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Some solutions of the written exam of February 6th, 2013

Problem 1. Consider a feedback control system with unit feedback gain, with the following transfer
function in open-loop

W (s) = K
s+ 1

s2(s− 2)2
.

1. Draw the amplitude and phase Bode diagrams, and the polar diagram for K = 1;

2. Compute the denominator of the closed-loop transfer function;

3. Compute the number of poles with negative real part of the closed loop transfer function as a
function of the gain K ∈ (−∞,∞), using both the Nyquist criterion and the Routh criterion.

Solution of problem 1. Let W̃ (s) denote W (s) for K = 1:

W̃ (s) =
s+ 1

s2(s− 2)2
.

We consider the Bode plots and the polar plot of W̃ (s). In Bode form we have

W (s) = K W̃ (s) = K

(
1

4

)
1 + s

s2
(
1− s

2

)2

The low frequency gain, epurated from the monomial terms, is

K0 = lim
s→0

s2 W̃ (s) =
1

4
⇒ |K0|dB = 20 log10

(
1

4

)
= 20 log10 2

−2 = −2 (20 log10 2) = −12 dB.

Thus

|W̃ (jω)| = 1

4

|1 + jω|
ω2

∣∣1− jω/2
∣∣2

⟨W̃ (jω)⟩ = ⟨1 + jω⟩ − 2⟨1− jω/2⟩.

(the Bode plots and the Nyquist plot of the open loop transfer function are in the enclosed file).
The closed-loop transfer function is

WCL(s) =
K W̃ (s)

1 +K W̃ (s)
=

K s+1
s2(s−2)2

1 +K s+1
s2(s−2)2

=
k(s+ 1)

s2(s− 2)2 +K(s+ 1)

and the denominator of WCL(s) is:

dCL(s) = s2(s− 2)2 +K(s+ 1) = s2(s2 − 4 s+ 4) +K s+K)

= s4 − 4s3 + 4s2 +Ks+K

NYQUIST ANALYSIS

We see that the Nyquist plot of W̃ (jω) intersects the positive real axis at some frequency ω∗ (actually,

at a pair of frequencies ±ω∗). Let us compute the intersection point W̃ (jω∗), by finding the frequency ω∗

where the imaginary part of W̃ (jω) is equal to 0. First thing, let us decompose W̃ (jω) as ℜ
(
W̃ (jω)

)
+

jℑ
(
W̃ (jω)

)
:

W̃ (jω) =
jω + 1

−ω2(jω − 2)2
=

jω + 1

−ω2(4− ω2 − j4ω)

(4− ω2 + j4ω)

(4− ω2 + j4ω)

=
4− ω2 − 4ω2 + j

(
ω(4− ω2) + 4ω

)
−ω2

(
(4− ω2)2 + 14ω2

) =
4− 5ω2 + jω(8− ω2)

−ω2
(
ω4 + 8ω2 + 16

)
=

4− 5ω2 + jω(8− ω2)

−ω2(ω2 + 4)2
=

4− 5ω2

−ω2(ω2 + 4)2
− j

(8− ω2)

ω(ω2 + 4)2
.



From this, we have
ℑ
(
W̃ (jω)

)
= 0 ⇔ 8− ω2 = 0 ⇔ ω∗ = ±

√
8.

Thus ℑ
(
W̃ (j

√
8)
)
= 0 and W̃

(
j
√
8
)
is real, and its computation gives

W̃
(
j
√
8
)
=

(
4− 5ω2

−ω2(ω2 + 4)2

)
ω=

√
8

=
4− 5 · 8

−8(8 + 4)2
=

1

32
.

Thus, the intersection of W (jω) = KW̃ (jω) with the real axis is K/32.
Let N be the number of times that the Nyquist plot of W (jω) encircles the −1 point in the

counterclockwise direction. From the plot it is clear that

• For K > 0 we have N = 0: the Nyquist plot does not encircle the point −1;

• For K < 0 and −1 < K/32 we have N = −1: the Nyquist plot encircles one time the point −1 in
the clockwise (negative) direction;

• For K < 0 and K/32 < −1 we have N = 1: the Nyquist plot encircles one time the point −1 in the
counterclockwise (positive) direction;

Recall the Nyquist formula in the form
pCL = pOL −N

where, pCL is the number of poles with positive real part of the Closed Loop (CL) system, and pOL is
the number of poles with positive real part of the Open Loop (OL) system. Since for the given W (s) we
have pOL = 2 (the unstable pole in s = 2 is a double-pole) we have pCL = 2−N , and therefore

• For K > 0 we have N = 0, and thus pCL = 2 (unstable closed loop system);

• For K ∈ (−32, 0) we have N = −1, and thus pCL = 3 (unstable closed loop system);

• For K < −32 we have N = 1, and thus pCL = 1 (unstable closed loop system)

Note that for K = −32 the denominator of WCL(s) is 0 for s = ±j
√
8, and thus |WCL(±j

√
8)| = ∞, and

that means that ±j
√
8 is a pair of imaginary poles of WCL(s) (zero real part).

ROUTH ANALYSIS

The case K = 0 will be not analyzed because it corresponds to the trivial case where the open-loop
transefer function is zero.

The characteristic polynomial of the closed-loop system is the denominator of WCL(s):

dCL(s) = s4 − 4s3 + 4s2 +Ks+K.

The first two rows (rows 4 and 3) of the Routh table are:

4 1 4 K

3 -4 K

The computation of the elements in the third row (row number 2) gives

a2,1 =
1

−(−4)

∣∣∣∣ 1 4
−4 K

∣∣∣∣ = K + 16

4
, a2,2 =

1

−(−4)

∣∣∣∣ 1 K
−4 0

∣∣∣∣ = 4K

4
= K

Thus we have

4 1 4 K

3 −4 K

2 K+16
4 K

The computation of the element in the fourth row (row number 1) gives

a1,1 =
1

−(K + 16)

∣∣∣∣ −4 K
K+16

4 K

∣∣∣∣ = K(K + 32)

K + 16
,

and the last element, a0,1 is K



4 1 4 K

3 −4 K

2 K+16
4 K

1 K(K+32)
K+16

0 K

Analyzing the signs of the first column we have:

• For K > 0 we have two sign variation (4 → 3 and 3 → 2), so that pCL = 2;

• For K < 0 and K + 16 > 0 (so that also K + 32 > 0), we have three sign variations (4 → 3, 3 → 2
and 2 → 1), so that pCL = 3;

• For K < 0, K + 16 < 0 and K + 32 > 0, we have three sign variations (4 → 3, 2 → 1 and 1 → 0),
so that pCL = 3;

• For K + 32 < 0 (so that also K < 0 and K + 16 < 0) we have one sign variation (4 → 3) so that
pCL = 1.

For the particular case of K = −32, the polynomial is

dCL(s) = s4 − 4s3 + 4s2 − 32s+−32,

and the Routh table has the row number 1 equal to zero

4 1 4 −32

3 −4 −32

2 −4 −32

1 0

In this case it is known that the characteristic polynomial can be divided by a polynomial of only even
powers whose coefficients are those in the row just over the row of zero. In our case, the coefficients are
given by the row number 2, and the polynomial is, p(s) = −4s2 − 32, which we can rewrite by dividing
it with −4 ad

p(s) = s2 + 8.

Thus we know that dCL(s) can be factorized as

dCL(s) = s4 − 4s3 + 4s2 − 32s+−32 = f(s)(s2 + 8)

where f(s) is a polynomial of degree 2, and the sign of its roots can be studied by analyzing the sign of
the elemnts in the first column of the Routh table obtained up to now. We see that there is only on sign
variation (4 → 3) and therefore f(s) has one root with positive real part (unstable pole). Then, from the
factorization, we see that he roots of p(s) = s2 + 8 are also roots of dCL(s), and we conclude that, for
K = −32, the closed loop transfer function has 1 unstable pole, a pair of imaginary poles and, obviously,
a pole wth negative real part (stable).

These results coincide with those obtained from the Nyquist analysis.

Problem 2. Given the systems

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
dove A =

[
0 1
1 0

]
B =

[
0
1

]
C =

[
1 −1

]
1. Discuss the propeties of the natural modes;

2. Compute the state-transition matrix eAt;

3. Compute the impulse response and the input-output transfer function.

Solution of problem 2. The characteristic polynomial and the eigenvalues of the system are

|λI2 −A| =
∣∣∣∣[ λ −1
−1 λ

]∣∣∣∣ = λ2 − 1, ⇒ λ1 = −1, λ2 = 1.



The right eigenvectors r1 and r2 are column vectors that solve (λ1I2 − A)r1 = 0 and (λ2I2 − A)r2 = 0,
while the left-egenvectors ℓ1 and ℓ2 are row vectors that solve ℓ1(λ1I2 − A) = 0 and ℓ2(λ2I2 − A) = 0.
Among the infinite choices of right and left eigenvectors, we must choose those such that ℓ1r1 = ℓ2r2 = 1
(normality condition). Remember that the orthogonality conditions ℓ1r2 = ℓ2r1 = 0 are automatically
satisfied.

Thus we proceed as follows: we first compute r1 and r2 that solve (λ1I2 − A)rk = 0, k = 1, 2, and

then ℓ̂1 and ℓ̂2 that solve ℓ̂k(λ1I2 − A) = 0 (check that ℓhrk = 0 if k ̸= h). Then we set ℓ1 = ℓ̂1/(ℓ̂1r1)

and ℓ2 = ℓ̂2/(ℓ̂2r2) (normalization), so that ℓ1r1 = 1 and ℓ2r2 = 1. The computations are reported below

λ1 = −1, λ1I2 −A =

[
−1 −1
−1 −1

]
⇒ r1 =

[
1

−1

]
, ℓ̂1 =

[
1 −1

]
λ2 = 1, λ2I2 −A =

[
1 −1

−1 1

]
⇒ r2 =

[
1
1

]
, ℓ̂2 =

[
1 1

]
.

The normaliziation provides the left-eigenvectors

ℓ1 =
1

ℓ̂1r1
ℓ̂1 =

1

2

[
1 −1

]
ℓ2 =

1

ℓ̂2r2
ℓ̂2 =

1

2

[
1 1

]
(Note that in this problem we have ℓ1 = rT1 and ℓ2 = rT2 . This particular situaton happens because the
matrix A is symmetric. For symmetric matries it is aways true that: 1) all the eigenvalues are real; 2)
the transpose of a right-eigenvector is a left-eigenvector, both associated to the same eigenvalue.)

Discussion of the properties of the natural modes:

• The mode associated to λ1 = −1 is asymptotically stable (ℜ(λ1) < 0), can be excited by impulsive
inputs (ℓ1B ̸= 0) and is observable at the output (Cr1 ̸= 0);

• The mode associated to λ2 = 1 is unstable (ℜ(λ2) > 0), can be excited by impulsive inputs
(ℓ2B ̸= 0) and is unobservable at the output (Cr2 = 0)

(Note that the presence of unobservable unstable natural modes is a dangerous situation in dynamic
systems, because the instability, and the consequent divergence of the state variable x(t), is not detected
by the output.)

The transition matrix can be computed as eAt = eλ1 tr1ℓ1 + eλ2 tr2ℓ2:

eAt = e−t 1

2

[
1

−1

] [
1 −1

]
+ et

1

2

[
1
1

] [
1 1

]
= e−t 1

2

[
1 −1

−1 1

]
+ et

1

2

[
1 1
1 1

]
From this

eAt =
1

2

[
et + e−t et − e−t

et − e−t et + e−t

]
.

We can easily check that eA0 = I2, as expected. As an exercise, verify that (deAt/dt)t=0 = A.
The impulse response is easily computed as w(t) = CeAtB = eλ1 tCr1ℓ1B + eλ2 tCr2ℓ2B. Recalling

that Cr2 = 0, we have w(t) = CeAtB = eλ1 tCr1ℓ1B = −e−t. The transfer function W (s) is easily
computed as the Laplace transform of w(t), i.e. W (s) = L

(
w(t)

)
:

w(t) = −e−t ⇒ W (s) = − 1

s+ 1
.

.
Problem 3. Given the discrete-time system characterized by the following impulse response

w(t) = 0.2t − 0.5t,

compute the transfer function and the harmonic response to the input u(t) = cos
(
(π/2)t

)
.

Solution of problem 3. For discrete-time systems the transfer function is the Z-transform of the
impulse response. Recalling the basic Z-transform: Z(at) = z/(z − a), we have

W (z) = Z
(
w(t)

)
= Z

(
0.2t

)
−Z

(
0.5t

)
=

z

z − 0.2
− z

z − 0.5
=

z
(
z − 0.5− (z − 0.2)

)
(z − 0.2)(z − 0.5)

=
−0.3 z

(z − 0.2)(z − 0.5)

Note that the system is asymptotically stable (the magnitude of the poles of W (z) is strictly less than
one). Thus, the harmonic response yh(t) exists. Recall that, for discrete-time systems, the harmonic



response to a generic harmonic (or sinusoidal) input u(t) = m cos
(
ω t+ φ

)
, can be computed using the

following formula:
yh(t) = m |W (ejω)| cos

(
ω t+ φ+ ⟨W (ejω)⟩

)
,

where W (ejω) is the transfer function W (z) computed at z = ejω, where ω is the angular frequency
(pulsazione) of the input function. The symbols |W | and ⟨W ⟩ denote the magnitude and phase of the
complex number W , respectively.

In our problem u(t) = cos
(
(π/2)t

)
, thus m = 1, ω = π/2 and φ = 0. The first step to compute the

harmonic response is to compute W (ejω) for ω = π/2. Note that ejπ/2 = cos(π/2) + j sin(π/2) = j.
Thus

W (ejπ/2) = W (j) =
−j 0.3

(j − 0.2)(j − 0.5)

There are two ways of computing the magnitude and phase of a complex number that is the ratio of
products of some complex numers, like W (j). For instance, consider three complex numbers z1, z2 and
z3, and the complex number y = z1/(z1z2). The magnitude and the phase of y can be computed as
follows ∣∣∣∣ z1

z2 z3

∣∣∣∣ = |z1|
|z2| |z3|

,

⟨
z1

z2 z3

⟩
= ⟨z1⟩ − ⟨z2⟩ − ⟨z3⟩,

and

|W (j)| =
∣∣∣∣ −j 0.3

(j − 0.2)(j − 0.5)

∣∣∣∣ = | − j 0.3|
|j − 0.2| |j − 0.5|

=
0.3√

1 + 0.04
√
1 + 0.25

=
0.3

1.0198 · 1.1180
= 0.2631.

Thus

⟨W (j)⟩ =
⟨

−j 0.3

(j − 0.2)(j − 0.5)

⟩
= ⟨−j 0.3⟩ − ⟨j − 0.2⟩ − ⟨j − 0.5⟩

Note that both j − 0.2 and j − 0.5 are in the second quadrant (they have negative real part and positive
imaginary part), and therefore their phases are in the interval (π/2, π) or, equivalently, (−3π/2,−π).
Recall that the computation of the phase of a complex number z = α + jβ using the inverse tangent
function arctan(·) must be made with some care. First of all, when α = 0 the function arctan(·) can not
be used, of course (when α = 0 we have ⟨z⟩ = sign(β)π/2). When α ̸= 0 the formula ⟨z⟩ = arctan(α/β)
gives the correct result if an only if α > 0. When α < 0 the result of arctan(α/β) must be corrected by
adding π (or −π, equivalently). We can ue the formula ⟨z⟩ = arctan(α/β) + π(sign(α) − 1)/2, where
sign(α) = 1 if α > 0, sign(α) = −1 if α < 0, sign(α) = 0 if α = 0. Thus

⟨−j 0.3⟩ = −π

2
,

⟨j − 0.2⟩ = arctan(−1/0.2) + π = − arctan(1/0.2) + π,

⟨j − 0.5⟩ = arctan(−1/0.5) + π = − arctan(1/0.5) + π,

and

⟨W (j)⟩ = −π

2
+ arctan(1/0.2)− π + arctan(1/0.5)− π = −1.5708 + 1.3734 + 1.1071− 2π rad.

Taking the solution �modulo 2π, that means that 2π is not considered, we have

⟨W (j)⟩ = 0.9097 rad.

An alternative computation of ⟨W (j)⟩ consists in computing the real and imginary parts of W (j),
ℜ
(
W (j)

)
and ℑ

(
W (j)

)
, and then computing arctan

(
ℑ
(
W (j)

)
/ℜ

(
W (j)

)
and adding the π correction, if

necessary. This is made as follows

W (j) =
−j 0.3

(−0.2 + j)(−0.5 + j)

(−0.2− j)(−0.5− j)

(−0.2− j)(−0.5− j)
= 0.3

−j(0.2 + j)(0.5 + j)

| − 0.2− j|2 | − 0.5− j|2

= 0.3
−j(0.1− 1 + j(0.2 + 0.5)

(0.04 + 1)(0.25 + 1)
=

0.3

1.3
(0.7 + j 0.9)

From this
⟨W (j)⟩ = ⟨0.9− j 0.7⟩ = − arctan(0.7/0.9) = 0.9097 rad.

Thus, the answers to the probelm 3 are:

transfer function: W (z) =
−z 0.3

(z − 0.2)(z − 0.5)
,

harmonic response: yh(t) = 0.2631 cos((π/2)t+ 0.9097).



Problem 4. Consider the Linear Time-Invariant (LTI) continuous time system represented by the
following matrices

A =


−2 2 0 0
2 −2 0 0
0 0 0 2
1 1 2 0

 B =


1
1

−1
0

 C =
[
1 1 2 0

]

Find a basis for the space of reachable states and a basis for the space of unobservable states. Moreover,
define the 4 subspaces X1, X2, X3 and X4 of the structural Kalman decomposition

Solution of problem 4. The computation of the reachability matrix P4 and of the obsevability matrix
Q4 gives:

P4 =
[
B AB A2B A3B

]
=


1 0 0 0
1 0 0 0

−1 0 0 0
0 0 0 0

 Q4 =


C
CA
CA2

CA3

 =


1 1 2 0
0 0 0 4
4 4 8 0
0 0 0 16


(note that for the computation of P4 and Q4 it is not necessary, nor wise, to compute the powers Ak, for k = 2 and

k = 3, and then multiply the resulting matrice bu B and by C. The fastest and reliable way to compute P4 is to

recursively compute the columns of P4 = [P:,1 P:,2 P:,3 P:,4] as P:,k+1 = AP:,k, starting with P:,1 = B. Similarly,

for the computation of Q4, we can recursively compute the four rows of Q4, denoted Qk,:, as Qk+1,: = Q:,kA,

starting with C:,1 = C.)

Looking at P4, it is clear that the rank is 1, because only the first column (the vector B) is nonzero.
Thus the range (or image space) of P4, denoted P = R(P4), has dimension 1, and its first column forms
its basis: P = span(B).

Consider now matrix Q4. Note that ρ(Q4) = 2, because the first and third rows are proportional, and
the second and fourth rows are proportional. Thus, only two rows are independent, and the rank is 2.
Thus we know that the null-space of Q4 has dimension 2 (in general, the dimension of the null-space of
Qn is n − ρ(Qn)). Thus, we must find two independent vectors v1 and v2 in the null-space of Q4 (that
we denote N (Q4) or Q), that means such that Q4v1 = 0 and Q4v2 = 0.

Noting that the first two columns of Q4 are equal, we see that the vector v1 = [1 − 1 0 0]T is such
that Q4v1 = 0 (the product Q4v1 performs the subtraction of the second column from the first column
of Q4). Noting that the third column is twice the first column, we see that the vector v2 = [2 0 − 1 0]T

is such that Q4v2 = 0 (the product Q4v2 performs the subtraction of the third column from the double
of the first column of Q4). Thus we have

P = R(P4) = span




1
1

−1
0


 , Q = N (Q4) = span




1
−1
0
0




2
0

−1
0


 .

Obviously, other basis can be chosen for the subspaces P and Q. (A very common –and bad– error made
by students is to define Q = R(Q4)).

Now, let’s find the bases for the 4 subspaces X1, X2, X3 and X4. By definition X1 = P∩Q. A common
error made by (unprepared) students is to look for a common vector in the bases of P and Q. If the
unprepared student doesn’t find any common vector in the two bases, he draws the (wrong) conclusion
that the intersection P ∩Q is empty (X1 = ∅).

Thus, in our problem, the unprepared student would claim that X1 is empty, so that there are
no reachable states that are unobservable. Instead, a simple test shows that all reachable states are
unobservable, i.e. P ∩Q = P. The test consists in multiplying Q4 by B, obtaining Q4B = 0. This means
that B ∈ N (Q4), equivalent to span(B) ⊂ Q or P ⊂ Q, from which X1 = P ∩ Q = P (the student can
verify that B can be obtained as a linear combination of the two vectors v1 and v2: B = −v1+v2). Thus,

let x
(1)
1 = B, so that X1 = span(x

(1)
1 ).

Now we have to find a subspace X2 such that X1 ⊕X2 = P. Clearly, X2 = ∅, because X1 = P.
Now we have to find a subspace X3 such that X1 ⊕X3 = Q. The simplest way to find a basis of X3 is

to transform the basis of Q so that x
(1)
1 is an vector of the basis. Recalling that Q has dimension 2, we

have that X3 must have dimension 1 (one vector in the basis). The other vector in the basis of Q can be
chosen as the basis of X3. This operation can be made in many ways. One way is simply to replace the



vector v2 of the basis of Q with x
(1)
1 , i.e. Q = span{v1, x(1)1 }. It is easy to check that the vectors of the

old basis {v1, v2} can be obtained as a linear combination of the new basis {v1, x(1)1 } (we easily see that

v2 = v1 + x
(1)
1 ). Now that we have Q = span{v1, x(1)1 }, we can choose x

(3)
1 = v1.

Now we have to find a subspace X3 such that X1 ⊕X2 ⊕X3 ⊕X4 = C4 (or X1 ⊕X3 ⊕X3 = C4, since

X2 = ∅). Since X1 ⊕ X3 = span{x(1)1 , x
(3)
1 } has dimension 2, we need two vector for completing a basis of

C4. Being

X1 ⊕X3 = span{x(1)1 , x
(3)
1 } = span




1
1

−1
0




1
−1
0
0




a straightforward choice is

X4 = span{x(4)1 , x
(4)
2 } = span



0
0
1
0



0
0
0
1




Indeed, it is easy to see that the matrix T =
[
x
(1)
1 x

(3)
1 x

(4)
1 x

(4)
2

]
is nonsingular, and therefore R(T ) = C4.

The matrix T defines a change of coordinates that transforms the system in the Kalman canonical
form.

Problem 5. Consider a continuous time system ẋ(t) = Ax(t) +Bu(t) and a quadratic function V (x) =
xTPx, with

A =

[
−1 1
1 −2

]
, e P =

[
3 1
1 2

]
.

Verify that the origin is an asymptotically stable equilibrium, and that V (x) is a Lyapunov function.
(Suggestion: in order to check whether a given matrix is positive definite, use the Sylvester criterion.)

Solution of problem 5.
Following the Sylvester criterion, P is positive definite (the determinants of the two principal minors of
P are both positive):

P =

[
3 1
1 2

]
, ⇒ |3| = 3,

∣∣∣∣ 3 1
1 2

∣∣∣∣ = 5.

Note that for linear systems the origin is always and equilibrium point.
Now consider the function V = xTPx (Lypaunov function candidate), along a generic system trajec-

tory x(t): V (x(t)) = xT(t)Px(t). Differentiating V (x(t)) with respect to time we have

dV (x(t))

dt
= ẋT(t)Px(t) + xT(t)Pẋ(t)

Replace ẋ(t) = Ax(t) and ẋT(t) = ATxT(t) to get

dV (x(t))

dt
= xT(t)ATPx(t) + xT(t)PAx(t) = xT(t)(ATP + PA)x(t)

The problem is solved simply by computing the matrix ATP+PA and verifying that it is negative definite
(that means, defining Q = −(ATP + PA), verify that Q is positive definite).

Strightforward computations give

Q = −(ATP + PA) =

[
4 −2
−2 6

]
.

The determinants of the principal minors are positive (4 and 20) and therefore Q is positive definite. It
follows that V = xTPx is a Lyapunov function and the origin is n asymptotically stable equilibrium for
the given system.

Problem 6. Given the system{
ẋ1(t) = x2(t)−

(
x1(t)− 1

)3
ẋ2(t) = α

(
x1(t) + x2

2(t)− 1
)
− x2(t)−

(
x1(t)− 1

)3



study the stability of the equilibrium point xe = (1, 0) for all the values of the parameter α in (−∞,∞),
using the method of linear approximation at the equilibrium point, and the Lyapunov method, if necessary.
(Suggestion for the Lyapunov function: V (x) = (x1 − xe,1)

4 + β(x2 − xe,2)
2, with suitable β > 0.)

Solution of problem 6.
The system considered is of the form ẋ(t) = f

(
x(t);α

)
, where x(t) is the state and α is a constant

parameter. The vector function f(x;α) = [f1(x) f2(x;α)]
T is as follows{

f1(x) = x2 −
(
x1 − 1

)3
f2(x;α) = α

(
x1 + x2

2 − 1
)
− x2 −

(
x1 − 1

)3
The Jacobian is

J(x) =

[
∂x1f1 ∂x2f1
∂x1f2 ∂x2f2

]
=

[
−3(x1 − 1)2 1

α− 3(x1 − 1)2 2αx2 − 1

]
The value of the Jacobian at the equilibrum point xe = (1, 0) and the characteristic polynomial are

J(xe) =

[
0 1
α −1

]
, |λI2 − J(xe)| =

∣∣∣∣[ λ −1
−α λ+ 1

]∣∣∣∣ = λ2 + λ− α.

It is known that the roots of a second-degree polynomial have strictly negative real part if and only if all
coefficients have the same sign. Thus, in our problem, the two eigenvalues of J(xe) have strictly negative
real part if and only if α < 0. As a consequence, if α < 0 then xe is an asymptotically stable (A.S.)
equilibrium point. On the other hand, if α > 0, then there exists at least one eigenvalue with positive
real part. As a consequence, if α > 0 then xe is an unstable equilibrium point.

When α = 0 then the characteristic polynomial is λ2 + λ = λ(λ+ 1), and therefore the two roots are
λ1 = 0 and λ2 = −1. Thus, the origin is a simply stable equilibrium point of the linear approximation of
the nonlinear system.

However, this does not imply the simple stability of the original nonlinear system (only asymptotic
stability of the linear approximation implies the asymptotic stability of the nonlinear system). Thus, we
must study the stability of the point xe = (1, 0) when α = 0 by using a suitable Lyapunov function.
Following the suggestion, for the system ẋ(t) = f

(
x(t); 0

)
we consider the Lyapunov function V (x) =

(x1−xe,1)
4+β(x2−xe,2)

2, which is positive definite for any β > 0. According to the Lyapunov theorem,

if the derivative V̇ (x) = (dV/dx)f(x;α) is semidefinite negative, then the equilibrium xe is (simply)
stable, while if V̇ (x) is definite negative, then the equilibrium is asymptotically stable. The computation
of V̇ (x) gives

V̇ (x) =
dV

dx
f(x; 0) = (∂x1

V )f1(x) + (∂x2
V )f2(x; 0)

= 4(x1 − 1)3
(
x2 − (x1 − 1)3

)
+ 2β x2

(
− x2 − (x1 − 1)3

)
= 4x2(x1 − 1)3 − 4(x1 − 1)6 − 2βx2

2 − 2βx2(x1 − 1)3.

Note that the two terms −4(x1 − 1)6 and −2βx2
2 are strictly negative when x ̸= xe, while the sign of the

terms 4x2(x1 − 1)3 and −2βx2(x1 − 1)3 is indefinite. If we choose β = 2 we can cancel the two terms
with indefinite sign, and get the following derivative of the Lyapunov function

V̇ (x) = −4(x1 − 1)6 − 4x2
2,

which is definite negative. This proves that when α = 0 the equilibrium xe is asymptotically stable.
In conclusion, for α ∈ (−∞, 0] the equilibrium xe = (1, 0) is asymptotically stable, and is unstable

when α ∈ (0,∞).
Moreover, note that the Lyapunov function V (x) is radially unbounded , i.e.

∥x∥ → ∞ =⇒ V (x) → ∞,

and therefore when α = 0 the equlibrium is globally asymptotically stable (G.A.S.).


