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Some solutions of the written exam of November 18th, 2013

Problem 1. Consider a feedback control system with unit feedback gain, with the following transfer
function in open-loop

W (s) = K
s− 1

s(s2 + 64)
.

1. Draw the amplitude and phase Bode diagrams, and the polar diagram for K = 1;

2. Compute the denominator of the closed-loop transfer function;

3. Compute the number of poles with negative real part of the closed loop transfer function as a
function of the gain K ∈ (−∞,∞), using both the Nyquist criterion and the Routh criterion.

We consider the Bode plots and polar plot of W̃ (s)

W̃ (s) =
s− 1

s(s2 + 64)

(
W̃ (s) = W (s) for K = 1

)
.

The low frequency gain is

K0 = lim
s→0

|W̃ (s)s| =
1

64
= 2−6 ⇒ |K0|dB = 20 log10(2

−6) = −6
(
20 log10(2)

)
≈ −36 dB.

(recall that 20 log10(2) ≈ 6). Thus, the term
K0

s
is a straight line with −20 dB/decade slope, passing at

−36 dB for ω = 1.
The Bode plots and the polar plot of the open loop transfer function are in the enclosed file.
The closed-loop transfer function is

Wch(s) =
W (s)

1 +W (s)
=

K s−1
s(s2+64)

1 +K s−1
s(s2+64)

=
K(s− 1)

s(s2 + 64) +K(s− 1)

The characteristic polynomial of the closed-loop system is the denominator of Wch(s):

dch(s) = s(s2 + 64) +K(s− 1) = s3 + (64 +K)s−K

The first two rows (rows 3 and 2) of the Routh table are:

3 1 64 +K
2 0 −K

There is a 0 in the first column. To continue the table construction, replace the 0 with ε > 0

3 1 64 +K
2 ε −K

1 −K−ε(64+K)
−ε

0 −K

The term in the row 1 is rewritten as
K

ε
+ 64 +K.

By multiplying the row 1 by ε > 0 we have

3 1 64 +K
2 ε −K
1 K − ε(64 +K)
0 −K

Thus, for ε sufficiently small the sign of the term coincides with the sign of K. Thus, the signs of the
first column are the signs of

1 ε K −K.

For K > 0 we have only one sign variation, while for K < 0 we have two sign variations.



Thus, for K > 0 we have one pole with positive real part in the closed loop transfer function, while
for K < 0 we have two poles with positive real part. In both cases we have the instabilty of the closed
loop system.

Problem 5. Given the system
{
ẋ1(t) = −k

(
1 + x2

2(t)
)
x1(t) + x2(t) + 1

ẋ2(t) = −
(
1 + x2

2(t)
)(
1 + x2(t)

)
− x3

1

study the stability of the equilibrium point xe = (0,−1) for all the values of the parameter k ∈ (−∞,∞),
using the method of linear approximation at the equilibrium point, and the Lyapunov method, if necessary.
(Suggestion for the Lyapunov function: V (x) = (x1 − xe,1)

4 + β(x2 − xe,2)
2, with suitable β > 0.)

Solution of problem 5.
The system considered is of the form ẋ(t) = f

(
x(t); k

)
, where x(t) is the state and k is a constant

parameter. The vector function f(x; k) = [f1(x; k) f2(x)]
T is as follows

{
f1(x; k) = −k (1 + x2

2)x1 + x2 + 1

f2(x) = −(1 + x2
2)(1 + x2)− x3

1

The Jacobian is

J(x) =

[
∂x1

f1 ∂x2
f1

∂x1
f2 ∂x2

f2

]
=

[
−k (1 + x2

2) −2k x2 x1 + 1
−3x2

1 −2x2(x2 + 1)− (1 + x2
2)

]

The value of the Jacobian at the equilibrium point xe = (0,−1) and the characteristic polynomial are

J(xe) =

[
−2k 1
0 −2

]
, |λI2 − J(xe)| =

∣∣∣∣
[
λ+ 2k −1

0 λ+ 2

]∣∣∣∣ = (λ+ 2k)(λ+ 2).

The eigenvalues are λ1 = −2k and λ2 = −2. Thus, both eigenvalues of J(xe) have strictly negative
real part if and only if k > 0. As a consequence, if k > 0 then xe is an asymptotically stable (A.S.)
equilibrium point, while if k < 0, then λ1 is positive, and then xe is an unstable equilibrium point.

When k = 0 the two eigenvalues are λ1 = 0 and λ2 = −2, and the origin is a simply stable equilibrium
point of the linear approximation of the nonlinear system.

However, this does not imply the simple stability of the original nonlinear system (only asymptotic
stability of the linear approximation implies the asymptotic stability of the nonlinear system). Thus, we
must study the stability of the point xe = (0,−1) when k = 0 by using a suitable Lyapunov function.

Following the suggestion, for the system ẋ(t) = f
(
x(t); 0

)
we consider the Lyapunov function

V (x) = x4
1 + β(x2 + 1)2,

which is positive definite for any β > 0. According to the Lyapunov theorem, if the derivative V̇ (x) =
(dV/dx)f(x;α) is semidefinite negative, then the equilibrium xe is (simply) stable, while if V̇ (x) is definite
negative, then the equilibrium is asymptotically stable. for k = 0 we have

f1(x; 0) = x2 + 1,

f2(x) = −(1 + x2
2)(1 + x2)− x3

1.

The computation of V̇ (x) gives

V̇ (x) =
dV

dx
f(x; 0) = (∂x1

V )f1(x; 0) + (∂x2
V )f2(x)

= 4x3
1(x2 + 1) + 2β (x2 + 1)

(
− (1 + x2

2)(1 + x2)− x3
1

)

= 4x3
1(x2 + 1)− 2β (1 + x2

2)(1 + x2)
2 − 2β (x2 + 1)x3

1.

Note that the term −2β (1 + x2
2)(1 + x2) is never positive for any β > 0, and is strictly negative when

x2 6= −1, while the first and the last terms have indefinite sign. If we choose β = 2 we can cancel the
two terms with indefinite sign, and get the following derivative of the Lyapunov function

V̇ (x) = −4 (1 + x2
2)(1 + x2)

2.



This function is negative semidefinite (i.e. V̇ (x) ≤ 0) and therefore the equilibrium xe = (0,−1) is stable.
Note that the chosen Lyapunov function does not prove asymptotic stability, because V (x) is not negative
definite (it is easy to see that V (x) = 0 for x = (x1,−1), for any x1 ∈ R).

In conclusion, for k ∈ (−∞, 0) the equilibrium xe = (0,−1) is unstable, for k = 0 is stable, and for
k ∈ (0,∞) is asymptotically stable.


