MODELING OF MASS TRANSFER OPERATIONS

→ Two different methods for modeling the mass transfer operations

Based on Diffusion Rate Processes

Based on **Equilibrium Stages**

→ The choice depends on the kind of EQUIPMENT for the *Operation*

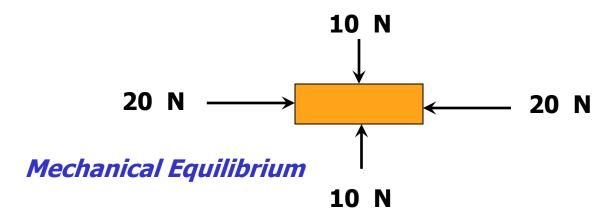
Examples:

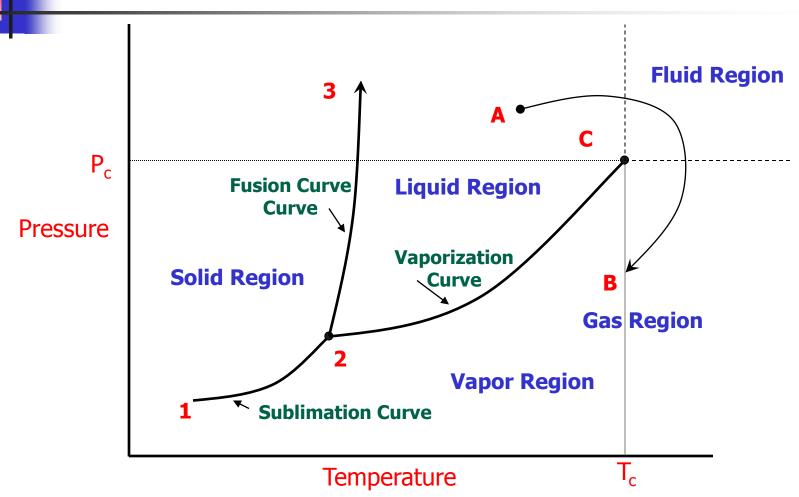
- **→** Diffusion Rate Process Approach *→* Packed Towers, etc.
- → Equilibrium Stages Approach → Plate Towers, mixer-settler trains etc.

EQUILIBRIUM STAGES OPERATION

- > Equilibrium stage operations are based on principles of phase equilibrium.
- > Two phases are mixed together. Some of the components will partition between the phases as the system tries to reach equilibrium.
- When the phases are separated, one is enriched with the solute and the other depleted.
- > This combination of mixing, approach to equilibrium, and separation is called an *equilibrium stage*.

PHASE


- □ A <u>PHASE</u> is a homogeneous region of matter. e.g., a gas or a mixture of gases, a liquid or a liquid solution, a solid crystal
 □ A phase need not be continuous; e.g., a gas dispersed as bubbles in
- a liquid, a liquid dispersed as droplets in another liquid with which it is immiscible, etc.
- ☐ An abrupt change in properties always occurs at the boundary b/w phases.
- □ Various phases can coexist. e.g., boiling saturated solution of a salt in water with excess salt crystals.


EQUILIBRIUM:

Equilibrium is a word denoting a static condition, the absence of change

> SYSTEM AT EQUILIBRIUM:

> A system which exists under such conditions that there is no tendency for a change in state to occur.

Think where is VOLUME axes?

IMPORTANCE OF PHASE EQUILIBRIA

A limit to	mass transfer	is reached	if the two	phases	come to
equilibrium and the net transfer of material ceases.					

Rate of mass transfer (at any point) \propto Driving Force (at that point)

- ☐ To evaluate driving forces, a knowledge of equilibria b/w phases is therefore of basic importance.
- Several kinds of equilibria are important in mass transfer.
- ☐ In nearly all situations two phases are involved, and all combinations are found except two solid phases.
- ☐ In phases in bulk the controlling variables are the intensive properties of *temperature*, *pressure*, and *concentrations*.

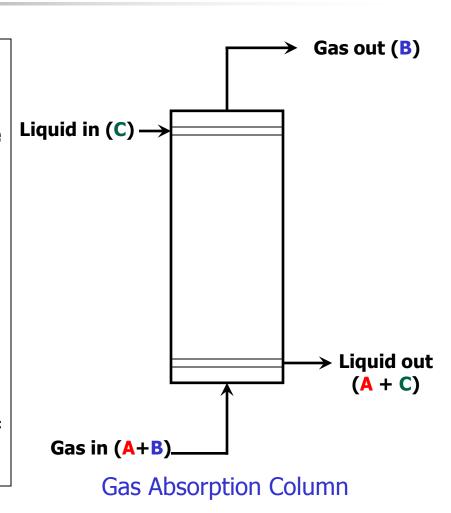
CLASSIFICATION OF EQUILIBRIA

To <u>classify equilibria</u> and to establish the <u>number of independent</u> <u>variables</u> or <u>degrees of freedom</u> available in a specific situation, the **PHASE RULE** is useful.

PHASE RULE

Number of degrees of freedom, or variance F, is the number of independent intensive variables → temperature, pressure and concentrations – that must be fixed to define the equilibrium state of the system.

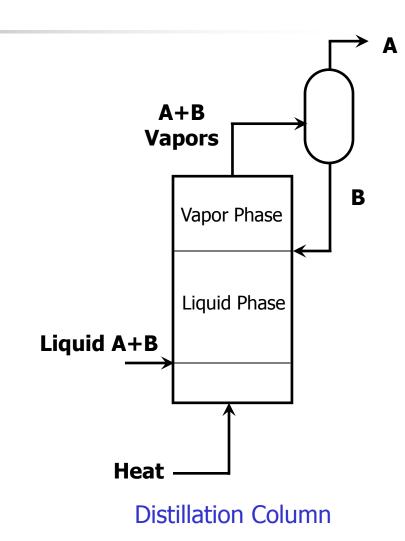
CLASSIFICATION OF EQUILIBRIA


- □ Usual Case, Only two phases \rightarrow F = C
 - ❖ In system of two components \rightarrow F = 2.
 - If Pressure is fixed, only one variable the liquid-phase concentration, for example be changed independently;
 - The temperature and gas-phase concentration must follow.
- for such systems equilibrium data are presented in temp-composition diagrams which apply at constant pressure, or by plotting y_c the V-phase concentration, against x_c the L-phase composition.
- ☐ Such plots are called *equilibrium curves*
- ☐ If there are more than two components, the equilibrium relationship cannot be represented by a single curve.

APPLICATION OF PHASE RULE IN MASS TRANSFER OPERATIONS

GAS ABSORPTION

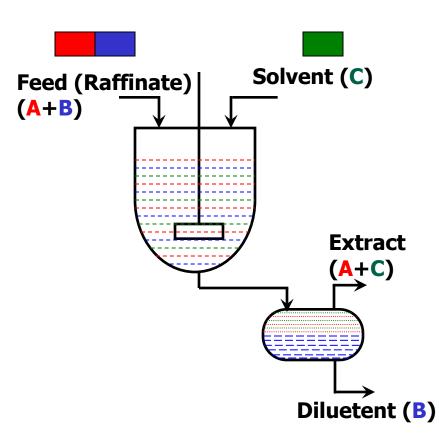
- Number of phases = 2 (liquid & gas)
- Number of total components = 3(A, B, C)
- \triangleright Apply phase rule, F = C P + 2, so we get F = 3
- > The component which is being transferred from one phase to another: A
- Total number of variables: Temperature, Pressure, concentration of A in liquid phase & gas phase.
- > The independent variables: Temperature, Pressure, Either concentration of A.
- > Equilibrium curve can be drawn b/w y_c and X_c.



APPLICATION OF PHASE RULE IN MASS TRANSFER OPERATIONS

DISTILLATION

- Number of total components = 2(A, B)
- ➤ Apply phase rule, F = C P + 2, so we get F = 2
- > The component which is being transferred from one phase to another: A
- > Total number of variables: Temperature, Pressure, mole fraction of A in liquid phase & vapor phase.
- > The independent variables: Pressure, liquid-phase mole fraction of A. (remaining variables follows).
- > Fixing the two variables define the system.
- (Explanation of 3 components system).



APPLICATION OF PHASE RULE IN MASS TRANSFER OPERATIONS

LIQUID EXTRACTION

- Number of phases = 2(2 immiscible liquids)
- Number of total components = 3 (A, B,C)
- Apply phase rule, F = C − P + 2, so we get F = 3
- > The component which is being transferred from one phase to another: A
- > All three components may appear in both phases.
- > Total number of variables: Temperature, Pressure, and four concentrations.
- > The independent variables: Any two concentrations (usually pressure is kept constant).
- > Variations of temperature are there by keeping pressure constant.

Mixer-settler extraction