Esercizio

- Sapendo che la frequenza del clock è di 1 GHz, valutare le prestazioni della CPU relativamente al frammento di programma a lato ipotizzando che:
 - il ciclo viene eseguito 50 volte
 - l'istruzione sottolineata viene eseguita 20 volte.
- **n** In particolare:
 - determinare i valori di CI,CPI e T_{CPII}
 - motivare i valori assegnati ai CPI_i
 - mostrare in dettaglio le fasi di esecuzione per le istruzioni add, beq e lw.

```
sll $t1,$s2,2
add $t1,$t1,$s0
add $s1,$zero,$zero
loop: beq $t0,$t1,exit
lw $t3,0($t0)
beq $t3,$zero,L
add $s1,$s1,$t3
L: addi $t0,$t0,4
j loop
exit: sw $s1,4($s4)
```

Soluzione dell'esercizio 2 (1)

- Ricordiamo che per prestazioni della CPU si intende il tempo di CPU riferito all'utente, cioè tempo speso dalla CPU all'interno del programma.
- n II tempo di CPU referito all'utente può essere formulato come segue:

$$T_{CPU} = N_{cicli} * T_{ck} = CI * \frac{N_{cicli}}{CI} * T_{ck} = CI * CPI * T_{ck}$$

n dove *CI* è il *conto istruzioni*, cioè il numero di istruzioni eseguite dal processo, e *CPI* è il *numero medio di cicli di clock per istruzione*, determinato come segue:

$$CPI = \frac{N_{cicli}}{CI} = \frac{\sum CPI_{i*}N_{i}}{CI}$$

Soluzione dell'esercizio 2 (2)

	Cicli Per Istruzione			
		CPI _i	N _i	CPI _i _* N _i
	sll \$t1,\$s2,2	4 cicli	1	4 * 1 = 4
	add \$t1,\$t1,\$s0	4 cicli	1	4 * 1 = 4
loop:	add \$s1,\$zero,\$zero	4 cicli	1	4 * 1 = 4
	beq \$t0,\$t1,exit	3 cicli	51	3 * 51 = 153
	lw \$t3,0(\$t0)	5 cicli	50	5 * 50 = 250
	beq \$t3,\$zero,L	3 cicli	50	3 * 50 = 150
	add \$s1,\$s1,\$t3	4 cicli	20	4 * 20 = 80
L:	addi \$t0,\$t0,4	4 cicli	50	4 * 50 = 200
	j loop	3 cicli	50	3 * 50 = 150
exit:	sw \$s1,4(\$s4)	4 cicli	1	4 * 1 = 4
	"conto istruzioni"	$CI = \Sigma$	$\Sigma N_i = 275$	$N_{cicli} = \Sigma CPI_{i*}N_{i} = 999$

 $T_{CPU} = N_{cicli} * T_{ck} = 999 * 10^{-9} \approx 1 \text{ microsec}$

 $CPI = \frac{N_{cicli}}{CI} = \frac{999}{275} = 3,63$

Soluzione dell'esercizio 2 (3)

	CPI _i	motivazioni dei valori dei CPI _i	
sll	4 cicli	prelievo, accesso al banco/decodifica,	
		operazione ALU, scrittura nel banco	
add	4 cicli	prelievo, accesso al banco/decodifica,	
		operazione ALU, scrittura nel banco	
beq	3 cicli	prelievo, accesso al banco/decodifica,	
		test e aggiornamento PC	
lw	5 cicli	prelievo, accesso al banco/decodifica,	
		calcolo ind., lettura mem., scrittura reg	
addi	4 cicli	prelievo, accesso al banco/decodifica,	
		operazione ALU, scrittura nel banco	
j	3 cicli	prelievo, accesso al banco/decodifica,	
		aggiornamento PC	
sw	4 cicli	prelievo, accesso al banco/decodifica,	
		calcolo ind., lettura mem.	

ogni fase si esegue in un ciclo \rightarrow n° cicli = n° fasi di esecuzione

Soluzione dell'esercizio 2 (4)

```
add prelievo, accesso al banco/decodifica,
operazione ALU, scrittura nel banco
beq prelievo, accesso al banco/decodifica,
test e aggiornamento PC
lw prelievo, accesso al banco/decodifica,
calcolo ind., lettura mem., scrittura reg
```

n Le prime due fasi sono uguali per tutte le istruzioni:

```
IR = Mem[PC]

PC = PC + 4

B = Reg[IR[25-21]]

AluOut = PC + sign-ext(IR[15-0]<< 2
```

Soluzione dell'esercizio 2 (5)

add prelievo, accesso al banco/decodifica,
operazione ALU, scrittura nel banco
beq prelievo, accesso al banco/decodifica,
test e aggiornamento PC
lw prelievo, accesso al banco/decodifica,
calcolo ind., lettura mem., scrittura reg

n Fasi 3 e 4 della add:

Reg[IR[15-11]] = AluOut

n Fase 3 della beq:

n Fasi *3, 4* e 5 della 1w: