridge between
a cylinder and a flat plate.

the same type as those described above for the flat plates, viz., the downward
force of the liquid surface tension acting along the cylinder-liquid interline
and the force due to the Young-Laplace pressure deficit within the liquid. A
third term may arise because the solids in this system are in direct contact,
leading to a solid-solid adhesion term, as described later in Chap. 4. This last
effect can often be neglected because the presence of even small degrees of
roughness precludes significant direct solid-solid contact (unless the solids
are soft and subject to flattening). If the liquid masses are sufficiently small
that Bo << 1, and that the contact angle is 0°, the downward capillary
forces per unit length acting on the cylinder are given by:

(F/L) = 2 sin + p(2Rsin ) . (2.78)

Thus with a circular meniscus, p = /r, and with reference to Fig. 2-52, it
can be seen that the cylinder radius R, the meniscus radius r and the filling
angle are related to one another in accord with

(R r)

R + r( )
= cos ,    or r = R

(1- cos )

(1+cos ) , (2.79)
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and p =
R

(1+ cos )

(1 cos )
. Substituting into Eq. (2.78):

F

L
= 2 sin +

R

1+cos

1- cos
(2Rsin ) = 4

sin

1 cos
. (2.80)

It is to be noted that as 0, F/L . Thus the adhesive force is
maximized when the amount of liquid is very small. Anyone who has glued
together the parts of model airplanes knows this. Equation (2.80) is not
valid, of course, when 0, since the continuum concept of surface tension
breaks down as the meniscus approaches molecular dimensions, although
there is evidence that this does not occur until r is less than a few nm.63

The adhesive force of a liquid bridge between two cylinders also
approaches infinity as the bridge size approaches zero. For equal-sized
cylinders,

F

L
=
2 sin

1- cos
(half the cylinder-plane value). (2.81)

The expression for the adhesive force between a sphere and a plane is:

F = R (1+ cos )(3 cos ) , (2.82)

which approaches a finite constant as 0, viz.,

Flim 4 R . (2.83)

a result confirmed by experiment.64 The corresponding results for equal-
sized spheres are:

F =
1

2
R (1+ cos )(3 cos ) , with (2.84)

Flim 2 R . (2.85)

The physically important case of a liquid bridge between crossed
circular cylinders of geometric mean radius R, shown in Fig. 2-53, yields a

Fig. 2-53: Equivalence of small liquid bridges between crossed
cylinders and a sphere and plane.

63 Fisher, L. R., and Israelachvili, J. N., Colloids Surfaces, 3, 303 (1981).
64 McFarlane, J. S., and Tabor, D., Proc. Roy. Soc. A, 202, 224 (1950).
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force the same as that given for the bridge between a sphere of radius R and
a flat plate, as long the condition of r << R holds.67 It should be recalled that
all of the formulae developed above refer to the case in which the contact
angle is 0°. They may all be modified to accommodate the case in which
is finite, or is different against the two solid surfaces.65 It should also be
noted that the results above assume either a perfect line or point of direct
contact between the solid surfaces subtending the liquid bridge. If these solid
surfaces are held even a very small distance (a few nm) apart, as by
intervening particles or asperities, the relationship between the bridge
strength and bridge size is very different. Instead of rising monotonically as
decreases, the inter-particle force rises to a maximum at some finite and

then falls abruptly to zero as 0.

Liquid bridge formation underlies the important process for the size-
enlargement of fine powders or particulates known as spherical
agglomeration. The bridging liquid is immiscible with the dispersion
medium and must preferentially wet the particles. The process is used in
granulation, balling, pelletization, tabletting and sintering to produce, e.g.,
ceramic powders, carbon blacks, catalysts, commercial fertilizers, pesticides
and pharmaceutical products.66 It is especially useful for the selective
collection of one dispersed phase from among many, such as may be desired
in mineral beneficiation. The process agglomerates the more hydrophobic
particles to a size that can be easily separated from an aqueous dispersion by
screening or other mechanical means.

2. Shared menisci

Shared menisci refer to fluid interfaces between neighboring solids
partially immersed in a common liquid pool. This configuration also leads to
apparent forces acting between the solid objects in the direction parallel to
the undisturbed interface, tending either to draw them together or push them
apart. Solid objects, such as those shown in Fig. 2-50(b), find themselves
located in fluid interfaces in the first place by virtue of forces on them
normal to the undisturbed fluid interface. Aside from the interline forces that
act around their wetted perimeters to hold them in the interface, the objects
may be floating, i.e., trapped at the interface by gravity. This occurs
whenever the object is intermediate in density between the lower and upper
fluids. If the objects are denser than the lower fluid, they may be supported
by a rigid surface from below (or conversely, if they are lighter than the
upper phase, they may be supported from above). In some cases, the
interline forces are sufficient to retain the objects in the interface under such
conditions (e.g., the “floating” needle or paperclip mentioned in Chap. 1).

The concern here is with forces acting parallel to the interface. To fix
ideas, consider the parallel dipping plates held or supported in the interface

65 Orr, F. M., Scriven, L. E., and Rivas, A. P., J. Fluid Mech., 67, 723, 1975.
66 Pietsch, W., Size Enlargement by Agglomeration, Wiley, New York, 1991.
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as shown in Fig. 2-54. It is assumed that liquid may flow between the region
between the plates and the outer pool. If the contact angle is less than 90°,
liquid will rise to some level h required to satisfy the Young-Laplace
pressure jump across the curved meniscus. Focusing on the left plate, it is
seen to be acted upon by interline forces and hydrostatic ( p) forces. The
interline forces have equal and opposite horizontal components in the
amount of L sin .67 The capillary rise between the plates (to the level h)

Fig. 2-54: Capillary rise between
vertical flat plates. Example of a
shared meniscus, with the plates
held in vertical position by a
supporting surface from below.

creates a pressure deficit on the right side of the free body, yielding a force

F = L gydy =
1

20

h

gh2L , (2.86)

tending to pull the plates together. Assuming the plate spacing d is very
small, so that Bo = ( gd2/ ) << 1, the meniscus will be a portion of a right
circular cylindrical surface of radius R1 = d/2cos . R2, in the plane
perpendicular to the figure, is infinite. Therefore:

gh =
1

R1
+ 0 =

2 cos

d
, (2.87)

so that h =
2 cos

gd
, and

F

L
=
1

2
gh2 =

2 2 cos2

gd2
. (2.88)

67 These forces are applied at different elevations, imparting a clockwise torque to the plate,
causing it to tip toward the opposite plate at the top.
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If neither plate is wet by the liquid, there will be a depression of the
liquid between them, and examination of the diagram shows that there will
be a net force tending to push them together. In this case h is negative, but h2

of course remains positive, and Eq. (2.88) is still valid.

The case in which one of the plates is wet by the liquid, while the
other is not, is shown in Fig. 2-55. In this event, the meniscus has a point of
inflection, which must occur at an elevation of h = 0 (since the surface has
no curvature there). The equation of this inflected meniscus cannot be
obtained in closed form, but it can be expressed in terms of elliptic integrals.
The solution68 shows that the curvature of the meniscus at the interline on

Fig. 2-55: Meniscus formed
against vertical walls of opposite
wettability.

the inside is always less than that on the outside. Thus the interline location
will be further away from h = 0 on the outside than the inside, i.e., h0 > hi, as
shown. The pressure will be greater on the inside than on the outside, and
the plates will be seen to repel each other.

The qualitative conclusions concerning the forces acting between
neighboring flat plates in contact with a liquid pool also apply of course to
objects of other shapes. Thus if two solid particles of the same material are
floating on a liquid and happen to approach one another, a meniscus forms
between them, and since the wetting is the same on both (whether it be
wetting or non-wetting) will attract them together, leading to surface
flocculation. On the other hand, if particles of two different materials are
floating on the surface, they will be attracted if > 90° for both or < 90°
for both, but if they have contact angles on opposite sides of 90°, they will
be mutually repelled. If particles that are wet by the liquid come near to the
edge of the containing vessel whose walls are also wet by the liquid, they
will be drawn into the meniscus at the wall and accumulate there, as shown
in Fig. 2-56(a). Particles un-wet by the liquid ( > 90°) will shun the edge
meniscus. When the meniscus at the edge is reversed, it is the unwet
particles that will be drawn to it, as shown in (b). Capillary forces are thus
seen to be responsible for the clumping together of particulate materials at

68 Princen, H.M., "The Equilibrium Shape of Interfaces, ...," in Surface and Colloid
Science, Vol. 2, E. Matijevic (Ed.), pp. 1-84, Wiley-Interscience, New York, 1969.
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fluid interfaces, as in the formation of “rafts” or “rags” of solid contaminants
at liquid-liquid interfaces in extraction equipment, and they also explain the
collection of particulates at the meniscus around the containing vessel, if the
vessel walls and the particles are of like wettability.

Fig. 2-56: (a) Wetted particles ( ) are drawn to a wetting
meniscus at the container wall while non-wetted particles ( ) shun
the meniscus. (b) Non-wetted particles are drawn to a non-wetting
meniscus at the edge.

The action of shared menisci is also responsible for the coherence of
the fibers in a paintbrush, as shown in Fig. 2-57. Immersed in either the paint
or in air, the bristles are separated from one another, but when a liquid
meniscus is formed between them, they are drawn together in a coherent
bundle.

Fig. 2-57: Paint brush in air, in
water and in air after being dipped
in water. From [Boys, C.C., Soap
Bubbles and the Forces which
Mould Them, Doubleday Anchor
Books, Garden City, NY, p. 22,
1959.]

The consequences of the forces of the type described above are
widespread. The formation of liquid bridges or shared menisci is not only an
important first step in the action of liquid adhesives, but also plays a vital
role in the consolidation of wet-formed non-woven fibrous materials (such
as paper). The enormous capillary forces developed between adjacent fibers
during dry-down are believed to be sufficient to produce inter-fiber
hydrogen bonding. These large capillary forces also pose a serious problem
for the drying of porous media whose structural integrity one seeks to
preserve. Waterlogged specimens of archeological interest, as an example,
will implode if they are simply dried in air. Strategies for addressing this
problem include the successive exchange of the water with volatile liquids of
lower surface tension, or freezing the specimen followed by freeze- drying.
One of the most successful methods, however, is the exchange of the water
with supercritical carbon dioxide, followed by its drying without the
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presence of a liquid interface at all. Capillary interactions between particles
bound to interfaces are discussed further in Chap. 4, and more detailed
descriptions, with additional references, are given by Kralchevsky and
Nagayama.69

J. Effect of curvature on the equilibrium properties of
bulk liquids: the Kelvin Effect

1. The vapor pressure of small droplets and liquids in pores

When a liquid is bounded at least in part by a strongly curved
interface against another fluid, the phase equilibrium properties of the
system are not the same as in the case when the phases are divided by a flat
interface. This is a direct consequence of the required pressure difference
that must exist across a strongly curved fluid interface. For example, the
vapor pressure of a tiny droplet of radius r, pr

s is higher than that associated
with a flat surface of the same liquid, ps , the “handbook” value. Similarly,
the vapor pressures of liquids in finely porous solids are different from those
over flat surfaces, leading to the phenomenon of capillary condensation
described below. Analogously, the solubility of tiny droplets, bubbles or
solid particulates in a liquid will be different from the solubility of their
larger counterparts.

Consider here a small droplet of radius r of a pure liquid. The
dependence of its vapor pressure on its radius is derived as follows. At
equilibrium, the fugacities of the vapor and liquid are equal, i.e., f V = f L . If
it is assumed that the vapor phase behaves as an ideal gas, its fugacity is
equal to its vapor pressure, i.e., f V = pr

s. The fugacity of the liquid, ( f L )drop,

is to be evaluated at the pressure: pr
s
+ 2 /r . It is computed by referencing

it to the fugacity of the pure liquid beneath a flat interface. Recall from
thermodynamics that, at constant T:

RTd ln f L = vLdp . (2.89)

Thus the change in fugacity of a liquid in going from its pressure when the
surface is flat (ps ) to the pressure inside a droplet of radius r ( pr

s
+ 2 /r ) is

ln
( f L )drop
( f L )ref

=
vL

RT
dp

p s

p r
s
+2 / r

. (2.90)

Assuming 1) the vapor above the flat surface is also an ideal gas, so that
( f L )ref = p

s ; 2) that the liquid is incompressible, i.e., vL = constant, and 3)
that 2 /r >> ps , Eq. (2.90) becomes

69 Kralchevsky, P. A., and Nagayama, K., Adv. Colloid Interface Sci., 85, 145 (2000).
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( f L )drop = p
s exp

2 vL

rRT
. (2.91)

Finally, equating ( f L )drop to the fugacity in the vapor phase around the
droplet:

pr
s
= ps exp

2 vL

rRT , (2.92)

known as the Kelvin Equation. The vapor pressure is seen to increase as
droplet size decreases, as shown in Fig. 2-58, in which values for water and
mercury at room temperature (20°C) are plotted. One-micron radius water

Fig. 2-58: Vapor pressure dependence for water drops or inside bubbles
as a function of drop or bubble size, vapor pressure of mercury as a
function of drop size.

droplets show a vapor pressure enhancement of approximately 0.1%, while
those of radius one nm are increased by about a factor of three. One would
not expect smaller droplets to be described by the Kelvin Equation due to the
continuum assumption inherent in it. Mercury droplets of a given size show
much larger vapor pressure enhancements than water since the surface
tension of mercury is much larger, with a one-nm droplet of mercury
showing a vapor pressure nearly 300 times its handbook value. Figure 2-58
also shows the vapor pressure of water surrounding small bubbles or inside
small wetted capillaries or pores. In this case the liquid is on the convex
rather than the concave side of the surface, so that the vapor pressure should
be reduced rather than increased. The Kelvin Equation is the same, but the
sign of the argument of the exponential is negative. The vapor pressure of
water inside a one-nm radius bubble is only about 1/3 its handbook value.
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The Kelvin effect has many important consequences. In a mixture of
droplets at the conditions (T, pr

s), droplets smaller than radius r evaporate,
while larger ones grow. As the small drops shrink, the driving force for their
evaporation increases until they disappear. Thus raindrops “condense” out of
fog, or fog evaporates, i.e., “lifts.” The equilibrium of a droplet of radius r to
which the conditions (T, pr

s) refer is thus an unstable equilibrium. The
slightest addition or subtraction of material from such a drop will lead to
further condensation or evaporation, respectively, until the drop has either
grown to a very large size or disappeared.

2. The effect of curvature on boiling point

One might also consider the effect of curvature on the equilibrium
temperature (boiling point) of a droplet at constant pressure, i.e., constant
vapor pressure pr

s . This requires evaluation and integration of the

coefficient:
Tr
s

r
p r
s

. Using ordinary partial derivative reductions, together

with the Kelvin and the Clausius-Clapeyron Equations, one obtains:

Tr
s

r
p r
s

=
pr
s

r
Tr
s

pr
s

Tr
s

r

=
2 vLTr

s

r2 vap , (2.93)

in which, in the last step, it has been assumed that the heat of vaporization
vap and the liquid molar volume vL are constant and that vL << RT/prs.
Integration of the above equation leads to:

Tr
s
= T s exp

2 vL

r vap , (2.94)

which is known as the Thomson Equation (after J. J. Thomson, elder brother
of Lord Kelvin). It shows that the boiling point is lower the smaller the
droplet. Thus in order to condense a vapor to droplets, the latter must be sub-
cooled below the handbook value of the boiling point. A more detailed
treatment of the effect of curvature on the thermodynamic properties of both
pure and multicomponent systems is given by Defay et al.70

3. Capillary condensation

As illustrated in Fig. 2-58, the Kelvin effect leads to the condensation
of vapor into finely porous solids wet by the condensate at partial pressures
below the equilibrium vapor pressure. Such “capillary condensation” is often
observed in the study of adsorption of vapors onto porous solids, as pictured
in Fig. 2-59 for the case of nearly uniform sized pores. Assuming that the
contact angle = 0° and that Bo << 1, so that the surface of the liquid is

70 Defay, R., Prigogine, I., Bellemans, A, and Everett, D. H., Surface Tension and Adsorption,
pp. 217-285, Longmans, London, 1966.
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hemispherical with radius equal to that of the pores, r, vapor will begin to
condense when its partial pressure reaches

p = ps exp
2 vL

rRT
. (2.95)

Water vapor will start to condense into one-nm radius pores at a relative
humidity of 0.34. At higher relative humidity, larger pores will start to fill,
or when the pores fill to the top edge, further filling can occur as p is
increased. All pores are completely filled only when ps is reached.

Fig. 2-59: Capillary condensation into a medium of approximately
monodisperse pores.

Considerable hysteresis is nearly always found between adsorption
and desorption, as shown in Fig. 2-60. One explanation may be contact angle
hysteresis, discussed in Chap. 4.B, but a more generally satisfactory
explanation is given in terms of pore geometry, specifically, the existence of
so-called “ink bottle pores,” i.e., pores constricted at the top. They require

Fig. 2-60: Hysteresis associated with capillary condensation.

higher pressures to fill from the bottom up (for adsorption). For desorption,
they start full so that the pressure must be reduced further to remove the
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condensate from the smaller necks. This has received numerous qualitative
confirmations by checking that the same back-calculated pore size and shape
distribution is predicted for different liquids in the same solid and for the
same liquid at different temperatures on the same solid specimen.

Capillary condensation shows promise for the safe storage of natural
gas71 or hydrogen72 at reasonable pressures. Such technology is of particular
currency in view of the need to provide these fuels for the operation of fuel
cells. Thus major effort is currently under way to develop high porosity,
high surface area materials, and a number of metal-organic framework
(MOF) materials have been reported. Currently surface areas of the order of
4,500 m2/g (!) and pore diameters of roughly 1 nm are being produced.73

Capillary condensation also occurs in powders (which are wettable by
the condensate liquid) at the points of contact between the powder particles.
The condensate then forms liquid bridges between the particles, “gluing”
them together. It is thus often found that a powder that is freely flowing on a
dry day may clump up and not flow evenly on a humid day. On the other
hand, moisture may be introduced into the vapors surrounding the powder to
induce their consolidation into clumps (called “spherical agglomeration”).
The use of the Kelvin Equation, even though it is based on a macroscopic
thermodynamic description of the meniscus, appears to be valid for menisci
of nanoscale dimensions. Use of the surface forces apparatus (SFA)
(described in Chap. 7.B.4) has revealed that it successfully describes
condensate bridges of cyclohexane74 as small as 4 nm, formed between
approaching crossed mica cylinders. Monte Carlo simulations suggest that
below this range, capillary condensation is preceded by accumulation of
dense vapor between the surfaces, and that the snap-apart event is preceded
by a gradual decrease in liquid density.75 The liquid in the nano-meniscus is
found to exist in a layered structure.

4. Nucleation

The phenomenon of phase change by nucleation and growth (binodal
decomposition) is governed by the Kelvin effect.76 Consider, for example,
the condensation of liquid from a saturated vapor. For phase change to occur
by this mechanism, clusters of molecules out of the vapor that subsequently
grow into the new liquid phase must be formed. It is first of all clear that
supersaturation will be required in order for this to happen. Any small
cluster of molecules will have a very small radius and hence a very high

71 Matranga, K. R., Myers, A. L., and Glandt, E. D., Chem. Eng. Sci., 47, 1569 (1992).
72 Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Klang, C. H., Bethune, D. S., and Heben, M. J.,
Nature, 386, 377 (1997).

73 Hee, K., Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J.,
O'Keefe, M., and Yaghi, O. M., Nature, 427, 523 (2004).

74 Fisher, L. R., and Israelachvili, J. N., J. Colloid Interface Sci., 80, 528 (1981).
75 Stroud, W. J., Curry, J. E., and Cushman, J. H., Langmuir, 17, 688 (2001).
76 Zettlemoyer, A. C., (Ed.), Nucleation, Marcel Dekker, NY, 1969.
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vapor pressure, causing it to rapidly re-evaporate. Once droplets of sufficient
size do form, condensation occurs readily. Nucleation may be envisioned
phenomenologically in the following way, as proposed by Becker and
Döring.77 At any degree of supersaturation, the vapor will contain a
population of transitory clusters, as shown in Fig. 2-61, ranging from dimers
up to nuclei whose size corresponds to the unstable equilibrium described by
the Kelvin Equation. These are called critical nuclei, and there must be a

Fig. 2-61: Formation of critical nuclei leading to phase change.

sufficient number of them, i.e., they must be produced at a sufficient rate, for
phase change to occur at a finite rate. Only nuclei of this size or larger have
a chance to grow under the prevailing conditions. The rate at which critical
nuclei form is expressed by a rate equation of the Arrhenius type:

J(nuclei/cm3s) = Ae-E/kT , (2.96)

where E is the effective activation energy, and the pre-exponential factor A
is dependent on the collision frequency of the vapor molecules. A is thus
proportional to p2, and the value given by simple kinetic theory is
approximately: A(cm-3s-1) 1023p2(mmHg2).

It is common to use as the activation energy, the change in Helmholtz
free energy, F, for the formation of the critical nucleus within a system at
constant total volume and temperature. This is given by:

Fform = Gform Vnuc p

= Gphase change + Garea formation Vnuc p

= 0 + Anuc Vnuc p

= 4 r2
4

3
r3
2

r
=
4

3
r2 , so that, (2.97)

E ( F)form =
1

3
Anuc =

4

3
r2 . (2.98)

77 Becker, R., and Döring, W., Ann. Physik., 24, 719 (1935).
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The pressure of the vapor at a given T is p, while the equilibrium vapor
pressure (over a flat surface) is p s. The degree of supersaturation is thus (p/
p s), a quantity designated as x. The critical nucleus for these conditions is
the one whose radius satisfies the Kelvin Equation, i.e., the value of r for
which p = pr

s. Solving the Kelvin Equation for the radius of the critical
nucleus gives

r = rc =
2vL

RT lnx
, (2.99)

and substituting into the expression for E:

E =
16

3

(vL)2 3

R2T 2 ln2 x
. (2.100)

The presumption is that as the degree of supersaturation increases at a given
T, J will increase until it reaches a value large enough to produce critical
nuclei at a “sufficient rate,” say one nucleus per cm3 per second, such that
lnJ 0. (Alternatively, one may hold p constant and decrease T.) A
numerical example is illustrative. Consider water vapor at 20°. The needed
properties are: vL = 18 cm3/mole; = 72.7 dynes/cm; p s = 17.5 mmHg. For
this situation:

• A 1023 p2(mmHg2) =1023(17.5)2 x 2 = 3 1025 x 2 (2.101)

• E =
16

3

(18)2(72.7)3

(8.314 107)2(293.2)2 ln2 x
=

3.51 10 12

ln2 x
 (erg/nucleus ) (2.102)

Then:

lnJ = lnA
E

kT
= 58.7 + 2lnx

86.7

ln2 x . (2.103)

A plot of this function is shown in Fig. 2-62, revealing that critical nuclei are
formed at only a vanishingly low rate until the degree of supersaturation
reaches about 3. This is in reasonable accord with experiment. It is of
interest to note that the radius of the critical nucleus corresponding to these
conditions is about one nm (entailing approximately 70 water molecules).
The use of the continuum property of surface tension in the description of
“droplets” so small would appear questionable, but the a posteriori
agreement with experiment suggests its validity. One may similarly examine
the situation in which the partial pressure of the vapor is held constant while
the temperature is reduced, and similar results are found. For the above case
of p = 17.5 mmHg, the temperature must be reduced to below 20°C before
lnJ 0, and condensation ensues. The degree of supersaturation required to
boil a liquid, freeze a liquid or melt a solid are found by the same type of
analysis. Interestingly, it is found that liquid water at atmospheric pressure
may be reduced in temperature to below -30°C (!) before it freezes by the
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above mechanism. A more detailed discussion of nucleation is given by
Defay et al.78 Numerous refinements to Becker-Döring theory have been
made, but its essential features have been retained.
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lnJ

Degree of supersaturation, x

Fig. 2-62: Critical nucleus
formation rate as a function of
the degree of supersaturation.

What has been described above is homogeneous nucleation. Actual
phase changes seldom occur in this way and seldom require the indicated
degree of supersaturation. More likely, the initial nuclei are formed at
imperfections (cracks, crevices, etc.) at solid surfaces that bound the system,
yielding heterogeneous nucleation, as described further in Chap. 4. Not only
is the energy required to produce a critical nucleus at such sites considerably
less, but such sites may often permanently house nuclei of the new phase.
Imperfections in solid surfaces, for example, are sometimes never
completely evacuated of gas, so that when the system is heated, the trapped
vapor pockets simply grow and are pinched off as bubbles. Boiling chips
contain many of these imperfections and therefore provide smooth, even
boiling (called nucleate boiling), as opposed to the “bumping” associated
with higher degrees of superheat.

K. Thin liquid films

1. Disjoining pressure and its measurement

When fluids exist in the form of thin films, they are found to have
properties differing from those of the same material in bulk, and such films
are often unstable. To fix ideas, consider the examples shown in Fig. 2-63:
(a) a foam lamella separating gas phases, (b) a liquid film between two
flattened liquid droplets being drawn together, and (c) a liquid film
supported on a smooth solid surface. (a) and (b) are examples of “free
films,” and (c) shows a “supported film.” Thin films may also exist between

78 Defay, R., Prigogine, I., Bellemans, A, and Everett, D. H., Surface Tension and Adsorption,
pp. 310-348, Longmans, London, 1966.



92 INTERFACES & COLLOIDS

solid surfaces (“confined films”), but discussion of such systems is deferred
to Chap. 7, when the interaction between colloidal particles is discussed.
Thin fluid films are often unstable in that they spontaneously seek to either
thin or thicken themselves. This is because the equilibrium pressure within
such a film, pfilm, differs from the pressure that exists (or would exist) in an
adjoining bulk phase of the same fluid under the same thermodynamic

Fig. 2-63: Examples of thin films: (a) foam lamella; (b) liquid film between
drops; (c) liquid film on a solid surface.

conditions (without regard to gravity). The difference is termed, originally
by Derjaguin, the “disjoining pressure,” (h)79:

(h) = pfilm - pbulk, (2.104)

and, as indicated, is a function of the film thickness h. The function assumes
different forms in different systems under different conditions, but in all
cases tends to zero as h becomes sufficiently large (usually a few tens to
hundreds of nanometers). Disjoining pressure quantifies the driving force for
spontaneous thickening (if > 0) or thinning of a film (if < 0) in which,
initially, pfilm = pbulk = p. The process of thickening is equivalent to
separating (or “disjoining”) its bounding surfaces; hence the name. A
thermodynamically stable thin film may exist at a particular value (or
values) of h in a given case, as described in more detail below, but more
typically if a thin liquid film is found to exist over long periods of time
(kinetic “stability”) it is because free flow of the liquid between the film and
an adjoining bulk phase (or potential bulk phase) of the same liquid is
somehow impeded. In such cases, the disjoining pressure may be measured.

The immediate question is: what constitutes “thin?” For any particular
case, one can distinguish between “bulk” films, for which h is sufficiently
large that the film behaves the same as a bulk phase, and = 0, and “thin”
films, for which = (h) 0. Thin films may further be designated as
either thin thin films or thick thin films. (These are designated in the Russian
literature as -films or -films, respectively.) Thin thin films are adsorbed
multilayers, monolayers or sub-monolayers, as examined in more detail in
Chap. 3, whose thicknesses are of the order of a single nanometer or less, so
that the zones of inhomogeneity of the bounding surfaces overlap. The

79 Derjaguin, B.V., Kolloid Zh., 17, 205 (1955).
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interfacial tensions of these bounding surfaces (generally not measurable
properties) must be regarded as functions of film thickness for such films.
Thin thin films are more usefully discussed as adsorbed layers, and their
“effective thickness” is usually computed as the adsorbed amount
(moles/area) divided by the bulk molar density (moles/volume). For thick
thin films, our major concern here, the interfacial zones do not overlap, and
the interfacial tensions are the same as they would be for a bulk phase, but h
is still within the reach of the integrated intermolecular forces. This
generally puts thick thin films at a few hundred nm or less.

Extensive direct measurements of disjoining pressure have been
reported, as in the classical work of Sheludko and coworkers,80 who also
provided an early perspective on the issue of thin liquid films. Figure 2-64
shows their technique applied to the study of free films (in which the
disjoining pressure is generally negative, causing spontaneous thinning),
consisting of a biconcave meniscus formed in a circular tube. A flat circular
film is formed in the center, while the pressure in the bulk meniscus is

Fig. 2-64: Biconcave meniscus
apparatus of Sheludko, et al. for
measuring disjoining pressure in
free thin films.

maintained at a value higher or lower (as needed to impede flow and
maintain the film thickness at a desired value h) than the pressure in the film
(which is the same as the ambient pressure) and accessed by means of a side
port. The thickness of the film is usually measured interferometrically, and
the pressure in the bulk liquid at the side required to maintain a given film
thickness is recorded. Some results for (h) obtained by Sheludko are
shown in Fig. 2-65 for free films of aniline, and are seen to show that (h)
varies as -1/h3. One of the ways of determining disjoining pressure in
supported liquid films is by pushing a bubble of gas against the solid
surface, as shown in Fig. 2-66, and monitoring the thickness of the film
beneath the bubble as a function of the pressure applied to it by the bubble.
This method is generally appropriate only if the disjoining pressure is
positive. Reviews of relevant experimental techniques and their
interpretation are given by Clunie et al.81, and by Cazabat.82

80 Sheludko, A., Colloid Chemistry, Elsevier, Amsterdam (1966).]
81 Clunie, J. S., Goodman, J. F., and Ingram, B. T., “Thin Liquid Films,” Surface and Colloid
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2. The molecular origin of disjoining pressure

The origin of disjoining pressure can be traced to intermolecular and
surface forces, integrated over finite distances, areas and volumes. As we
have seen, it is a function of the film thickness h, and (h), called the
disjoining pressure isotherm (since it is usually obtained at constant
temperature), depends on the makeup of the film, the adjoining bulk phases
and the interfaces between them. If the film finds itself between two like

Fig. 2-65: Disjoining pressure isotherm
(h) in a free liquid film of aniline.

After [Sheludko, A., Colloid
Chemistry, pp. 173-207, Elsevier,
Amsterdam (1966).]

phases, as in Fig. 2-64, it is usually (but not always) negative, whereas if it is
between a condensed phase on one side and a gas on the other, as in Fig. 2-
66, it is sometimes (but perhaps more often not) positive, and in other cases
may be positive over some ranges of h and negative over others. Further
discussion of the formation and properties of thin liquid films are given by
Derjaguin et al.83 and de Gennes.84, 85

As an example, consider the case of a thin supported film of non-
volatile liquid on a smooth, horizontal solid surface, and a gas above it, as
shown in Fig. 2-63(c). One may compute the disjoining pressure isotherm
(h) for the case when the origin of the disjoining pressure is the attractive

van der Waals interaction of the molecules in the liquid film with the solid
substrate, which can be regarded as a semi-infinite block. As seen earlier, the
van der Waals interaction between a single molecule in the liquid L (a

Science, Vol. 3, E. Matijevic (Ed.), pp. 167-239, Wiley-Interscience, New York, 1971.
82 Cazabat, A. M., in Liquids at Interfaces, J. Charvolin, J.F. Joanny and J. Zinn-Justin (Eds.),

pp. 372-414, Elsevier, Amsterdam, 1990.
83 Derjaguin, B. V., Churaev, N. V., and Muller, V. M., Surface Forces, V. I. Kisin, Trans., J. A.
Kitchner (Ed.), Consultants Bureau, New York, 1989.

84 de Gennes, P., Rev. Mod. Phys., 57, 827 (1985).
85 de Gennes, P., in Liquids at Interfaces, J. Charvolin, J.F. Joanny and J. Zinn-Justin (Eds.), pp.
273-291, Elsevier, Amsterdam, 1990.
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distance z from the solid surface) and the solid S half-space per unit area is,
in accord with Eq. (2.11):

molec-solid =
BSL S

6z3
, (2.105)

where the BSL is the cross van der Waals interaction constant between the
molecule of the liquid and the molecules of the solid, and S is the molecular
density of the solid. To obtain an expression for the total interaction energy
between all the molecules in the liquid film (per unit area) and the solid,

SL(h ), one must integrate over all the molecules in the liquid (per unit area):

Fig. 2-66: Measurement of
positive disjoining pressure in a
supported liquid film.

SL(h ) =
BSL S L

6

dz

z3D0

h
=

BSL S L

12

1

D0
2

1

h2 (2.106)

where “D0”, as before, is the distance of closest approach between the
molecules of the liquid and the solid. It is evident that if h is large, 1/h2 0,
and SL(h ) is a constant with h. But for thin films, the second term is not
negligible, i.e., even the outermost molecules of the film “feel” the influence
of the force field of the solid. The prefatory constant in Eq. (2.106) may be
written in terms of the cross Hamaker constant, ASL (see Eq. (2.23)) to give

SL(h ) =
ASL
12

1

D0
2

1

h2
. (2.107)

To obtain the excess energy of molecular interactions in the film resulting
from its contact with the solid, one must subtract the energy of interactions
within the film itself, LL(h ) to obtain

E(h ) =
(ASL ALL)

12

1

D0
2

1

h2
=

Aeff
12

1

D0
2

1

h2
, (2.108)

where Aeff = (ALL - ASL), the effective Hamaker constant for the system.
Treating L(h ) as a free energy, the excess pressure in the film relative to
that in a bulk layer, i.e., , may be obtained for van der Waals materials as

(h) =
( E(h )A)

V

A

A

E(h )

h
=

Aeff
6 h3 , (2.109)
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where A is the surface area. The form of Eq. (2.109) is in agreement with the
data shown in Fig. 2-65 for free films of aniline, but in this case, since no
solid substrate is present, Aeff = ALL. The Hamaker constant ALL for a van der
Waals liquid is always positive, so the disjoining pressure is negative for all
h-values. Therefore a free film of van der Waals liquid will spontaneously
thin.

As indicated in Eq. (2.108), for a liquid film supported on a solid
substrate, the effective Hamaker constant of the film is given by

Aeff = ALL – ASL. (2.110)

For van der Waals materials, ASL is given by the geometric mean mixing
rule:

ASL = ASSALL , so that (2.111)

Aeff = ALL ALL ASS( ) . (2.112)

Thus Aeff is either negative (if ASS > ALL), yielding a fully wetting film of
finite thickness, or positive (if ASS < ALL), causing the film to spontaneously
thin itself.

It has been argued that as the film thickness h approaches zero, (h)
should approach the spreading coefficient, SL/S, as in Eq. (2.49), 86 i.e.,

(h)
h 0

= SL/S. (2.113)

It is useful here to digress briefly to consider the general situation in
which a fluid film (1) is separated by phases of different materials (2) and
(3). The latter may be gases, liquids immiscible with (1) or solids, or any
combination thereof. The effective Hamaker constant of the film for
computation of the disjoining pressure isotherm is given by87

Aeff = A23 + A11 - A21 - A31. (2.114)

The last two terms account for the interaction of the film with its adjoining
phases, while the first two account for the interactions of the adjoining
phases with each other and the film molecules with themselves. Applying
the geometric mean mixing rule, Eq. (2.111), yields:

Aeff = A33 A11( ) A22 A11( ) , (2.115)

from which it is easy to see the various combinations that lead to either
positive or negative values for Aeff. In applying Eq. (2.115), the Hamaker

86 Brochard-Wyart, F., di Meglio, J.-M., Quéré, D., and de Gennes, P.-G., Langmuir, 7, 335
(1991).

87 Israelachvili, J. N., Intermolecular & Surface Forces, 2nd Ed., p. 200, Academic Press,
London, 1992.
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constant is generally taken to be zero for gas phases, due to the low
molecular density in such media. Thus if the film is bound on both sides by
gases, A22 = A33 = 0, and Aeff = A11. If it is bound on one side by a condensed

phase (2) and on the other by a gas (3), Aeff = A11 A11 A22( ) , as in Eq.
(2.112).

In the above it has been tacitly assumed that only van der Waals
interactions are relevant. Other intermolecular forces however (hydrogen
bonds or other donor-acceptor interactions, solvent structuring effects,
anomalous density profiles near the wall, etc.), may also contribute to the
disjoining pressure, adding additional terms to the (h) function. These may
be especially important as h 0. Hydrogen bonding in water yields a term
of the form

H(h) =
CH

h
, (2.116)

where CH is a constant. Solvent structuring effects are manifest near solid
boundaries, in which there may be a strong, essentially chemical, affinity of
the liquid for the solid surface. This is manifest at the boundary between
water and strongly hydrophilic surfaces, such as quartz. The squeezing out
of this final layer (often a monolayer) is strongly resisted, and has been
approximated as88

s(h) = Ks exp( h/ s), (2.117)

where Ks is very large ( 107 N/m2), and s is of the order of a few Å (very
short-ranged). In the absence of hydration, a strong “solvent structuring
effect,” for which s 0, just a manifestation of Born repulsion, will be
evident. Thus every disjoining pressure isotherm for a film bounded at least
on one side by a solid will exhibit a steep positive branch as h 0. For a
confined thin liquid film between two solid surfaces, successive layers of
liquid must be squeezed out as the film thins. This may in principle lead to
an oscillatory disjoining pressure, as shown in Fig. 2-67, in which the
wavelength of the oscillation is the effective molecular diameter.

Fig. 2-67: Solvent structuring term of
the disjoining pressure for a confined
liquid film between smooth solid
surfaces. The wavelength of the
oscillations corresponds to the diameter
of the solvent molecules.

88 Derjaguin, B. V., and Churaev, N. V., Langmuir, 3, 607 (1987).
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Another possible contributor to the disjoining pressure is electrostatic forces.
These may exist, for example, in an aqueous thin film containing an ionic
surfactant adsorbed to both the bounding surfaces, as pictured in Fig. 2-68.
Even a clean water surface against air possesses a negative surface charge. If
the opposing surfaces possess diffuse electrical double layers (see Chap. 6),
i.e., adjacent clouds of ions opposite in charge to that of the surfaces, their
overlap contributes to the total disjoining pressure with a term of the form:

el(h) = Kel exp( h) , (2.118)

where Kel and are constants dependent primarily on the charge density at
the surfaces and the ionic content and dielectric constant of the film. The
bounding surfaces may also possess dissolved polymer adlayers, leading to

Fig. 2-68: Electrostatic forces
due to presence of charges at
the surfaces of the film. Here
they are due to adsorbed ionic
surfactant.

“steric” repulsive interactions as the adlayers overlap. Still other factors
may contribute. For example, the Helfrich Equation for the free energy
associated with the bending of an interface, Eq. (2.59), has been used to
compute forces arising from the mutual undulation of opposing structured
surfaces of thin films. Such undulation forces are found to be proportional to
the Helfrich first modulus k1, and inversely to the square of the film
thickness. This bending force contribution, when relevant, must be added to
the disjoining pressure expression.

3. The disjoining pressure isotherm

The disjoining pressure may be regarded as the sum of the various
contributions to it, as described above.

tot (h) = vdW(h) + s(h) + H(h) + el(h) + steric(h) + ... (2.119)

Depending on the various contributions to (h), the function may take on a
variety of different forms, but such isotherms are usually one of the four
types shown in Fig. 2-69, with inserts shown for liquid films supported on a
solid substrate. If the film is described entirely in terms of van der Waals
interactions, the disjoining pressure curve takes the form shown in Fig. 2-
69(a), Type I, if the effective Hamaker constant is negative, and (b), Type II,
if it is positive. In the latter case, the steep repulsive force associated with
squeezing out the last monolayer or so of the film is included. Even for a
free film, there may be such repulsion as the final molecules in the film
jockey for position. If not, the curve follows the dashed line. Type I
isotherms are exemplified by supported films on solid substrates, if the
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Hamaker constant for the solid is greater than that for the liquid, so that Aeff
is negative, in accord with Eq. (2.112). Examples would be alkanes, for
example octane, ALL = 4.50 10

-20 J, on fused silica, ASS = 6.55 10
-20 J,

so Aeff = 4.50 4.50 6.55( ) 10 20
= 0.93 10 20  J . Type II films are

exemplified by free liquid films in air, such as the aniline film shown in Fig.
2-65, or supported films such as the case of octane on a Teflon substrate
(with Ass = 3.80 10

-20 J).

For the case with both van der Waals (with a positive effective
Hamaker constant) and electrostatic effects:

(h) = s(h) + vdW(h) + el(h) = Ks exp( h/ s)
Aeff
6 h3

+ Kel exp( h) , (2.120)

in which the ever-present solvent structuring term is included. This can lead
to disjoining pressure curves of the type shown in Fig. 2-69 (c), Type III, or
(d), Type IV, as exemplified by films of water on quartz.89

The fact that disjoining pressure isotherms of the type shown in Fig.
2-69 can be computed does not mean that the complete curves can all be
observed in the laboratory. If a liquid film is in unimpeded contact with a
reservoir of bulk liquid, it will spontaneously thicken or thin until it reaches
a state of stable equilibrium. Such states correspond to local minima in the
free energy of the system. The (Helmholtz) free energy of the thin film
system, per unit area, may be written as

F (h) = F0 + E(h )(h) , (2.121)

where F0 is a constant, and it is recalled from Eq. (2.108) that E(h)(h) is
the excess energy of the system due to its thin film status. In accord with Eq.
(2.109), the disjoining pressure is obtained as the negative derivative, in this
case, of F (h) :

(h) =
F (h)

h
T, p
. (2.122)

Equilibrium states are those for which the free energy derivative is zero, and
hence disjoining pressure is zero. Stability then requires that the second
derivative of the free energy be positive, i.e.,

2F (h)

h2
T ,p

=
d (h)

dh
> 0, or

d (h)

dh
< 0. (2.123)

Thus thin film stable equilibrium states are limited to those where the
disjoining pressure isotherm crosses or touches the = 0 line with a
negative slope. These states are identified in Fig. 2-69.

89 Derjaguin, B. V., and Churaev, N. V., “Properties of Water Layers Adjacent to Interfaces, “ in
Fluid Interfacial Phenomena, C. A. Croxton (Ed.), Chap. 15, Wiley, New York, 1986.
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Fig. 2-69: Examples of disjoining pressure isotherms. (a) Type I: Spontaneously
thickening film of van der Waals liquid on a solid or liquid substrate; (b) Type II:
Spontaneously thinning film of van der Waals liquid on a solid or liquid substrate, or free
liquid film; (c) Liquid film with both positive and negative contributions to the disjoining
pressure, leading to possible coexistence of a thin thin film with bulk liquid; (d) Liquid
film with both positive and negative contributions to the disjoining pressure, leading to
possible coexistence of a thin thin and a thick thin film.

If the solid surface is finite in lateral extent, and the disjoining
pressure is positive, as in Fig. 2-69 (a), the film will spontaneously thicken
until (h) 0, and then level itself (even in the absence of gravity) due to
surface tension, except at the edges of the solid. If (h) < 0, as in Fig. 2-69
(b), the film will thin itself until (h) 0 (essentially to h 0), with any
excess liquid left in the form of drops making a distinct contact angle with
the “dry” solid. For the more complex disjoining pressure functions shown
in Fig. 2-69 (c) and (d), it is possible to have an equilibrium, flat, horizontal
thin film coexisting with bulk liquid, or even flat films of different
thicknesses coexisting with each other.

In experiments such as those suggested in Figs. 2-64 and 2-66, as well
as others,90 particularly those in which a drop or bubble is pushed against a
wetted solid substrate using the apparatus of atomic force microscopy,91

90 Bergeron, V. B., Fagan, M. E., and Radke, C. J., Langmuir, 9, 1704 (1993);
Bergeron, V. B., and Radke, C. J., Colloid Polym. Sci., 273, 165 (1995).

91 Basu, S., and Sharma, M. M., J. Colloid Interface Sci., 181, 443 (1996).



CAPILLARITY 101

most of the isotherms of the type shown in Fig. 2-69 may in principle be
observed and measured, either in a dynamic experiment or one in which the
flow of liquid between the film and its adjacent bulk liquid is restricted or
controlled. An interesting exception occurs for Types III or IV if one
attempts to either reduce the thickness of the film or increase its internal
capillary pressure beyond the point where the local maximum in disjoining
pressure equilibrium exists, the film will undergo a spinodal decomposition
to a thin thin film in coexistence with either bulk liquid droplets or thick thin
films.

4. The augmented Young-Laplace Equation

If one considers gravity in the case of a wetting film on a solid surface
that is not horizontal, there may exist a final equilibrium situation in which a
thin film coexists with bulk liquid, even for a Type I disjoining pressure
isotherm. For example, consider the meniscus of a wetting liquid ( = 0°)
against a vertical flat wall, as shown in Fig. 2-70. Considering disjoining
pressure, this is somewhat more complicated than has been described earlier
(in Fig. 2-31). In describing the meniscus shape, one must now write:

pliq pvap p = + (h) , (2.124)

which takes account of both the curvature and the disjoining pressure. First
introduced by Derjaguin,92 it is known as the augmented Young-Laplace
Equation. For the case shown (for a wetting van der Waals liquid on a
vertical substrate), it takes the form:

gh =
y

1+ (y )2[ ]
3 / 2 +

Aeff
6 x 3 , (2.125)

The complete solution of this equation yields the detailed shape of the
meniscus in the region of the nominal interline, but it is found to differ only
microscopically from the solution obtained ignoring disjoining pressure,
shown in Fig. 2-31 for a vertical surface. A thin film, however, extends far
higher. In this region the meniscus becomes essentially flat so that the
curvature term in the augmented Young-Laplace Equation may be neglected,
leading to:

x = h
Aeff

6 gy

1/ 3

. (2.126)

As an example, for octane against quartz, A 6 x 10-20 J and = 0.7 g/cm3,
so that at a distance of y = 1 cm above the flat liquid level, a film of
thickness h 20 nm exists. The boundary region between films of different

92 Derjaguin, B. V., Churaev, N. V., and Muller, V. M., Surface Forces, Plenum Press, New
York, 1987.
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Fig. 2-70: Wetting film against
a vertical wall.

thickness is in general described by the solution to the augmented Young-
Laplace Equation. Further details are given in numerous references.93,94,95

Supported thin films are discussed further in the context of spreading
phenomena in Chap. 4, and free thin films get more attention in Chap. 8 in
the description of emulsions and foams. Confined films, i.e., fluids between
solid surfaces, are discussed further in the context of interactions between
colloid particles in Chap. 7.

93 Davis, H. T., Statistical Mechanics of Phases, Interfaces, and Thin Films, pp. 370-377,
VCH, New York, 1996.

94 Starov, V. M., Velarde, M. G., and Radke, C. J.,Wetting and Spreading Dynamics, Chap. 2,
CRC Press, Boca Raton, 2007.

95 Hirasaki, G. J., J. Adhesion Sci. Tech., 7, 285 (1993).
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Some fun things to do:
Experiments and demonstrations for Chapter 2

At the end of this and the remaining Chapters, are suggestions for
simple experiments to help illustrate the concepts of the chapter. Little or no
instrumentation, or expensive or hard-to-get materials are required. Most
experiments are suitable for classroom demonstration, either with direct
observation or by projection onto a screen using an overhead projector or a
camcorder connected to a video projector.

1. The thinness of clean interfaces
According to Fresnel’s Law, light reflected at or near Brewster’s

angle (53° for water) from an interface that is thin relative to its wavelength
( 600 nm) will be plane polarized. This is why polarized sunglasses are
able to block reflected glare from horizontal surfaces. The thinness of a
clean water surface is demonstrated by reflecting the beam from a laser
pointer from the surface of water in a shallow Petri dish. The laser beam
from the pointer is plane polarized, so as it is rotated, an orientation will be
obtained in which little or no reflection will occur.

Materials:

• laser pointer (A Class IIIa red laser pointer with output power
5 mW and beam diameter 4.5 mm at aperture is recommended.
Care should be exercised not to shine this near anyone’s eyes.)

• small Petri dish with a flat black piece of paper at the bottom
(to avoid reflections from the bottom surface) and filled with
clean water.

• small ring stand and clamp
• white cardboard screen

Procedure:

Mount the pointer in the ring stand clamp as shown in Fig. E2-
1, and direct the beam at the surface at 50° and note the intensity of

Fig. E2-1: Demonstration of
Fresnel’s Law for a clean water
interface.

the reflected spot on the screen as the pointer is rotated. It may be
necessary to use tape to keep the pointer turned on as this is done.
Note the beam spot nearly disappears at a particular angle, showing
the polarizing ability of the surface and hence its thinness.
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2. Soap bubbles and films96

Soap films are layers of water stabilized by surfactant on each side.
Their thickness is of the order of a few micrometers to two mm, small
enough that structures composed of them are largely free of gravitational
forces. They can therefore be used to produce surfaces of constant curvature.

Materials:

• 250 mL of soap solution: a 50/50 v/v solution of dishwashing
detergent (e.g., Joy®, Dawn®, Palmolive®) in a 250 mL
beaker

• 3 3 1/4 in. glass plate (with edges smoothed)
• 4 in. piece of in. Tygon® tubing
• 2 in. or larger diameter plastic ring (from a bubble toy kit)
• 10 5 1/8 in. plastic (Plexiglas®) sheet bent 180°, as shown in
Fig. E2-2, to yield a spacing of 2 cm.

• cubical wire frame, about 2 2 2 in. This can be soldered
together from bent pieces of wire. 16 AWG (American Wire
Gauge) ( 1.3 mm diameter) galvanized bailing wire is about
right.

• capful of rubbing alcohol (70% isopropyl alcohol)

Procedure:

1) Dip the plastic ring in the beaker of soap solution and gently
blow, as shown in Fig. 2-14, to demonstrate requirement of a pressure
jump p required to sustain a non-zero curvature.

2) Pre-moisten the surface of the glass plate with the soap
solution; then use the Tygon® tube to blow a bubble onto the glass
surface. It will create a perfect hemisphere, as shown in Fig. E2-2.

3) Pre-moisten the inside surfaces of the bent plastic sheet, and
use the Tygon® tube to blow a bubble that spans the gap between the
plate surface to create a perfect cylindrical bubble, as shown in Fig.
E2-2. Multiple bubbles can be blown into this space to create a variety
of right cylindrical surfaces.

4) Dip the cubical wire frame in the beaker of soap solution. If
carefully withdrawn, it produces a pattern of soap films as shown in
Fig. 2-37. These can be selectively broken carefully using your fingers
or using a sharpened pencil tip dipped in the capful of rubbing alcohol

96 A wealth of additional experiments on soap films and bubbles can be found in:
1) Boys, C. V., Soap Bubbles, Their Colours and the Forces Which Mould Them, Dover
Pub., New York, 1959.

2) Mysels, K. J., Shinoda, K., and Frankel, S., Soap Films: Studies of their Thinning,
Pergamon Press, New York, 1959.

3) Isenberg, C., The Science of Soap Films and Soap Bubbles, Dover Pub., New York, 1992.
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to produce a variety of compound and single saddle shaped surfaces
of zero mean curvature, illustrating solutions to Plateau’s problem.

Fig. E2-2: Some soap film structures.

3. Liquid bridges
A small liquid drop may exert a considerable adhesive force between

solid objects that it wets, as shown schematically in Fig. 2-51 for a pair of
flat plates. Equation (2.76) shows that the principal force of attraction
depends directly on the cosine of the contact angle, . For water on glass,

0°, the force is maximum. A single drop of water will produce an
adhesive force that makes the plates difficult to pull apart. (It must be noted
that part of the attractive force is the viscous resistance to thickening of the
water film.) For water on Teflon®, 110°, cos < 0 so the adhesive force
has a negative pressure component and only a weak positive interline force,
and a net value near zero. For a fair test, make sure the Teflon® surfaces are
as smooth as possible. The water bridge between glass and Teflon has a zero
pressure component and only a very weak attractive interline force.

Materials:

• two clean glass plates, 3 3 1/4 in. (with edges smoothed)
• two smooth Teflon® plates, 3 3 1/4 in.
• small container of water, with drop-dispensing tip

Procedure:

Place a single drop of water at the center of one of the glass plates,
and place the second plate on top. Try to pull them apart, as in Fig. E2-3. Do
the same thing with the Teflon® plates, as well as one glass and one Teflon
plate. The differences will be very noticeable. More interesting results can

Fig. E2-3: Liquid bridge adhesion of water between glass vs. Teflon® plates.
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be obtained by substituting rubbing alcohol (70% isopropyl alcohol in water)
for water.

4. Shared menisci
Equation (2.88) suggests that solid objects of like wettability, either

wet or non-wet, will be attracted to one another by capillary forces when
they share a liquid meniscus. Thus particles of the same type floating or
suspended at a water surface should be drawn together and stick. Particles of
opposite wettability characteristics will be repelled from one another.
Particles will also be either attracted or repelled from the meniscus at the
container wall depending on whether the meniscus at the wall shows the
same shape, i.e. concave upward or downward, as it does against the
particles.

Materials:

• small Petri dish half filled with clean water.
• cork particles, approximately 2-4 mm diameter
• Teflon® shavings, approximately 2-4 mm diameter
• forceps
• plastic water bottle with delivery tube.
• overhead projector

Procedure:

Gently place a few cork particles on the surface of water in the Petri
dish at least several mm apart from one another. This can be done with the
Petri dish placed on an overhead projector focused on the particles and
projected on the screen. Then gently blow on the surface to bring the
particles close to one another, and watch them snap together. Note also how
they are drawn to the wetted glass edge of the dish. Then gently place a few
Teflon particles on the surface. (This must be done carefully as Teflon® is
heavier than water and will sink if submerged.) These particles also clump
together, but are seen to repel the cork particles and to stay away from the
glass meniscus. Next, gently increase the water level in the dish until it
bulges over the rim, creating a concave downward meniscus. Observe the
cork particles leaving the meniscus and the Teflon particles moving into it,
as shown in Fig. 2-56 and Fig. E2-4.

Fig. E2-4: Wettable (cork) and unwettable (Teflon) particles on a water
surface.


