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for Bearing Capacity,

By ] Brinch Hansen,

Professor, dr. techn., Technical University of Denmark

ltis by now genemll 'y accepled that the bearing capacity of a fafmdalton Jtpeml:, ot _
only on the properties of the soil, but also on the d:memmm,glmgegand ‘Jeglb iof - the.

gy

depth- and shape factors.

foundation area, as well as on tbdmcr;mﬂo’}and eccentricity of the folm ation load.
< The most practical way of taking these effects info acconnt consists in generaliz-
. ing Terzagh?'s bearing capacity formula by muluplymg each of its terms with a shape-,
. @ depth- and an inclination factor. The eccemricity is acconnted for by making she
| calculation for the effective foundation area only.

Preliminary formulas of this type were proposed by the author in 1955 for the s
 two special cases of ¢ = 0 (clay) and ¢ = 0 (sand). In the present paper a general N
. formuia is indicated, and ihe different factors are siudied, c‘:pccidly im regard to their | .-

dependence on the friction angle of the soil. As a result, approximate empirical for-
mulas and corrcsponding diagrams arc given for the bearing tapaaly-. mcllwmn-

Finally, new definite rules are propoud for determining the effective ml ’ T
: eqrmmlmt fonndamn areas as well as the contatt pumm distribution. .

Introduciion. . ‘
In 1955 the author published a Danish paper [1}, in
which he proposed two simple, semi-empirical formulas

I

for the calculation of the bearing capacity of foundations,

on clay (p = 0°) and on sand (¢ = 0) respectively. In
. the first case tge formula was an extension of Skempton's
[2], whereas in tﬁatter case the formula was new but

based, of course; on Terzaghi’s original formula [3]. The

case of eccentric and inclined -
. has first been made bx Prandtl [8], giving N = 0

' N —'IandN

formulas covered the general
loads on foundation areas of any shape at any depth.
 In his General Report on Foundations [4] to the

~" London Conference in 1957 the author cited these two

formulas but without giving any details.

" In 1958 [5] the author extended his fo.mulas to the

' ‘,4./;“ of simultaneous friction and cohesion, so that the

~ long-term bearing capacity of clays couid be calculated.
“In 1959 [6] and 196C [7] he found it necessary to

' revise the expresslon ‘or the inclination factor in -the
‘COSC of = 0°.

- Lately — and partly due w0 a request from Professor
E. Schultze in Aachen — further investigations have been
made by the author and The Danish Geotechnical Institute,
especially concerning the. inclination factors. As a result,
the original formulas have now been revised. as described

“in the following. '

2. The general formula.

Terzaghi {3] proposed as the first the following snmple
‘ormula for the bearing capacity Q of a centrally and wver-

58

tically loaded stnp, foundatlon on a ho.:zontal earth suc-
(ace:

[
B is the width of the foundation, ; the, efiective unit
weight of the soil and ¢ its cohesion. ¢ is the effective

. K
Q:B==-2—~,BN,+qu+cN,

In the special case of ¢ = 0° (clay) an exact calculauon

-1r+ 2—- 514~5 Hencemthlscasé
g_B-5c+1 (2)

eis here the undrained shear strength of the clay, and Q°

so-called '!'eff ctive fcundation area’” (s
: g:notmg {”ape factors by s, d tpﬁn

is_the short-term bearing capacity.

$24,131.5:624.16.

e ‘\),"“\

" unit_load on the surface outside the foundation,’ whereas :
‘the N's are functions of the friction argle ¢ of the s soil.

Skempton [2] has extended this formula to cover the. <

(Z B), placed at a depth D below the surface: -,

Q°:BL=35¢(14+02B:L)(1+02D:Ey+ g (3)'
The ratio D : B to be .inserted in this formula is limited
to and' 7 is now to .be interpreted as the: effective

overburden pressure at foundation level.
Skempton has hete multiplied the c-term in Terzaghi's

present author showed [1] that inclined foundation loads

could be dealt with by multiplying also with an "inclination b

Eccentric loads are dealt with by means cf the
later).

actors by 4 and
inclination factors by 7, Terzaghi's originai formula (1)

factor”.
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" formula with a “’shape factor” and a "depth factor”. The

. more general case”of a foundation of firite length L !

\

¢




[image: image2.png])

can easily be generalized by multiplying each of its terms

%00
wo N
with a ‘set’of the above-mentioned factors: 3 wo T
Q:BL =§;BN,~:,4,'i,+j~',,¢,,4,,i,,+cN,;,’d,ic o
thon @ m
However, the ¢- and the ¢-factors are interrelated. If 20 ,Lj H
we have found a solution for the special ¢case of (y = 0, 100 4 /ff 4
g =1, ¢ = 0), it can be shown [9], that the solution for 80 };’r’
the more general case of (3 =0, ¢540, c40) is ob- 60 Ward
tained by first multiplying all loads and- stresses by : %
(7 + ¢ cot ¢) and then subtracting ¢ cot ¢ from all normal ' "0 /’/ / /
loads and stresses (but not from the tangential ones). This 10 /-f
means that instead of (4) we can write: : 20 gd 4
| omeliany e A
+ (@ +ecoty) Nysydig=ccoty (5) 10 % , 4
Comparing (4) and (5) we find the following relation s [/
o betwce:f thegq-(azd. the (t-f?aqom: ‘ \9\?; f"‘ '"\"&m: » J /l;
; (, N, s.d, i, ;-(N' S, 8,0, = 1) cot g ‘;‘];Xi%ﬁxé%)-‘ v ARNLT
We can, of course, also use (6) to eliminate ‘the : 74 !
g-factors from (4), if so desired: ' : - et T+
Cpsakd |\ Q:BL=27BN, ¥, i, sl B Ty i )
prtiude \ a2 1Y) dolte® ' - = o a
A e Tawdie L + (¢c+ qtan ) N5, d i+ q [(7) ' r l - L
0 8% 0 w20 2 20 W

‘o4 In principle, any of the three equations (4), (5) or (7) '

B can be used as our general formula. However, (4) must
¥ be considered impractical, as it contains an unnecessarily
great number of factors. Of, the remainin

ng Dot Gotrmes o U

cvidently most practical for ¢ = 0 (sand), w. erm,f’(?) is
. most convenient for ¢.== 0° (clay in the undrained_state).

i
8,

L

From (6) it will be seen, that in the case of » = 0°

we must have N: = .I‘: =d = i: == 1, which makes

formula (5) unusable in this -case. Consequently, if we

want one single formula to_cover_all cases, this formula
must be (7)..

8. Bearing capacity factors. - _ .
As shown first by Prandtl (8], N, and N, can be

calculated by cohsidering the simple theoretical case of

- weightless earth (y = 0). The result is:

Ny= e" ¥ 202 (45° 42 y)

) LN ' (9

‘ ~ Curves for N, and N, as functions of the friction
angle p are given in Fig. 1.. The N-scale is logarithmic.

In principle, it should be possible to calculate N, by con-
sidering the special case of cohesionless, unloaded earth

(8)

one has as yet succeeded in indicating a corresponding:

- figure of rupture which is both kinematically and statically
_possible, . :

Instead, several authors have used approximate mpturé

figures of a type which will usually give too high values

e S T

v ‘Volume 5 .

two, (5) is.

(¢ =0, ; = Oj. However, to the author’s knowledge no -

[T
Fig. 1. Bearing capavity factors. ‘

" of N,. Meyerhof [14] has, f.inst., by means of such a
procedure obtained N, -values corresponding to_the upper
dashed line in Fig. 1. ' '

Lundgren and Mortensen [10] indicated in 1953 a
figure of rupture, which is statically but not kinematically
possible, and made the calculation for ¢ = 30° (see
Fig. 2). This procedure is known.to give too low values
of N,. Recently, D. Odgaard has at The Danish Geo-
technical ‘Institute ‘made corresponding calculations for
¢ = 20° and 40°. The values found correspond to the

. _lower dashed line in Fig. 1. o o

In 1955, when Lundgren and Mortensen's value for
¢ = 30° only was known, the author of the present paper

. proposed as an empirical formula: N, ~ N, - 1, this be- '
ing exact for y = 0° and approximately correct for ¢ =
30° (where N, = 18.4, and 15 < N, < 22). '

However, as the correct curve for N, must lie between
the two dashed lines in Fig. 1, a better approximation.
may tt. be obtained by means of the relation: '

. 1IN, ~1.8N,tanzp=1.8(N,,-1§tan,' (10)
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Incidentally, equations analogous to (13) will — ac- .

/\- -‘:L_": | ‘tuwl"‘m (h~‘.um~‘;,, Sea
L Rrde da L Nxaw, sals 9 {RANDTL
. i kN ) \
Table 1.

? Nf . Nq ) Nc

0.0° 0.0000 1.000 5.14

2.5° - 0.0198 1.252 3.76
- 3.0° . 0.0894 1.568 6.49

7.5° .. 0.229 1.966 7.34 Fig. 3.‘Inclined load on weightless earth.
10.0° 0.467 2471 8.34 v .

12.5° 0.844 3.1 934 " - In the special case of = 0° a similar calculation can
:;.go _ ;‘zs;z :.37 :g?’: -+ be made, yielding the exact results: ,
20.0° . 3.54 . ) 6.40 14.83 cos 2¢0 . . . (14)
25° 5.39° 8.23 17.45 Be
25.0° - an 10.66 20.72 .0 1 2a° + sin 2a°
27.5° | 1212 1394 2483 e =g t=—75 (15)
:g:: ;:g: : ;:‘;2 - ;’;’; A somewhat stmpler formula, giving approximately the
35.0° 407 333 461 same results, is the following, in ‘which ‘the effective
37.3° 61.9 45.8] 58.4 foundation area A’ (=B L) has been introduced instead
40.0° 95.4 64.2 75.3. of the width B,0f a strip foundation in order to make the.
42.5° 499 . 1.9 99.2 formula mo;e  general:
45.0° 2410 - 1349 133.9

This relation is indicated by the full line matked N,
in Fig. 1, and it is proposed to use this until more exact
evidence becomes available.

By using an approximate figure of rupture similar to
Lundgren and Mortensen’s, Meyerhof found in 1955 [20]
values close to the full line in Fig. 1. '

The numerical values of N,, N, and N, — correspond-
ing to the formulas (10), (8) and (9) — are given in
Table 1.

4. Inclination factors.

When using a general beanng capacxty formula with

inclination factors, /\ is best defined as the _vertical
(normal) componen?‘o'f the bearing capacity. The ‘founda-

tion load has a’ vertical component V' and a horizontal

component H.
i, and i, can now be calculated by considering the theo-

retical case of weightless, cohesionless earth (y =0,

¢=0). This has been done e.g. by Schultze [11],
Meyerhof {12} and the author [1]. The correct figure

of rupture for suc_:h 4 case is shown in 'Fig. 3, gnd the.
results can be expressed as follows. For any given value

of H:V =

tan 3-the angle « is determined by the equa-
tion: R

l/l- (tan 8 cot )2 -tan §
. 14 tan § :sinp (ll)
Subsequently, 7, and / iy are found from the cquat:ons :

(12)

tan (a - ly) =

1 - sin 14 sin (2“ F) '-(0.5 2+ - 2¢) lnn ¥

cording to (6) — apply also to the depth factors 4 and
the shape factors .

'.‘)-og ;\‘t.,'

10
\,(/ P "Q\

il |

The still slmpler formula proposed by the. author in

1959 (6] .Ic ~ 1 ~ H:2Ac is actually too inaccurate,
although on the safe side.

From the above formulas it will be seen that, in the

“case of ¢ =0, i, 'is a function of H :V, whereas in the
case of ¢ = 0°'/, is a function of H : A ¢c. By means of
the principle used for developing equation (5) we can find
“that, if ‘H, and V, correspond to the special case of
‘(;= 0, ? = 1, ¢ = 0), the values H and V correspond-
ing to the more general case of (y = 0, ;:;EO,‘t#O)
must be:

= (7 +¢ cot y) H, a7
=(g+ccoty) V,~Ac cot o .(18)
Hence, the ratio determining the inclination factors must
actually be:
H, . H H
-V;—V+A¢'c‘ot,fA¢'+Vtm,tm' (19)

The ratio H: (A¢ + V tan ¢) might be considered .’
especially suitable, since this ratio attains the value 1, when
the (rough) foundation begins to slide horizontally along

the surface. Using this ratio as reference Fig. 4 shows the

exact valus of lE, as found from the formulas (11) —
(15).

A very interesting result is found by plotting J, as

_ function of the ratio H : (V' + A ¢ cot ). This is done *
in Fig. 3, and it will be seen, that it is then practically

mdependent of . Actually the following approximate

formula ¢ for practical calculations: cL
. ' [T 4 0% (18
PN PO ies S w,{
e ~ |1 = g=——| N (20)
V4Accoty — Jorrbahy

The simpler formula originilly proposed by the author
- [1] forp-30°andc 0:ig~ 1~15H:V is seen

Ingenieren — International Edition
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Fig. 4. Inclination factor for c-term,’

to be a good approximation for this friction angle;- but

(20) is equally good and has the advantage of being -’

valid for the other friction angles, too.

The value of /, is found from (13), except in the case.
of ¢ = 0°, where (16) must be used. ~
When we want to calculate i,, we meet the same dif-
ficulty as in the calculation of N,. namely that the correct
rupture-figure is not yet known. We can, however, make
an approximate calculation by using circular rupture-lines.
The calculations are made by means of the author’s
_ “equilibrium method” [9, 5, 7] and tables published by
The Danish Geotechnical Institute [13]. The results of
such calculations are indicated by the full curves in Fig. 6,
* where the ratio H: (A ¢ + V tan ¢) is used as reference.
Another, but much more 'cdmplicated 'v&ay, is to use a’
more probable rupture-figure such as the one shown in
Fig. 7 (first proposed by the author). In the plastic zone
the results obtained by the method of Lundgren and
Mortensen {10] are used. Such calculations have been
made by D. Odgaard for y = 20°, 30° and 40°, and the -
results are indicated by the dashed curves'in Fig. 6.
. As will be seen, the deviations between the results
. found by these two widely different methods are sur- -
prisingly small. Plotting the results found by the first
method — which are the lowest — as functions of the
ratio H: (V + A cot ¢), we get the picture shown in '
-Fig. 8. It will be seen, that also /, is then practically "
independent of p and can ~ with sufficient accuracy
be calculated from the following approximate formula:

~ -
. .2 H
tr ~ 1y ~[1'-V+Accot'¢ \_3&0'}&%{)%

Incidentally, the relationship 7/, ~ ‘ii was already pro-
posed by the author in 1955 [1]. .

Volume 5 .
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Fig. 5. Inclination factor for q-term.
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6. Depth tactors :
In practice, foundation level is always placed at a depth
D below surface level. This influences the bearing capacity -

in two ways. First, _q' must now be interpreted as the ef-
fective overburden pressure at foundation level and, se-

cond, depth factors 4 must be introduced.

As regards 4, is should be caiculated assuming ¢ = 0
and ¢ =0. But this means that the earth above foundation
level should be considered cohesionless, weightless and
unloaded. It will then evidently contribute nothing to the
agity, so that we must have:

(22).

t to calculate 4, we must consnder the special

case of (y =0, q=1 c=0). ForD> 0 the correct

rupture-figure is not known yet, however, although Bent

Hansen has made some valuable suggestions. Meyerhof
{14] has made approximate calculations assuming an in-
clined earth surface triangularly loaded, but his results are

a little difficult to interprete, because he combines the

y- and g-terms. o
A quite good approximation for reasonably small depths

. «can be obtained by using circular rupture-lines, in com-

bination with the author’s equilibrium method. The forces
acting on the vertical earth face are here assumed to cor-

- respond to Kotter's equation for a vertical rupture-line

(K = cos2 ), but for comparatively small depths they
do not influence the results very much.

Such calculations have been made for y = 0°, 10°, 20°,
30° and 40° ‘I‘he result is that, for values of D: B <1,

_ Fig. 7. Inclined load on heavy carth.

"o
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d . can be expressed by the following approximate formul‘a.,'- “pected to be a function of the friction angle. Accordmg

valid for alle the investigated friction angles: it to Skempton [2] this final value should be about 1.5 for
Y ¢ =0° From Meyethof's Fig. 19 in [14] 1t can be

DY Witwa ) ,
de~ 1 + 0335 (D.-—--S-—l';) 2 32‘31); deduced that the final value of d, (which for sand is ap-

This formula. is, therefore, a good approximation for proximately equal to 4.) should be less that 2 for loose

shallow founda but it cannot be used fog_ggms sand and more than 4 for dense sand. ,
or piles. The simplest empirical formula, which fulfills all the

For great values of D: B it is evident that d, must  abovementioned requirements, is the following:
approach asymptotically a final value, which would be ex- ' 0.35
' : B:D 4 0.6: (1 + 7 tand ) (24)
‘ - . Fig. 9 shows the values of 4, according to this formula,
‘ %7 The figures at the arrows mdlcate the final values of d tht
- (for D = o).
" When d, has been found, 4, can be calculated by means 1 _'
of (13), which is valid both for i, d and s: .

LT TT ‘ d-1 d -1 "
N s - Tt dc‘ﬂ (23)

19 - For friction angles of 25° or m (N, ‘>‘ 11) it will

y ‘ = in practice be sufficiently correct to assume dl ~ d.. The

/ A ' - ‘error will then be less than 4 %. For ¢ = 0° we have, .
23 VAl d : ' ~ of course, d° = 1. o : »-‘- :
7 : 1 Ttis evudent that, in calculating the depth factors d,
// '/’ - e e i .| D must be taken only as the depth of layers of equal or
y, . —_ , better strength than the layer immediately below founda-
2 / o | tion level. Softer [gggu, above this level contribute with s
/f 7 — ' |__their effective weight to g, Et not to d.

e | When the foundation loz load is inclined, one of two things q _

dc~1+

£

N
-~

20

pe—

=1 . 20°) i
s Z/’:__ u = %o ' can be done. Either the depth factors ace used, or a passive

= } carth pressure on one side of the foundation (calculated as
for a smooth wall) is taken into consideration by inciuding
) it in H. It is, however, not allowed to do both of these
w ~L things at the same time, as "they are both caused by the

0} ] " [ 20
Fig. 9. Depth factor for c-term. shear strength of the soil above foundation level.

D |
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[image: image6.png]* 6. Shape factors.

If, instead of an infinitely long strip foundation of
width B, we have a rectangular foundation area of width |
B and length L (L = B), shape factors s must be intro- '

duced in the bearing capacity formulas.

Unfortunately, theoretical calculation is extremely dif-
ficult in this 3-dimensional case. . However, a certain
amount of empirical information can be derived [rom
model and full scale tests. '

According to Skempton [2], the following empmcal
formula should

::~1+o.z-

From Meyerhof's Fig. 19 in [14] it appears that for a
circular foundation s, (which for sand is approximately
equal to s.) should not be much greater than 1.2 for loose
sand, whereas it should exceed 2 for dense sand. Accord-
ing to his Fig. 20 the shape factor should vary, not only
with the. friction angle, but also with the depth ratio D : B.

This, however, is due to Meyerhof’s combination of the-

y- and g-terms. Actually, quite similar results are obtatmed

by using constant, but different shape factors for the y* -

and g-terms.
The simplest empirical formula, which covers the above-
mentioned evidence, is the following: Y *

B \.\1
§. ~ 1 4 (0.2 4 tan6 ,)-—- (27)

The upper part of Fig. 10 0 shows the values of s,
accordmg to this formula.

“When 5, has been found, s, can be calculated by means
of a formula anal oguous to (_25) However, for ¢ =25% it
will be sufficiently correct to assume s, ~ s.. For ¢ = 0°

“
we have, of course, : = 1.

According to Meyerhof‘s Fig. 20 his combined shape
factor should be equal to 1 at D:B ~ 0.25 for all

foundation shapes and all friction angles. This condition *

will be very nearly fulfilled, if we assume:

l ~l-z (o 2 + tanS ¢) E-l: (28)
The lower part o 10 shows the Values of sy accord-

ing to this formula. It
we have 5,

indication® of 5, = 0.8 for a square foundanon area on
sand [3].

'7. Point resistance of piles.

The best check on the formulas indicated above for the
depth and shape factors is obtained by using them to
calculate the point resistance of piles. '

For piles the y-term can usually be neglected and the
last term in equation (7) left out. Moreover, for most
piles (other than sheet piles) we will have B ~ L. Calling
the point area A, equation (7) gives us ‘then the point
resistance: ‘ :

Ce, _ - (26)

= 0.8 for B L. This agrees with Terzaghi's

» Se | //w
19
/
» //
o /
7
s 4 40° /
" // /,/
7] // // ) 25 /L
w / A Tl
L~ . = | -
1 ]
” VA P e
0
- 4 NG \SEQQ—*.Q‘N
N —
. o \\ \\ \hﬁ_.\-\’
. g ;
3 N \}\
a7
™.
) eoe | L
00 @ 6 o o o5 08 a7 08 O 10

Fig. 10. Shape fzctors.

- Fig. 11 shows the point resistance factor s.d . The
ﬁgures at the arrows indicate the final values (for
= 00). As piles will usually have D : B = 10 - 20, we
fmd for ¢ = 0° a product s s, d o~ 1.8 whlch as N ~ 3,
gives the well-known point “resistance factor ‘of 9 for clay.

This is, of course, due to the fact that we have employed ,

Skempton’s results [2] for p = 0°,
For ¢ =35° we find the factor s, d, ~ 3 in accordance

Igt:Ap"' (¢ +qtany) Nos.d, ~ (¢N, +.7.:Nq) ‘c;li)l

Volume 5

. . . .. . =~ :
) 123 D 1
s.d N
e R4
. A
Jus 40° 8
be noted that, for p ~ 37°, 7 g S
’ .
© >
/ 4 Vit
] o
4 yd
/
d y.a = NG
A A % (
/ 20 g .
=~iad H
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a» /| —— w
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Fig. 11. Pactor for point resistance of piles.
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of piles in sand 15, 16]. According to Fig. 1 in [16]
this should be approximately correct for p = 35°, whereas.
for ¢ = 40° the factor might be increased by about 50 %,
and for ¢ = 30° should be decreased somewhat. It will be
seen that the results in Fig. 11 conform to these require-
ments. ' : ;

. & Equlvalént and effective foundation areas.

So far we have dealt only with rectangular foundation
areas, centrally loaded. If, however, a centrally loaded

- foundation atea has another shape, it must first be trans- .

formed into an "equivalent” ‘rectangle in order to enable
us to use the developed formulas. The position and side
lengths (B and L) of this rectangle may be determined by
. the following conditions:

" 1) The centers of gravity shoulcl coincide.
2) The main-axes should coincide.
3) The area should be' the same (= BL).

4) The ratio of maximum to minimum plastic section -
" - effective foundation area,

modulus should be the same (= L : B)

If a foundation area (of any ‘shape) is eccentncally
loaded, we must first determine an "effective’”’ foundation
 area, as proposed in 1953 by Meyerhof [12}, who assumed
its inner contour to be a straight line. We shall here
determine it by means of the following conditions:

1) The effective area should be centrally loaded. -

2) Its inner contour should be fixed by the Ermmg e of

radial symmetry.

Although a thus determined effective area may be

kinematically impossible, it is often simpler to determine -

and leads to approximately the same results as Mcyerhof s,
If necessary, the effective area is subsequently transformed

into an Sguivalcnt rectangle. It is_the width (B), length
(L) and area (A= BL) of this effective, equivalcnt
rectangle, which are to be used in the calculation. of the
bearing capacity.

Some typical examples are shown in Fig. 12. It ‘will be
realized that B and L can usually be estimated suffncnently
correctly without actual calculation. >

8. Doubly inclined foundation loads.
- The effect of the horizontal force H on the beanng
‘capacity is expressed by means of the inclination factors /,
"but these have been developed for the special case of a
strip foundation with the force H' acting pcrpcndicularly
to its length axis.

In the more general case of a finite, effective foundation
area A, acted upon by a horizontal force H which may not
be parallel with any of its main axes (Fig. 12), it is at
present impossible to make any real calculations. It will,
however, be on the safe side to use the previously indicated
formulas for the inclination factors, provided that H is
taken as the resultant horizontal force and 4 as the effective:
foundation area.

“

| D

- 8
Fig. 12. Equivalent and effective foundation areas.

- 10. Distribution of contact pressure.

Assuming that failure actually takes place in the soil

“under the foundation, it is casy to show that — in the

case of a centrally loaded strip foundation on- the surface

_ — the contact pressure corresponding to the g- and c-terms
in the bearing capacity formulas must be uniformly distri-

buted. The same will probably be approximately correct
also for foundation areas of other shapes and.at finite
depths. In the case of eccentric loads it will also be suf-
ficiently correct to assume a uniform distribution over the

As rcgards the distribution of the contact pressure cor-
responding to the y-term this cannot be determined exactly,
not even in the simplest case of a centrally and vertically
loaded strip foundation on the surface. It is only known
that in this case the pressure must be zero at the edges
and dttain a_maximum value in the middle. Consequently,

a parabolic or distribution of the ;—term is often
assumed. It is evident, however, that in the case of eccentric
or inclined loads the distribution will be altered. It will
therefore not be realistic to assume f.inst. a_triangular
distribution of the y-term over the effective foundation
width, as the author has proposed previously. T
Another thing is that, in designing a foundation, a cer-
tain safety against failure is always introduced, so that in
actual use the soil under the foundation is not in a state of

~ (total) failure. This means that the actual pressure will be

relatively more concentrated near the edges than accorclmg

" to the theory of plasticity.

All taken into consideration — and especially our ad-
mitted ignorance of the contact pressure distribution, both
in the state of failure and in actual use — the author is -
now inclined to make the simplest assumption possible:
a2 uniform distribution of the total contact pressure over
the effective foundation area.

It is evident, however, that in the case of very extensive
foundations, such as mats or rafts, a more detailed investi-
gation of the contact pressure distribution will have to be
made [17]. :

"11. Safety factors.

It is, of course, entirely possible to employ the usual
concept of a "total” safety factor F. In that case the
calculated ultimate bearing capacity should simply be
divided by F in order to give the "allowable” bearing
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value.
The author prefers, however, the use of the so-called

"pactial”" coefficients of safety [18, 19]. The principles
shall be recapitulated here.

The foundation is designed for equilibrium in a "no-

. minal” state of failure. Dead loads and water pressures

" are used unaltered, whereas the actual live loads p are

- multiplied by factors f,. The correspondmg nominal_foun-

dation load has the components V,.and H, (to be used for -

calculating the inclination factors).

In calculating the nominal bearing ca acit (vertiul
component) we do not use the actual shear strength para-
meters of the soil (¢ and ¢) but nominal values defmed by:

Cn =E. . tang, = tanE¢ (30)

For. calculatmg the shott-term bearing capacnty the "un-
drained” parameters ¢ = ¢, and ¢, (= 0° for fully sa-

determining the bearing capacity factors N, N, and N,
(Fig. 1), as well as the inclination factors /,, 7, and /i, —

by means of formulas (20), (21) and (13) — the depth -

factors d, (= 1) and d, (Fig. 9) and the shape factors s 4
and s, (F|g 10). All the values of V, H, B, L and 4 to
be used for this purpose should be the nominal ones.

The nominal bearing capacity is now found from equa-
tion (7) or — in the case of ¢ = 0 (sand) — simpler

‘from equation (5). It should then be checked whether

turated clay) must be used, whereas the long-term beanng '

capacnty is calculated with the “effective” parameters <

and ¢
The foundation should in principle be given such di-

mensions that g V’_,

Finally, the foundation proper is designed for the no-

minal moments M, etc. with- nominal stresses o, = o, : =y A

where g is the actual ultimate (or yield) strength of the
material.
' In Denmack, the following values of the different

1

ipartial coefficients have been proposed for foundations
‘;[6]: . , .
. f=15 fe=175 f, =12
fm = 1.4 (steel) or 2.8 (concrete)

The reason for putting j, much lower than f, is, firstly,
that o usually. will show much less variation than ¢ and,
secondly, that f, = 1.2 for sand corresponds approximate-
Iy to a total safety of F = 2./

-

.12 Calculatlon .

" A design of a foundation nccordmg to the prmcrples

set forth in this paper will usually proceed as follows.
After having estimated the depth and main dimensions

of the foundation, we calculate first the nominal foundation

Igad (components ¥, and H,), using the partial coef-

ficients of safety mdlcated in section 11..

! the foundattWh, per definition, is' the

center of the effective foundation area. By means of the

-

principles indicated in section 8 we determine then the .

noiminal, equivalent, effecnyg,,fmrqdathn area (wndth B,,

length L, and area A4, = B, L,).

Next, the nominal shear strength parameters (¢, and ¢,,) e

are wlculated as indicated in section 11. They are used for

Volume 3

Q, ~ V,; if not, some of the main dimensions must be
changed and the calculation repeated until sufficiently good
agrecment is obtained.

The nominal moments etc. in the pertatnmg sections of
the foundation can now be calculated, assuming a uniform

‘distribution of the total nominal contact pressure over the

effective foundation area. The design of these sections is,
finally, made with nominal strengths of the building
materials as indicated in section 11. '

18. Example. Ty

A*TV teansmission tower of reinforced concrete should.
be founded on a circular foundation slab. The total weight
of the tower is 3000 t (including the foundation slab

and overlying soil), and the total wind force is calculated -

at 150 t, its resultant being located at a height of 35m
above foundation level.

The soil is a Danish glacial (moraine) clay with a unit
welght of 2.2 t/m3. The (theoretical) ground water table
is assumed to coincide with foundation level at D = 2m
under the surface. The clay has an undrained shear strength
of ¢, = 18 tjm2 (p, = 0°) and its effective shear strength
parameters are ¢ = 3 t/m2 and p = 35°.

Using the system of partial coefficients we find:

V, = 3000t
H,=150+1.5 =225t
qn = 2.22.0 = 44 t/m2
¢, = 18:1.75 = 10,3 tym2
€, =3:175 = 1.7¢m?
(tan 33°) 12 = 0.700: 1.2 = 0.382
. ~ 30°

’l'he eccentrlcxty of the t'oundanon load is 225 + 35 : 3000 '

tan g, =

12m the effectwe and eqmvalent foundation areas will be
as shown in the middle of Fig. 12. Here we find ap- -
proximately B = 5.5'm and L = 9.0 m. bl ¢
We shall now first calculate the shortterm bearing
capacity, corresponding to ¢ = 0°. In this case we have: -
N =0 N? =1 N°-—51
AsD:B = 20:55=036and B:L = 55:90 =

. 0.61, formulas (23) and (26) give for y = 0°:

d:’= 1+ 0.35:0.36 = 1.13
J’:‘—T— 1 +40.2+061 = 1.12

4
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For the inclination‘ factor formula (16) gives:
" 223, _
‘e ""+ l[ 3590103 =087

Equation (7) now gives the nommal short-term bear-
ing capacity:
Q,:BL=103"51" 112+ 113 - 087+44-—62t/m2
0, =62:5.5-9.0 = 3070t ~ V, = 3000t

As far as the short-term stability is concernec.l the dia-

meter his apparently been estimated correctly. We in-
vestigate now. the long-term bearing capacity, correspond-

ing to ¢, = 30°. In this case we have (Fig. 1):

N, =18 18.5 N, =30

For D: B =.0.36 formula (23) gives as before d, =

Nq=

113, whereas Fig. 10 for B: L= 061 gwes the follow-
- ing shape factors: .

5, =092 5, =113

For the inclination factors. formulas (20), (21) and

(13) give:

; 2
' 225 -
f = - = 0.86
fa [lv 3000 ¥ 339017175 ¢
| 1-0.86
B 2 == { = _—— = 0,
i, =0862=074 1= 0.86 TP 0.85

Equation (7) gi've.s new the nominal long-te:;m bear-
ing capacity: o
0,:BL= % (22-1)-5.5+18-0.92-1-0.74
+(1.7 + 44-0.58) + 30-1.15+1.13- 0.85
+ 4.4 =185t/m2 > 62 _
The long-term stability is evidently ample, even when
the full wind load is taken into account. This is, of course,
not necessary in a long-term analysis.

”

14. Summary. i

- Terzaghi's simple formula for the bearmg capacnty of
a foundation can be generalized by means of shape-, depth-
and inclination factors. The simplest form: of such“ a

- general formula is (7).

The exact values of the bearmg capacity factors N, and

N, are first calculated (8 and 9). For N, an upper and a

lower limiting curve are indicated, and a s:mple empirical
formula is given (10). : L

The inclination factors are now mvesugated and it is
shown that for i, and /, two simple, empirical formulas
can be indicated (20 and 21).

. For the depth- and shape factors ‘sim'plg,_empirical.

formulas are also developed (24, 27 and 28), correspond-

ing to the available evidence (Meyerhof), and it is shown

that they lead to plausible values of the point resistance
factors for piles. '

9%

Eccentric loads are dealt with by means of the so-called .
effective fpundation area which, per definition, is centrally
loaded by the foundation load.

- After a discussion of the contact pressure distribution
and safety factors an example (a TV tower) is finally
calculated by means of the new formula and the revised

factors, using the so-called partial coefficients of safety.
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